cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 146 results. Next

A046521 Array T(i,j) = binomial(-1/2-i,j)*(-4)^j, i,j >= 0 read by antidiagonals going down.

Original entry on oeis.org

1, 2, 1, 6, 6, 1, 20, 30, 10, 1, 70, 140, 70, 14, 1, 252, 630, 420, 126, 18, 1, 924, 2772, 2310, 924, 198, 22, 1, 3432, 12012, 12012, 6006, 1716, 286, 26, 1, 12870, 51480, 60060, 36036, 12870, 2860, 390, 30, 1, 48620, 218790, 291720, 204204, 87516, 24310
Offset: 0

Views

Author

Keywords

Comments

Or, a triangle related to A000984 (central binomial) and A000302 (powers of 4).
This is an example of a Riordan matrix. See the Shapiro et al. reference quoted under A053121 and Notes 1 and 2 of the Wolfdieter Lang reference, p. 306.
As a number triangle, this is the Riordan array (1/sqrt(1-4x),x/(1-4x)). - Paul Barry, May 30 2005
The A- and Z- sequences for this Riordan matrix are (see the Wolfdieter Lang link under A006232 for the D. G. Rogers, D. Merlini et al. and R. Sprugnoli references on Riordan A- and Z-sequences with a summary): A-sequence [1,4,0,0,0,...] and Z-sequence 4+2*A000108(n)*(-1)^(n+1)=[2, 2, -4, 10, -28, 84, -264, 858, -2860, 9724, -33592, 117572, -416024, 1485800, -5348880, 19389690, -70715340, 259289580, -955277400, 3534526380], n >= 0. The o.g.f. for the Z-sequence is 4-2*c(-x) with the Catalan number o.g.f. c(x). - Wolfdieter Lang, Jun 01 2007
As a triangle, T(2n,n) is A001448. Row sums are A046748. Diagonal sums are A176280. - Paul Barry, Apr 14 2010
From Wolfdieter Lang, Aug 10 2017: (Start)
The row polynomials R(n, x) of Riordan triangles R = (G(x), F(x)), with F(x)= x*Fhat(x), belong to the class of Boas-Buck polynomials (see the reference). Hence they satisfy the Boas-Buck identity (we use the notation of Rainville, Theorem 50, p. 141):
(E_x - n*1)*R(n, x) = -Sum_{k=0..n-1} (alpha(k)*1 + beta(k)*E_x)*R(n-1.k, x), for n >= 0, where E_x = x*d/dx (Euler operator). The Boas-Buck sequences are given by alpha(k) := [x^k] ((d/dx)log(G(x))) and beta(k) := [x^k] (d/dx)log(Fhat(x)).
This entails a recurrence for the sequence of column m of the Riordan triangle T, n > m >= 0: T(n, m) = (1/(n-m))*Sum_{k=m..n-1} (alpha(n-1-k) + m*beta(n-1-k))*T(k, m), with input T(m,m).
For the present case the Boas-Buck identity for the row polynomials is (E_x - n*1)*R(n, x) = -Sum_{k=0..n-1} 2^(2*k+1)*(1 + 2*E_x)*R(n-1-k, x), for n >= 0. For the ensuing recurrence for the columns m of the triangle T see the formula and example section. (End)
From Peter Bala, Mar 04 2018: (Start)
The following two remarks are particular cases of more general results for Riordan arrays of the form (f(x), x/(1 - k*x)).
1) Let R(n,x) denote the n-th row polynomial of this triangle. The polynomial R(n,4*x) has the e.g.f. Sum_{k = 0..n} T(n,k)*(4*x)/k!. The e.g.f. for the n-th diagonal of the triangle (starting at n = 0 for the main diagonal) equals exp(x) * the e.g.f. for the polynomial R(n,4*x). For example, when n = 3 we have exp(x)*(20 + 30*(4*x) + 10*(4*x)^2/2! + (4*x)^3/3!) = 20 + 140*x + 420*x^2/2! + 924*x^3/3! + 1716*x^4/4! + ....
2) Let P(n,x) = Sum_{k = 0..n} T(n,k)*x^(n-k) denote the n-th row polynomial in descending powers of x. P(n,x) is the n-th degree Taylor polynomial of (1 + 4*x)^(n-1/2) about 0. For example, for n = 4 we have (1 + 4*x)^(7/2) = 70*x^4 + 140*x^3 + 70*x^2 + 14*x + 1 + O(x^5).
Let C(x) = (1 - sqrt(1 - 4*x))/(2*x) denote the o.g.f. of the Catalan numbers A000108. The derivatives of C(x) are determined by the identity (-1)^n * x^n/n! * (d/dx)^n(C(x)) = 1/(2*x)*( 1 - P(n,-x)/(1 - 4*x)^(n-1/2) ), n = 0,1,2,.... See Lang 2002. Cf. A283150 and A283151. (End)

Examples

			Array begins:
  1,  2,   6,  20,   70, ...
  1,  6,  30, 140,  630, ...
  1, 10,  70, 420, 2310, ...
  1, 14, 126, 924, 6006, ...
Recurrence from A-sequence: 140 = a(4,1) = 20 + 4*30.
Recurrence from Z-sequence: 252 = a(5,0) = 2*70 + 2*140 - 4*70 + 10*14 - 28*1.
From _Paul Barry_, Apr 14 2010: (Start)
As a number triangle, T(n, m) begins:
n\k       0      1       2       3      4      5     6    7   8  9 10 ...
0:        1
1:        2      1
2:        6      6       1
3:       20     30      10       1
4:       70    140      70      14      1
5:      252    630     420     126     18      1
6:      924   2772    2310     924    198     22     1
7:     3432  12012   12012    6006   1716    286    26    1
8:    12870  51480   60060   36036  12870   2860   390   30   1
9:    48620 218790  291720  204204  87516  24310  4420  510  34  1
10:  184756 923780 1385670 1108536 554268 184756 41990 6460 646 38  1
... [Reformatted and extended by _Wolfdieter Lang_, Aug 10 2017]
Production matrix begins
      2, 1,
      2, 4, 1,
     -4, 0, 4, 1,
     10, 0, 0, 4, 1,
    -28, 0, 0, 0, 4, 1,
     84, 0, 0, 0, 0, 4, 1,
   -264, 0, 0, 0, 0, 0, 4, 1,
    858, 0, 0, 0, 0, 0, 0, 4, 1,
  -2860, 0, 0, 0, 0, 0, 0, 0, 4, 1 (End)
Boas-Buck recurrence for column m = 2, and n = 4: T(4, 2) = (2*(2*2+1)/2) * Sum_{k=2..3} 4^(3-k)*T(k, 2) = 5*(4*1 + 1*10) = 70. - _Wolfdieter Lang_, Aug 10 2017
From _Peter Bala_, Feb 15 2018: (Start)
With C(x) = (1 - sqrt( 1 - 4*x))/(2*x),
-x^3/3! * (d/dx)^3(C(x)) = 1/(2*x)*( 1 - (1 - 10*x + 30*x^2 - 20*x^3)/(1 - 4*x)^(5/2) ).
x^4/4! * (d/dx)^4(C(x)) = 1/(2*x)*( 1 - (1 - 14*x + 70*x^2 - 140*x^3 + 70*x^4 )/(1 - 4*x)^(7/2) ). (End)
		

References

  • Ralph P. Boas, jr. and R. Creighton Buck, Polynomial Expansions of analytic functions, Springer, 1958, pp. 17 - 21, (last sign in eq. (6.11) should be -).
  • Earl D. Rainville, Special Functions, The Macmillan Company, New York, 1960, ch. 8, sect. 76, 140 - 146.

Crossrefs

Columns include: A000984 (m=0), A002457 (m=1), A002802 (m=2), A020918 (m=3), A020920 (m=4), A020922 (m=5), A020924 (m=6), A020926 (m=7), A020928 (m=8), A020930 (m=9), A020932 (m=10).
Row sums: A046748.

Programs

  • GAP
    Flat(List([0..9],n->List([0..n],m->Binomial(2*n,n)*Binomial(n,m)/Binomial(2*m,m)))); # Muniru A Asiru, Jul 19 2018
    
  • Magma
    [Binomial(n+1,k+1)*Catalan(n)/Catalan(k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 28 2024
    
  • Mathematica
    t[i_, j_] := If[i < 0 || j < 0, 0, (2*i + 2*j)!*i!/(2*i)!/(i + j)!/j!]; Flatten[Reverse /@ Table[t[n, k - n] , {k, 0, 9}, {n, k, 0, -1}]][[1 ;; 51]] (* Jean-François Alcover, Jun 01 2011, after PARI prog. *)
  • PARI
    T(i,j)=if(i<0 || j<0,0,(2*i+2*j)!*i!/(2*i)!/(i+j)!/j!)
    
  • SageMath
    def A046521(n,k): return binomial(n+1, k+1)*catalan_number(n)/catalan_number(k)
    flatten([[A046521(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 28 2024

Formula

T(n, m) = binomial(2*n, n)*binomial(n, m)/binomial(2*m, m), n >= m >= 0.
G.f. for column m: ((x/(1-4*x))^m)/sqrt(1-4*x).
Recurrence from the A-sequence given above: a(n,m) = a(n-1,m-1) + 4*a(n-1,m), for n >= m >= 1.
Recurrence from the Z-sequence given above: a(n,0) = Sum_{j=0..n-1} Z(j)*a(n-1,j), n >= 1; a(0,0)=1.
As a number triangle, T(n,k) = C(2*n,n)*C(n,k)/C(2*k,k) = C(n-1/2,n-k)*4^(n-k). - Paul Barry, Apr 14 2010
From Peter Bala, Apr 11 2012: (Start):
One of three infinite families of integral factorial ratio sequences of height 1 (see Bober, Theorem 1.2). The other two are A007318 and A068555.
The triangular array equals exp(S), where the infinitesimal generator S has [2,6,10,14,18,...] on the main subdiagonal and zeros elsewhere.
Recurrence equation for the square array: T(n+1,k) = (k+1)/(4*n+2)*T(n,k+1). (End)
T(n,k) = 4^(n-k)*A006882(2*n - 1)/(A006882(2*n - 2*k)*A006882(2*k - 1)) = 4^(n-k)*(2*n - 1)!!/((2*n - 2*k)!*(2*k - 1)!!). - Peter Bala, Nov 07 2016
Boas-Buck recurrence for column m, m > n >= 0: T(n, m) = (2*(2*m+1)/(n-m))*Sum_{k=m..n-1} 4^(n-1-k)*T(k, m), with input T(n, n) = 1. See a comment above. - Wolfdieter Lang, Aug 10 2017
From Peter Bala, Aug 13 2021: (Start)
Analogous to the binomial transform we have the following sequence transformation formula: g(n) = Sum_{k = 0..n} T(n,k)*b^(n-k)*f(k) iff f(n) = Sum_{k = 0..n} (-1)^(n-k)*T(n,k)*b^(n-k)*g(k). See Prodinger, bottom of p. 413, with b replaced with 4*b, c = 1 and d = 1/2.
Equivalently, if F(x) = Sum_{n >= 0} f(n)*x^n and G(x) = Sum_{n >= 0} g(n)*x^n are a pair of formal power series then
G(x) = 1/sqrt(1 - 4*b*x) * F(x/(1 - 4*b*x)) iff F(x) = 1/sqrt(1 + 4*b*x) * G(x/(1 + 4*b*x)).
The m-th power of this array has entries m^(n-k)*T(n,k). (End)

A088617 Triangle read by rows: T(n,k) = C(n+k,n)*C(n,k)/(k+1), for n >= 0, k = 0..n.

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 6, 10, 5, 1, 10, 30, 35, 14, 1, 15, 70, 140, 126, 42, 1, 21, 140, 420, 630, 462, 132, 1, 28, 252, 1050, 2310, 2772, 1716, 429, 1, 36, 420, 2310, 6930, 12012, 12012, 6435, 1430, 1, 45, 660, 4620, 18018, 42042, 60060, 51480, 24310, 4862
Offset: 0

Views

Author

N. J. A. Sloane, Nov 23 2003

Keywords

Comments

Row sums: A006318 (Schroeder numbers). Essentially same as triangle A060693 transposed.
T(n,k) is number of Schroeder paths (i.e., consisting of steps U=(1,1), D=(1,-1), H=(2,0) and never going below the x-axis) from (0,0) to (2n,0), having k U's. E.g., T(2,1)=3 because we have UHD, UDH and HUD. - Emeric Deutsch, Dec 06 2003
Little Schroeder numbers A001003 have a(n) = Sum_{k=0..n} A088617(n,k)*(-1)^(n-k)*2^k. - Paul Barry, May 24 2005
Conjecture: The expected number of U's in a Schroeder n-path is asymptotically Sqrt[1/2]*n for large n. - David Callan, Jul 25 2008
T(n, k) is also the number of order-preserving and order-decreasing partial transformations (of an n-chain) of width k (width(alpha) = |Dom(alpha)|). - Abdullahi Umar, Oct 02 2008
The antidiagonals of this lower triangular matrix are the rows of A055151. - Tom Copeland, Jun 17 2015

Examples

			Triangle begins:
  [0] 1;
  [1] 1,  1;
  [2] 1,  3,   2;
  [3] 1,  6,  10,    5;
  [4] 1, 10,  30,   35,    14;
  [5] 1, 15,  70,  140,   126,    42;
  [6] 1, 21, 140,  420,   630,   462,   132;
  [7] 1, 28, 252, 1050,  2310,  2772,  1716,   429;
  [8] 1, 36, 420, 2310,  6930, 12012, 12012,  6435,  1430;
  [9] 1, 45, 660, 4620, 18018, 42042, 60060, 51480, 24310, 4862;
		

References

  • Charles Jordan, Calculus of Finite Differences, Chelsea 1965, p. 449.

Crossrefs

Programs

  • Magma
    [[Binomial(n+k,n)*Binomial(n,k)/(k+1): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Jun 18 2015
    
  • Maple
    R := n -> simplify(hypergeom([-n, n + 1], [2], -x)):
    Trow := n -> seq(coeff(R(n, x), x, k), k = 0..n):
    seq(print(Trow(n)), n = 0..9); # Peter Luschny, Apr 26 2022
  • Mathematica
    Table[Binomial[n+k, n] Binomial[n, k]/(k+1), {n,0,10}, {k,0,n}]//Flatten (* Michael De Vlieger, Aug 10 2017 *)
  • PARI
    {T(n, k)= if(k+1, binomial(n+k, n)*binomial(n, k)/(k+1))}
    
  • SageMath
    flatten([[binomial(n+k, 2*k)*catalan_number(k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 22 2022

Formula

Triangle T(n, k) read by rows; given by [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...] DELTA [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...] where DELTA is Deléham's operator defined in A084938.
T(n, k) = A085478(n, k)*A000108(k); A000108 = Catalan numbers. - Philippe Deléham, Dec 05 2003
Sum_{k=0..n} T(n, k)*x^k*(1-x)^(n-k) = A000108(n), A001003(n), A007564(n), A059231(n), A078009(n), A078018(n), A081178(n), A082147(n), A082181(n), A082148(n), A082173(n) for x = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11. - Philippe Deléham, Aug 18 2005
Sum_{k=0..n} T(n,k)*x^k = (-1)^n*A107841(n), A080243(n), A000007(n), A000012(n), A006318(n), A103210(n), A103211(n), A133305(n), A133306(n), A133307(n), A133308(n), A133309(n) for x = -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8 respectively. - Philippe Deléham, Oct 18 2007
O.g.f. (with initial 1 excluded) is the series reversion with respect to x of (1-t*x)*x/(1+x). Cf. A062991 and A089434. - Peter Bala, Jul 31 2012
G.f.: 1 + (1 - x - T(0))/y, where T(k) = 1 - x*(1+y)/( 1 - x*y/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 03 2013
From Peter Bala, Jul 20 2015: (Start)
O.g.f. A(x,t) = ( 1 - x - sqrt((1 - x)^2 - 4*x*t) )/(2*x*t) = 1 + (1 + t)*x + (1 + 3*t + 2*t^2)*x^2 + ....
1 + x*(dA(x,t)/dx)/A(x,t) = 1 + (1 + t)*x + (1 + 4*t + 3*t^2)*x^2 + ... is the o.g.f. for A123160.
For n >= 1, the n-th row polynomial equals (1 + t)/(n+1)*Jacobi_P(n-1,1,1,2*t+1). Removing a factor of 1 + t from the row polynomials gives the row polynomials of A033282. (End)
From Tom Copeland, Jan 22 2016: (Start)
The o.g.f. G(x,t) = {1 - (2t+1) x - sqrt[1 - (2t+1) 2x + x^2]}/2x = (t + t^2) x + (t + 3t^2 + 2t^3) x^2 + (t + 6t^2 + 10t^3 + 5t^3) x^3 + ... generating shifted rows of this entry, excluding the first, was given in my 2008 formulas for A033282 with an o.g.f. f1(x,t) = G(x,t)/(1+t) for A033282. Simple transformations presented there of f1(x,t) are related to A060693 and A001263, the Narayana numbers. See also A086810.
The inverse of G(x,t) is essentially given in A033282 by x1, the inverse of f1(x,t): Ginv(x,t) = x [1/(t+x) - 1/(1+t+x)] = [((1+t) - t) / (t(1+t))] x - [((1+t)^2 - t^2) / (t(1+t))^2] x^2 + [((1+t)^3 - t^3) / (t(1+t))^3] x^3 - ... . The coefficients in t of Ginv(xt,t) are the o.g.f.s of the diagonals of the Pascal triangle A007318 with signed rows and an extra initial column of ones. The numerators give the row o.g.f.s of signed A074909.
Rows of A088617 are shifted columns of A107131, whose reversed rows are the Motzkin polynomials of A055151, related to A011973. The diagonals of A055151 give the rows of A088671, and the antidiagonals (top to bottom) of A088617 give the rows of A107131 and reversed rows of A055151. The diagonals of A107131 give the columns of A055151. The antidiagonals of A088617 (bottom to top) give the rows of A055151.
(End)
T(n, k) = [x^k] hypergeom([-n, 1 + n], [2], -x). - Peter Luschny, Apr 26 2022

A038845 3-fold convolution of A000302 (powers of 4).

Original entry on oeis.org

1, 12, 96, 640, 3840, 21504, 114688, 589824, 2949120, 14417920, 69206016, 327155712, 1526726656, 7046430720, 32212254720, 146028888064, 657129996288, 2937757630464, 13056700579840, 57724360458240, 253987186016256, 1112705767309312, 4855443348258816
Offset: 0

Views

Author

Keywords

Comments

Also convolution of A002802 with A000984 (central binomial coefficients).
With a different offset, number of n-permutations of 5 objects u, v, w, z, x with repetition allowed, containing exactly two u's. - Zerinvary Lajos, Dec 29 2007
Also convolution of A000302 with A002697, also convolution of A002457 with itself. - Rui Duarte, Oct 08 2011

Crossrefs

Sequences similar to the form q^(n-2)*binomial(n, 2): A000217 (q=1), A001788 (q=2), A027472 (q=3), this sequence (q=4), A081135 (q=5), A081136 (q=6), A027474 (q=7), A081138 (q=8), A081139 (q=9), A081140 (q=10), A081141 (q=11), A081142 (q=12), A027476 (q=15).

Programs

Formula

a(n) = (n+2)*(n+1)*2^(2*n-1).
G.f.: 1/(1-4*x)^3.
a(n) = Sum_{u+v+w+x+y+z=n} f(u)*f(v)*f(w)*f(x)*f(y)*f(z) with f(n)=A000984(n). - Philippe Deléham, Jan 22 2004
a(n) = binomial(n+2,n) * 4^n. - Rui Duarte, Oct 08 2011
E.g.f.: (1 + 8*x + 8*x^2)*exp(4*x). - G. C. Greubel, Jul 20 2019
From Amiram Eldar, Jan 05 2022: (Start)
Sum_{n>=0} 1/a(n) = 8 - 24*log(4/3).
Sum_{n>=0} (-1)^n/a(n) = 40*log(5/4) - 8. (End)

A005430 Apéry numbers: n*C(2*n,n).

Original entry on oeis.org

0, 2, 12, 60, 280, 1260, 5544, 24024, 102960, 437580, 1847560, 7759752, 32449872, 135207800, 561632400, 2326762800, 9617286240, 39671305740, 163352435400, 671560012200, 2756930576400, 11303415363240, 46290177201840, 189368906734800, 773942488394400
Offset: 0

Views

Author

Keywords

Comments

Appears as diagonal in A003506. - Zerinvary Lajos, Apr 12 2006
The aerated sequence 1,0,2,0,12,0,60,0,... has e.g.f. 1+x*Bessel_I(1,2x). - Paul Barry, Mar 29 2010
Conjecture: the terms of the inverse binomial transform are 2*A132894(n). - R. J. Mathar, Oct 21 2012

References

  • Frank Harary and Edgar M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 78, (3.5.25).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002011, A002457, A002736, A005258, A005259, A005429, 1/beta(n, n+1) in A061928.

Programs

  • GAP
    List([0..30], n-> n*Binomial(2*n,n)); # G. C. Greubel, Dec 09 2018
  • Magma
    [n*Binomial(2*n,n): n in [0..30]]; // G. C. Greubel, Dec 09 2018
    
  • Maple
    A005430 := n -> n*binomial(2*n, n);
  • Mathematica
    Table[n*Binomial[2n,n],{n,0,30}] (* Harvey P. Dale, May 29 2015 *)
  • PARI
    a(n)=-(-1)^n*real(polcoeff(serlaplace(x^2*besselh1(1,2*x)),2*n)) \\ Ralf Stephan
    
  • Sage
    [n*binomial(2*n,n) for n in range(30)] # G. C. Greubel, Dec 09 2018
    

Formula

a(n) = A002011(n-1)/2 = 2 * A002457(n-1).
Sum_{n >= 1} 1/a(n) = Pi*sqrt(3)/9. - Benoit Cloitre, Apr 07 2002
G.f.: 2*x/sqrt((1-4*x)^3). - Marco A. Cisneros Guevara, Jul 25 2011
E.g.f.: a(n) = n!* [x^n] exp(2*x)*2*x*(BesselI(0, 2*x)+BesselI(1, 2*x)). - Peter Luschny, Aug 25 2012
D-finite with recurrence (-n+1)*a(n) + 2*(2*n-1)*a(n-1) = 0. - R. J. Mathar, Dec 03 2012
G.f.: 2*x*(1-4*x)^(-3/2) = -G(0)/2 where G(k) = 1 - (2*k+1)/(1 - 2*x/(2*x - (k+1)/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Dec 06 2012
a(n-1) = Sum_{k=0..floor(n/2)} k*C(n,k)*C(n-k,k)*2^(n-2*k). - Robert FERREOL, Aug 29 2015
From Ilya Gutkovskiy, Jan 17 2017: (Start)
a(n) ~ 4^n*sqrt(n)/sqrt(Pi).
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*log(phi)/sqrt(5) = A086466, where phi is the golden ratio. (End)
1/a(n) = (-1)^n*Sum_{j=0..n-1} binomial(n-1,j)*Bernoulli(j+n)/(j+n) for n >= 1. See the Amdeberhan & Cohen link. - Peter Luschny, Jun 20 2017
1/a(n) = Sum_{k=0..n} (-1)^(k+1)*binomial(n,k)*HarmonicNumber(n+k) for n >= 1. - Peter Luschny, Aug 15 2017
Sum_{n>=1} x^n/a(n) = 2*sqrt(x/(4-x))*arcsin(sqrt(x)/2), for abs(x) < 4 (Adegoke et al., 2022, section 6, p. 11). - Amiram Eldar, Dec 07 2024

Extensions

More terms from James Sellers, May 01 2000

A008310 Triangle of coefficients of Chebyshev polynomials T_n(x).

Original entry on oeis.org

1, 1, -1, 2, -3, 4, 1, -8, 8, 5, -20, 16, -1, 18, -48, 32, -7, 56, -112, 64, 1, -32, 160, -256, 128, 9, -120, 432, -576, 256, -1, 50, -400, 1120, -1280, 512, -11, 220, -1232, 2816, -2816, 1024, 1, -72, 840, -3584, 6912, -6144, 2048, 13, -364, 2912, -9984, 16640, -13312, 4096
Offset: 0

Views

Author

Keywords

Comments

The row length sequence of this irregular array is A008619(n), n >= 0. Even or odd powers appear in increasing order starting with 1 or x for even or odd row numbers n, respectively. This is the standard triangle A053120 with 0 deleted. - Wolfdieter Lang, Aug 02 2014
Let T* denote the triangle obtained by replacing each number in this triangle by its absolute value. Then T* gives the coefficients for cos(nx) as a polynomial in cos x. - Clark Kimberling, Aug 04 2024

Examples

			Rows are: (1), (1), (-1,2), (-3,4), (1,-8,8), (5,-20,16) etc., since if c = cos(x): cos(0x) = 1, cos(1x) = 1c; cos(2x) = -1+2c^2; cos(3x) = -3c+4c^3, cos(4x) = 1-8c^2+8c^4, cos(5x) = 5c-20c^3+16c^5, etc.
From _Wolfdieter Lang_, Aug 02 2014: (Start)
This irregular triangle a(n,k) begins:
  n\k   0    1     2      3      4      5      6      7 ...
  0:    1
  1:    1
  2:   -1    2
  3:   -3    4
  4:    1   -8     8
  5:    5  -20    16
  6:   -1   18   -48     32
  7:   -7   56  -112     64
  8:    1  -32   160   -256    128
  9:    9 -120   432   -576    256
 10:   -1   50  -400   1120  -1280    512
 11:  -11  220 -1232   2816  -2816   1024
 12:    1  -72   840  -3584   6912  -6144   2048
 13:   13 -364  2912  -9984  16640 -13312   4096
 14:   -1   98 -1568   9408 -26880  39424 -28672   8192
 15:  -15  560 -6048  28800 -70400  92160 -61440  16384
  ...
T(4,x) = 1 - 8*x^2 + 8*x^4, T(5,x) = 5*x - 20*x^3 +16*x^5.
(End)
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 795.
  • E. A. Guilleman, Synthesis of Passive Networks, Wiley, 1957, p. 593.
  • Yaroslav Zolotaryuk, J. Chris Eilbeck, "Analytical approach to the Davydov-Scott theory with on-site potential", Physical Review B 63, p543402, Jan. 2001. The authors write, "Since the algebra of these is 'hyperbolic', contrary to the usual Chebyshev polynomials defined on the interval 0 <= x <= 1, we call the set of functions (21) the hyperbolic Chebyshev polynomials." (This refers to the triangle T* described in Comments.)

Crossrefs

A039991 is a row reversed version, but has zeros which enable the triangle to be seen. Columns/diagonals are A011782, A001792, A001793, A001794, A006974, A006975, A006976 etc.
Reflection of A028297. Cf. A008312, A053112.
Row sums are one. Polynomial evaluations include A001075 (x=2), A001541 (x=3), A001091, A001079, A023038, A011943, A001081, A023039, A001085, A077422, A077424, A097308, A097310, A068203.
Cf. A053120.

Programs

  • Maple
    A008310 := proc(n,m) local x ; coeftayl(simplify(ChebyshevT(n,x),'ChebyshevT'),x=0,m) ; end: i := 0 : for n from 0 to 100 do for m from n mod 2 to n by 2 do printf("%d %d ",i,A008310(n,m)) ; i := i+1 ; od ; od ; # R. J. Mathar, Apr 20 2007
    # second Maple program:
    b:= proc(n) b(n):= `if`(n<2, 1, expand(2*b(n-1)-x*b(n-2))) end:
    T:= n-> (p-> (d-> seq(coeff(p, x, d-i), i=0..d))(degree(p)))(b(n)):
    seq(T(n), n=0..15);  # Alois P. Heinz, Sep 04 2019
  • Mathematica
    Flatten[{1, Table[CoefficientList[ChebyshevT[n, x], x], {n, 1, 13}]}]//DeleteCases[#, 0, Infinity]& (* or *) Flatten[{1, Table[Table[((-1)^k*2^(n-2 k-1)*n*Binomial[n-k, k])/(n-k), {k, Floor[n/2], 0, -1}], {n, 1, 13}]}] (* Eugeniy Sokol, Sep 04 2019 *)

Formula

a(n,m) = 2^(m-1) * n * (-1)^((n-m)/2) * ((n+m)/2-1)! / (((n-m)/2)! * m!) if n>0. - R. J. Mathar, Apr 20 2007
From Paul Weisenhorn, Oct 02 2019: (Start)
T_n(x) = 2*x*T_(n-1)(x) - T_(n-2)(x), T_0(x) = 1, T_1(x) = x.
T_n(x) = ((x+sqrt(x^2-1))^n + (x-sqrt(x^2-1))^n)/2. (End)
From Peter Bala, Aug 15 2022: (Start)
T(n,x) = [z^n] ( z*x + sqrt(1 + z^2*(x^2 - 1)) )^n.
Sum_{k = 0..2*n} binomial(2*n,k)*T(k,x) = (2^n)*(1 + x)^n*T(n,x).
exp( Sum_{n >= 1} T(n,x)*t^n/n ) = Sum_{n >= 0} P(n,x)*t^n, where P(n,x) denotes the n-th Legendre polynomial. (End)

Extensions

Additional comments and more terms from Henry Bottomley, Dec 13 2000
Edited: Corrected Cf. A039991 statement. Cf. A053120 added. - Wolfdieter Lang, Aug 06 2014

A028297 Coefficients of Chebyshev polynomials of the first kind: triangle of coefficients in expansion of cos(n*x) in descending powers of cos(x).

Original entry on oeis.org

1, 1, 2, -1, 4, -3, 8, -8, 1, 16, -20, 5, 32, -48, 18, -1, 64, -112, 56, -7, 128, -256, 160, -32, 1, 256, -576, 432, -120, 9, 512, -1280, 1120, -400, 50, -1, 1024, -2816, 2816, -1232, 220, -11, 2048, -6144, 6912, -3584, 840, -72, 1, 4096, -13312, 16640, -9984
Offset: 0

Views

Author

Keywords

Comments

Rows are of lengths 1, 1, 2, 2, 3, 3, ... (A008619).
This triangle is generated from A118800 by shifting down columns to allow for (1, 1, 2, 2, 3, 3, ...) terms in each row. - Gary W. Adamson, Dec 16 2007
Unsigned triangle = A034839 * A007318. - Gary W. Adamson, Nov 28 2008
Triangle, with zeros omitted, given by (1, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, -1, 1, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Dec 16 2011
From Wolfdieter Lang, Aug 02 2014: (Start)
This irregular triangle is the row reversed version of the Chebyshev T-triangle A053120 given by A039991 with vanishing odd-indexed columns removed.
If zeros are appended in each row n >= 1, in order to obtain a regular triangle (see the Philippe Deléham comment, g.f. and example) this becomes the Riordan triangle (1-x)/(1-2*x), -x^2/(1-2*x). See also the unsigned version A201701 of this regular triangle.
(End)
Apparently, unsigned diagonals of this array are rows of A200139. - Tom Copeland, Oct 11 2014
It appears that the coefficients are generated by the following: Let SM_k = Sum( d_(t_1, t_2)* eM_1^t_1 * eM_2^t_2) summed over all length 2 integer partitions of k, i.e., 1*t_1 + 2*t_2 = k, where SM_k are the averaged k-th power sum symmetric polynomials in 2 data (i.e., SM_k = S_k/2 where S_k are the k-th power sum symmetric polynomials, and where eM_k are the averaged k-th elementary symmetric polynomials, eM_k = e_k/binomial(2,k) with e_k being the k-th elementary symmetric polynomials. The data d_(t_1, t_2) form an irregular triangle, with one row for each k value starting with k=1. Thus this procedure and associated OEIS sequences A287768, A288199, A288207, A288211, A288245, A288188 are generalizations of Chebyshev polynomials of the first kind. - Gregory Gerard Wojnar, Jul 01 2017

Examples

			Letting c = cos x, we have: cos 0x = 1, cos 1x = 1c; cos 2x = 2c^2-1; cos 3x = 4c^3-3c, cos 4x = 8c^4-8c^2+1, etc.
T4 = 8x^4 - 8x^2 + 1 = 8, -8, +1 = 2^(3) - (4)(2) + [2^(-1)](4)/2.
From _Wolfdieter Lang_, Aug 02 2014: (Start)
The irregular triangle T(n,k) begins:
n\k     1      2     3      4     5     6   7   8 ....
0:      1
1:      1
2:      2     -1
3:      4     -3
4:      8     -8     1
5:     16    -20     5
6:     32    -48    18     -1
7:     64   -112    56     -7
8:    128   -256   160    -32     1
9:    256   -576   432   -120     9
10:   512  -1280  1120   -400    50    -1
11:  1024  -2816  2816  -1232   220   -11
12:  2048  -6144  6912  -3584   840   -72   1
13:  4096 -13312 16640  -9984  2912  -364  13
14:  8192 -28672 39424 -26880  9408 -1568  98  -1
15: 16384 -61440 92160 -70400 28800 -6048 560 -15
...
T(4,x) = 8*x^4 -8*x^2 + 1*x^0, T(5,x) = 16*x^5 - 20*x^3 + 5*x^1, with Chebyshev's T-polynomials (A053120). (End)
From _Philippe Deléham_, Dec 16 2011: (Start)
The triangle (1,1,0,0,0,0,...) DELTA (0,-1,1,0,0,0,0,...) includes zeros and begins:
   1;
   1,   0;
   2,  -1,  0;
   4,  -3,  0,  0;
   8,  -8,  1,  0, 0;
  16, -20,  5,  0, 0, 0;
  32, -48, 18, -1, 0, 0, 0; (End)
		

References

  • I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series and Products, 5th ed., Section 1.335, p. 35.
  • S. Selby, editor, CRC Basic Mathematical Tables, CRC Press, 1970, p. 106. [From Rick L. Shepherd, Jul 06 2010]

Crossrefs

Cf. A028298.
Reflection of A008310, the main entry. With zeros: A039991.
Cf. A053120 (row reversed table including zeros).
Cf. A001333 (row sums 1), A001333 (alternating row sums). - Wolfdieter Lang, Aug 02 2014

Programs

  • Maple
    b:= proc(n) b(n):= `if`(n<2, 1, expand(2*b(n-1)-x*b(n-2))) end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n)):
    seq(T(n), n=0..15);  # Alois P. Heinz, Sep 04 2019
  • Mathematica
    t[n_] := (Cos[n x] // TrigExpand) /. Sin[x]^m_ /; EvenQ[m] -> (1 - Cos[x]^2)^(m/2) // Expand; Flatten[Table[ r = Reverse @ CoefficientList[t[n], Cos[x]]; If[OddQ[Length[r]], AppendTo[r,0]]; Partition[r,2][[All, 1]],{n, 0, 13}] ][[1 ;; 53]] (* Jean-François Alcover, May 06 2011 *)
    Tpoly[n_] := HypergeometricPFQ[{(1 - n)/2, -n/2}, {1/2}, 1 - x];
    Table[CoefficientList[Tpoly[n], x], {n, 0, 12}] // Flatten (* Peter Luschny, Feb 03 2021 *)

Formula

cos(n*x) = 2 * cos((n-1)*x) * cos(x) - cos((n-2)*x) (from CRC's Multiple-angle relations). - Rick L. Shepherd, Jul 06 2010
G.f.: (1-x) / (1-2x+y*x^2). - Philippe Deléham, Dec 16 2011
Sum_{k=0..n} T(n,k)*x^k = A011782(n), A000012(n), A146559(n), A087455(n), A138230(n), A006495(n), A138229(n) for x = 0, 1, 2, 3, 4, 5, 6, respectively. - Philippe Deléham, Dec 16 2011
T(n,k) = [x^k] hypergeom([1/2 - n/2, -n/2], [1/2], 1 - x). - Peter Luschny, Feb 03 2021
T(n,k) = (-1)^k * 2^(n-1-2*k) * A034807(n,k). - Hoang Xuan Thanh, Jun 21 2025

Extensions

More terms from David W. Wilson
Row length sequence and link to Abramowitz-Stegun added by Wolfdieter Lang, Aug 02 2014

A060693 Triangle (0 <= k <= n) read by rows: T(n, k) is the number of Schröder paths from (0,0) to (2n,0) having k peaks.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 5, 10, 6, 1, 14, 35, 30, 10, 1, 42, 126, 140, 70, 15, 1, 132, 462, 630, 420, 140, 21, 1, 429, 1716, 2772, 2310, 1050, 252, 28, 1, 1430, 6435, 12012, 12012, 6930, 2310, 420, 36, 1, 4862, 24310, 51480, 60060, 42042, 18018, 4620, 660, 45, 1, 16796
Offset: 0

Views

Author

F. Chapoton, Apr 20 2001

Keywords

Comments

The rows sum to A006318 (Schroeder numbers), the left column is A000108 (Catalan numbers); the next-to-left column is A001700, the alternating sum in each row but the first is 0.
T(n,k) is the number of Schroeder paths (i.e., consisting of steps U=(1,1), D=(1,-1), H=(2,0) and never going below the x-axis) from (0,0) to (2n,0), having k peaks. Example: T(2,1)=3 because we have UU*DD, U*DH and HU*D, the peaks being shown by *. E.g., T(n,k) = binomial(n,k)*binomial(2n-k,n-1)/n for n>0. - Emeric Deutsch, Dec 06 2003
A090181*A007318 as infinite lower triangular matrices. - Philippe Deléham, Oct 14 2008
T(n,k) is also the number of rooted plane trees with maximal degree 3 and k vertices of degree 2 (a node may have at most 2 children, and there are exactly k nodes with 1 child). Equivalently, T(n,k) is the number of syntactically different expressions that can be formed that use a unary operation k times, a binary operation n-k times, and nothing else (sequence of operands is fixed). - Lars Hellstrom (Lars.Hellstrom(AT)residenset.net), Dec 08 2009

Examples

			Triangle begins:
00: [    1]
01: [    1,     1]
02: [    2,     3,      1]
03: [    5,    10,      6,      1]
04: [   14,    35,     30,     10,      1]
05: [   42,   126,    140,     70,     15,      1]
06: [  132,   462,    630,    420,    140,     21,     1]
07: [  429,  1716,   2772,   2310,   1050,    252,    28,    1]
08: [ 1430,  6435,  12012,  12012,   6930,   2310,   420,   36,   1]
09: [ 4862, 24310,  51480,  60060,  42042,  18018,  4620,  660,  45,  1]
10: [16796, 92378, 218790, 291720, 240240, 126126, 42042, 8580, 990, 55, 1]
...
		

Crossrefs

Triangle in A088617 transposed.
T(2n,n) gives A007004.

Programs

  • Maple
    A060693 := (n,k) -> binomial(n,k)*binomial(2*n-k,n)/(n-k+1); # Peter Luschny, May 17 2011
  • Mathematica
    t[n_, k_] := Binomial[n, k]*Binomial[2 n - k, n]/(n - k + 1); Flatten[Table[t[n, k], {n, 0, 9}, {k, 0, n}]] (* Robert G. Wilson v, May 30 2011 *)
  • PARI
    T(n, k) = binomial(n, k)*binomial(2*n - k, n)/(n - k + 1);
    for(n=0, 10, for(k=0, n, print1(T(n, k),", ")); print); \\ Indranil Ghosh, Jul 28 2017
    
  • Python
    from sympy import binomial
    def T(n, k): return binomial(n, k) * binomial(2 * n - k, n) / (n - k + 1)
    for n in range(11): print([T(n, k) for k in range(n + 1)])  # Indranil Ghosh, Jul 28 2017

Formula

Triangle T(n, k) (0 <= k <= n) read by rows; given by [1, 1, 1, 1, 1, ...] DELTA [1, 0, 1, 0, 1, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Aug 12 2003
If C_n(x) is the g.f. of row n of the Narayana numbers (A001263), C_n(x) = Sum_{k=1..n} binomial(n,k-1)*(binomial(n-1,k-1)/k) * x^k and T_n(x) is the g.f. of row n of T(n,k), then T_n(x) = C_n(x+1), or T(n,k) = [x^n]Sum_{k=1..n}(A001263(n,k)*(x+1)^k). - Mitch Harris, Jan 16 2007, Jan 31 2007
G.f.: (1 - t*y - sqrt((1-y*t)^2 - 4*y)) / 2.
T(n, k) = binomial(2n-k, n)*binomial(n, k)/(n-k+1). - Philippe Deléham, Dec 07 2003
A060693(n, k) = binomial(2*n-k, k)*A000108(n-k); A000108: Catalan numbers. - Philippe Deléham, Dec 30 2003
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A000108(n), A006318(n), A047891(n+1), A082298(n), A082301(n), A082302(n), A082305(n), A082366(n), A082367(n), for x = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, respectively. - Philippe Deléham, Apr 01 2007
T(n,k) = Sum_{j>=0} A090181(n,j)*binomial(j,k). - Philippe Deléham, May 04 2007
Sum_{k=0..n} T(n,k)*x^(n-k) = (-1)^n*A107841(n), A080243(n), A000007(n), A000012(n), A006318(n), A103210(n), A103211(n), A133305(n), A133306(n), A133307(n), A133308(n), A133309(n) for x = -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, respectively. - Philippe Deléham, Oct 18 2007
From Paul Barry, Jan 29 2009: (Start)
G.f.: 1/(1-xy-x/(1-xy-x/(1-xy-x/(1-xy-x/(1-xy-x/(1-.... (continued fraction);
G.f.: 1/(1-(x+xy)/(1-x/(1-(x+xy)/(1-x/(1-(x+xy)/(1-.... (continued fraction). (End)
T(n,k) = [k<=n]*(Sum_{j=0..n} binomial(n,j)^2*binomial(j,k))/(n-k+1). - Paul Barry, May 28 2009
T(n,k) = A104684(n,k)/(n-k+1). - Peter Luschny, May 17 2011
From Tom Copeland, Sep 21 2011: (Start)
With F(x,t) = (1-(2+t)*x-sqrt(1-2*(2+t)*x+(t*x)^2))/(2*x) an o.g.f. (nulling the n=0 term) in x for the A060693 polynomials in t,
G(x,t) = x/(1+t+(2+t)*x+x^2) is the compositional inverse in x.
Consequently, with H(x,t) = 1/(dG(x,t)/dx) = (1+t+(2+t)*x+x^2)^2 / (1+t-x^2), the n-th A060693 polynomial in t is given by (1/n!)*((H(x,t)*d/dx)^n) x evaluated at x=0, i.e., F(x,t) = exp(x*H(u,t)*d/d) u, evaluated at u = 0.
Also, dF(x,t)/dx = H(F(x,t),t). (End)
See my 2008 formulas in A033282 to relate this entry to A088617, A001263, A086810, and other matrices. - Tom Copeland, Jan 22 2016
Rows of this entry are non-vanishing antidiagonals of A097610. See p. 14 of Agapito et al. for a bivariate generating function and its inverse. - Tom Copeland, Feb 03 2016
From Werner Schulte, Jan 09 2017: (Start)
T(n,k) = A126216(n,k-1) + A126216(n,k) for 0 < k < n;
Sum_{k=0..n} (-1)^k*(1+x*(n-k))*T(n,k) = x + (1-x)*A000007(n).
(End)
Conjecture: Sum_{k=0..n} (-1)^k*T(n,k)*(n+1-k)^2 = 1+n+n^2. - Werner Schulte, Jan 11 2017

Extensions

More terms from Vladeta Jovovic, Apr 21 2001
New description from Philippe Deléham, Aug 12 2003
New name using a comment by Emeric Deutsch from Peter Luschny, Jul 26 2017

A038846 4-fold convolution of A000302 (powers of 4); expansion of g.f. 1/(1-4*x)^4.

Original entry on oeis.org

1, 16, 160, 1280, 8960, 57344, 344064, 1966080, 10813440, 57671680, 299892736, 1526726656, 7633633280, 37580963840, 182536110080, 876173328384, 4161823309824, 19585050869760, 91396904058880, 423311976693760, 1947235092791296, 8901646138474496, 40462027902156800
Offset: 0

Views

Author

Keywords

Comments

Also minimal 3-covers of a labeled n-set that cover 3 points of that set uniquely (if offset is 3). Cf. A057524 for unlabeled case. - Vladeta Jovovic, Sep 02 2000
Also convolution of A020918 with A000984 (central binomial coefficients).
Let M=[1,0,0,i;0,1,i,0;0,i,1,0;i,0,0,1], i=sqrt(-1). Then 1/det(I-xM) = 1/(1-4x)^4. - Paul Barry, Apr 27 2005
With a different offset, number of n-permutations (n=4) of 5 objects u, v, w, z, x with repetition allowed, containing exactly three u's. Example: a(1)=16 because we have uuuv, uuvu, uvuu, vuuu, uuuw, uuwu, uwuu, wuuu, uuuz, uuzu, uzuu, zuuu, uuux, uuxu, uxuu and xuuu. - Zerinvary Lajos, May 19 2008
From A152818. a(n) = A006044/6. - Paul Curtz, Jan 07 2009
Also convolution of A000302 with A038845, also convolution of A002457 with A002802, also convolution of A002697. - Rui Duarte, Oct 08 2011

Crossrefs

Programs

  • GAP
    List([0..30], n-> 4^n*Binomial(n+3,3) ) # G. C. Greubel, Jul 20 2019
  • Magma
    [4^n*Binomial(n+3, 3): n in [0..30]]; // Vincenzo Librandi, Oct 15 2011
    
  • Maple
    seq(seq(binomial(i, j)*4^(i-3), j =i-3), i=3..33); # Zerinvary Lajos, Dec 03 2007
    seq(binomial(n+3,3)*4^n,n=0..30); # Zerinvary Lajos, May 19 2008
  • Mathematica
    Table[4^n*Binomial[n+3,3], {n,0,30}] (* G. C. Greubel, Jul 20 2019 *)
  • PARI
    Vec(1/(1-4*x)^4+O(x^30)) \\ Charles R Greathouse IV, Oct 03 2016
    
  • Sage
    [lucas_number2(n, 4, 0)*binomial(n,3)/2^6 for n in range(3, 33)] # Zerinvary Lajos, Mar 11 2009
    

Formula

a(n) = binomial(n+3, 3)*4^n.
G.f.: 1/(1-4*x)^4.
a(n) = Sum_{a+b+c+d+e+f+g+h=n} f(a)*f(b)*f(c)*f(d)*f(e)*f(f)*f(g)*f(h) with f(n)=A000984(n). - Philippe Deléham, Jan 22 2004
From Amiram Eldar, Jan 05 2022: (Start)
Sum_{n>=0} 1/a(n) = 108*log(4/3) - 30.
Sum_{n>=0} (-1)^n/a(n) = 300*log(5/4) - 66. (End)
E.g.f.: exp(4*x)*(3 + 36*x + 72*x^2 + 32*x^3)/3. - Stefano Spezia, Jan 01 2023

A001809 a(n) = n! * n(n-1)/4.

Original entry on oeis.org

0, 0, 1, 9, 72, 600, 5400, 52920, 564480, 6531840, 81648000, 1097712000, 15807052800, 242853811200, 3966612249600, 68652904320000, 1255367393280000, 24186745110528000, 489781588488192000, 10400656084955136000, 231125690776780800000, 5364548928029491200000
Offset: 0

Views

Author

Keywords

Comments

a(n) = n!*n*(n-1)/4 gives the total number of inversions in all the permutations of [n]. [Stern, Terquem] Proof: For fixed i,j and for fixed I,J (i < j, I > J, 1 <= i,j,I,J <= n), we have (n-2)! permutations p of [n] for which p(i)=I and p(j)=J (permute {1,2,...,n} \ {I,J} in the positions (1,2,...,n) \ {i,j}). There are n*(n-1)/2 choices for the pair (i,j) with i < j and n*(n-1)/2 choices for the pair (I,J) with I > J. Consequently, the total number of inversions in all the permutations of [n] is (n-2)!*(n*(n-1)/2)^2 = n!*n*(n-1)/4. - Emeric Deutsch, Oct 05 2006
To state this another way, a(n) is the number of occurrences of the pattern 12 in all permutations of [n]. - N. J. A. Sloane, Apr 12 2014
Equivalently, this is the total Denert index of all permutations on n letters (cf. A008302). - N. J. A. Sloane, Jan 20 2014
Also coefficients of Laguerre polynomials. a(n)=A021009(n,2), n >= 2.
a(n) is the number of edges in the Cayley graph of the symmetric group S_n with respect to the generating set consisting of transpositions. - Avi Peretz (njk(AT)netvision.net.il), Feb 20 2001
a(n+1) is the sum of the moments over all permutations of n. E.g. a(4) is [1,2,3].[1,2,3] + [1,3,2].[1,2,3] + [2,1,3].[1,2,3] + [2,3,1].[1,2,3] + [3,1,2].[1,2,3] + [3,2,1].[1,2.3] = 14 + 13 + 13 + 11 + 11 + 10 = 72. - Jon Perry, Feb 20 2004
Derivative of the q-factorial [n]!, evaluated at q=1. Example: a(3)=9 because (d/dq)[3]!=(d/dq)((1+q)(1+q+q^2))=2+4q+3q^2 is equal to 9 at q=1. - Emeric Deutsch, Apr 19 2007
Also the number of maximal cliques in the n-transposition graph for n > 1. - Eric W. Weisstein, Dec 01 2017
a(n-1) is the number of trees on [n], rooted at 1, with exactly two leaves. A leaf is a non-root vertex of degree 1. - Nikos Apostolakis, Dec 27 2021

Examples

			G.f. = x^2 + 9*x^3 + 72*x^4 + 600*x^5 + 5400*x^6 + 52920*x^7 + ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 799.
  • Simon Altmann and Eduardo L. Ortiz, Editors, Mathematical and Social Utopias in France: Olinde Rodrigues and His Times, Amer. Math. Soc., 2005.
  • David M. Bressoud, Proofs and Confirmations, Camb. Univ. Press, 1999; p. 90.
  • Cornelius Lanczos, Applied Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 519.
  • Edward M. Reingold, Jurg Nievergelt and Narsingh Deo, Combinatorial Algorithms, Prentice-Hall, 1977, section 7.1, p. 287.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Olry Terquem, Liouville's Journal, 1838.

Crossrefs

Cf. A034968 (the inversion numbers of permutations listed in alphabetic order). See also A053495 and A064038.

Programs

  • Magma
    [Factorial(n)*n*(n-1)/4: n in [0..20]]; // Vincenzo Librandi, Jun 15 2015
  • Maple
    A001809 := n->n!*n*(n-1)/4;
    with(combstruct):ZL:=[st, {st=Prod(left, right), left=Set(U, card=r), right=Set(U, card=1)}, labeled]: subs(r=1, stack): seq(count(subs(r=2, ZL), size=m), m=0..19); # Zerinvary Lajos, Feb 07 2008
    with (combstruct):with (combinat):a:=proc(m) [ZL, {ZL=Set(Cycle(Z, card>=m))}, labeled]; end: ZLL:=a(1):seq(count(ZLL, size=n)*binomial(n,2)/2, n=0..21); # Zerinvary Lajos, Jun 11 2008
  • Mathematica
    Table[n! n (n - 1)/4, {n, 0, 18}]
    Table[n! Binomial[n, 2]/2, {n, 0, 20}] (* Eric W. Weisstein, Dec 01 2017 *)
    Coefficient[Table[n! LaguerreL[n, x], {n, 20}], x, 2] (* Eric W. Weisstein, Dec 01 2017 *)
  • PARI
    {a(n) = n! * n * (n-1) / 4};
    
  • Sage
    [factorial(m) * binomial(m, 2) / 2 for m in range(19)]  # Zerinvary Lajos, Jul 05 2008
    

Formula

E.g.f.: (1/2)*x^2/(1-x)^3.
a(n) = a(n-1)*n^2/(n-2), n > 2; a(2)=1.
a(n) = n*a(n-1) + (n-1)!*n*(n-1)/2, a(1) = 0, a(2) = 1; a(n) = sum (first n! terms of A034968); a(n) = sum of the rises j of permutations (p(j)
If we define f(n,i,x) = Sum_{k=i..n} (Sum_{j=i..k}(C(k,j)*Stirling1(n,k)*Stirling2(j,i)*x^(k-j))) then a(n)=(-1)^n*f(n,2,-3), (n>=2). - Milan Janjic, Mar 01 2009
a(n) = Sum_k k*A008302(n,k). - N. J. A. Sloane, Jan 20 2014
a(n+2) = n*n!*(n+1)^2 / 4 = A000142(n) * (A000292(n) + A000330(n))/2 = sum of the cumulative sums of all the permutations of numbers from 1 to n, where A000142(n) = n! and sequences A000292(n) and A000330(n) are sequences of minimal and maximal values of cumulative sums of all the permutations of numbers from 1 to n. - Jaroslav Krizek, Sep 13 2014
From Amiram Eldar, Feb 15 2022: (Start)
Sum_{n>=2} 1/a(n) = 12 - 4*e.
Sum_{n>=2} (-1)^n/a(n) = 8*gamma - 4 - 4/e - 8*Ei(-1), where gamma is Euler's constant (A001620) and -Ei(-1) is the negated exponential integral at -1 (A099285). (End)

Extensions

More terms and new description from Michael Somos, May 19 2000
Simpler description from Emeric Deutsch, Oct 05 2006

A046212 First numerator and then denominator of central elements of Leibniz's Harmonic Triangle.

Original entry on oeis.org

1, 1, 1, 6, 1, 30, 1, 140, 1, 630, 1, 2772, 1, 12012, 1, 51480, 1, 218790, 1, 923780, 1, 3879876, 1, 16224936, 1, 67603900, 1, 280816200, 1, 1163381400, 1, 4808643120, 1, 19835652870, 1, 81676217700, 1, 335780006100, 1, 1378465288200, 1
Offset: 1

Keywords

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 83, Problem 25.

Crossrefs

Cf. A003506.
Cf. A002457.

Formula

a(2n+1) = A056040(2n+1) = A100071(2n+1). - M. F. Hasler, Jan 25 2012

Extensions

More terms from James Sellers, Dec 13 1999
Previous Showing 21-30 of 146 results. Next