cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 67 results. Next

A005171 Characteristic function of nonprimes: 0 if n is prime, else 1.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1
Offset: 1

Views

Author

Keywords

Comments

Number of orbits of length n in map whose periodic points are A023890. - Thomas Ward
Characteristic function of nonprimes A018252. - Jonathan Vos Post, Dec 30 2007
Triangle A157423 = A005171 in every column. A052284 = INVERT transform of A005171, and the eigensequence of triangle A157423. - Gary W. Adamson, Feb 28 2009

References

  • Douglas Hofstadter, Fluid Concepts and Creative Analogies: Computer Models of the Fundamental Mechanisms of Thought.

Crossrefs

Programs

  • Haskell
    a005171 = (1 -) . a010051  -- Reinhard Zumkeller, Mar 30 2014
    
  • Maple
    A005171 := proc(n)
        if isprime(n) then
            0 ;
        else
            1 ;
        end if;
    end proc: # R. J. Mathar, May 26 2017
  • Mathematica
    a[n_] := If[PrimeQ@ n, 0, 1]; Array[a, 105] (* Robert G. Wilson v, Jun 20 2011 *)
    nn = 105; t[n_, k_] :=  t[n, k] = If[n == k, 1, If[k == 1, 1 - Product[t[n, k + i], {i, 1, n - 1}], If[Mod[n, k] == 0, t[n/k, 1], 1], 1]]; Table[t[n, 1], {n, 1, nn}] (* Mats Granvik, Sep 21 2013 *)
  • PARI
    a(n)=if(n<1, 0, !isprime(n)) /* Michael Somos, Jun 08 2005 */
    
  • Python
    from sympy import isprime
    def a(n): return int(not isprime(n))
    print([a(n) for n in range(1, 106)]) # Michael S. Branicky, Oct 28 2021

Formula

a(n) = (1/n)* Sum_{ d divides n } mu(d)*A023890(n/d). E.g., a(6) = 1 since the 6th term of A023890 is 7 and the first term is 1. [edited by Michel Marcus, Dec 14 2023]
a(n) = 1 - A010051(n). - Jonathan Vos Post, Dec 30 2007
a(n) equals the first column in a table T defined by the recurrence: If n = k then T(n,k) = 1 else if k = 1 then T(n,k) = 1 - Product_{k divides n} of T(n,k), else if k divides n then T(n,k) = T(n/k,1). This is true since T(n,k) = 0 when k divides n and n/k is prime which results in Product_{k divides n} = 0 for the composite numbers and where k ranges from 2 to n. Therefore there is a remaining 1 in the expression 1-Product_{k divides n}, in the first column. Provided below is a Mathematica program as an illustration. - Mats Granvik, Sep 21 2013
a(n) = A057427(A239968(n)). - Reinhard Zumkeller, Mar 30 2014
a(n) = Sum_{d|n} A033273(d)*A008683(n/d). - Ridouane Oudra, Jul 03 2025

A005169 Number of fountains of n coins.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 9, 15, 26, 45, 78, 135, 234, 406, 704, 1222, 2120, 3679, 6385, 11081, 19232, 33379, 57933, 100550, 174519, 302903, 525734, 912493, 1583775, 2748893, 4771144, 8281088, 14373165, 24946955, 43299485, 75153286, 130440740, 226401112, 392955956, 682038999, 1183789679, 2054659669, 3566196321, 6189714276
Offset: 0

Views

Author

Keywords

Comments

A fountain is formed by starting with a row of coins, then stacking additional coins on top so that each new coin touches two in the previous row.
Also the number of Dyck paths for which the sum of the heights of the vertices that terminate an upstep (i.e., peaks and doublerises) is n. Example: a(4)=3 because we have UDUUDD, UUDDUD and UDUDUDUD. - Emeric Deutsch, Mar 22 2008
Also the number of ordered trees with path length n (follows from previous comment via a standard bijection). - Emeric Deutsch, Mar 22 2008
Probably first studied by Jim Propp (unpublished).
Number of compositions of n with c(1) = 1 and c(i+1) <= c(i) + 1. (Slide each row right 1/2 step relative to the row below, and count the columns.) - Franklin T. Adams-Watters, Nov 24 2009
With the additional requirement for weak unimodality one obtains A001524. - Joerg Arndt, Dec 09 2012

Examples

			An example of a fountain with 19 coins:
... O . O O
.. O O O O O O . O
. O O O O O O O O O
From _Peter Bala_, Dec 26 2012: (Start)
F(1/10) = Sum_{n >= 0} a(n)/10^n has the simple continued fraction expansion 1 + 1/(8 + 1/(1 + 1/(8 + 1/(1 + 1/(98 + 1/(1 + 1/(98 + 1/(1 + 1/(998 + 1/(1 + 1/(998 + 1/(1 + ...)))))))))))).
F(-1/10) = Sum_{n >= 0} (-1)^n*a(n)/10^n has the simple continued fraction expansion 1/(1 + 1/(9 + 1/(1 + 1/(9 + 1/(99 + 1/(1 + 1/(99 + 1/(999 + 1/(1 + 1/(999 + 1/(9999 + 1/(1 + ...)))))))))))).
(End)
		

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, p. 381.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001524, A192728, A192729, A192730, A111317, A143951, A285903, A226999 (inverse Euler transform), A291148 (convolution inverse).
First column of A168396. - Franklin T. Adams-Watters, Nov 24 2009
Diagonal of A185646.
Row sums of A047998. Column sums of A138158. - Emeric Deutsch, Mar 22 2008

Programs

  • Haskell
    a005169 0 = 1
    a005169 n = a168396 n 1  -- Reinhard Zumkeller, Sep 13 2013; corrected by R. J. Mathar, Sep 16 2013
  • Maple
    P[0]:=1: for n to 40 do P[n]:=sort(expand(t*(sum(P[j]*P[n-j-1]*t^(n-j-1),j= 0..n-1)))) end do: F:=sort(sum(P[k],k=0..40)): seq(coeff(F,t,j),j=0..36); # Emeric Deutsch, Mar 22 2008
    # second Maple program:
    A005169_G:= proc(x,NK); Digits:=250; Q2:=1;
            for k from NK by -1 to 0 do  Q1:=1-x^k/Q2; Q2:=Q1; od;
            Q3:=Q2; S:=1-Q3;
    end:
    series(A005169_G(x, 20), x, 21); # Sergei N. Gladkovskii, Dec 18 2011
  • Mathematica
    m = 36; p[0] = 1; p[n_] := p[n] = Expand[t*Sum[p[j]*p[n-j-1]*t^(n-j-1), {j, 0, n-1}]]; f[t_] = Sum[p[k], {k, 0, m}]; CoefficientList[Series[f[t], {t, 0, m}], t] (* Jean-François Alcover, Jun 21 2011, after Emeric Deutsch *)
    max = 43; Series[1-Fold[Function[1-x^#2/#1], 1, Range[max, 0, -1]], {x, 0, max}] // CoefficientList[#, x]& (* Jean-François Alcover, Sep 16 2014 *)
    b[n_, i_] := b[n, i] = If[n==0, 1, Sum[b[n-j, j], {j, 1, Min[i+1, n]}]];
    c[n_] :=  b[n, 0] - b[n-1, 0];
    c /@ Range[0, 50] // Accumulate  (* Jean-François Alcover, Nov 14 2020, after Alois P. Heinz in A289080 *)
  • PARI
    /* using the g.f. from p. L1278 of the Glasser, Privman, Svrakic paper */
    N=30;  x='x+O('x^N);
    P(k)=sum(n=0,N, (-1)^n*x^(n*(n+1+k))/prod(j=1,n,1-x^j));
    G=1+x*P(1)/( (1-x)*P(1)-x^2*P(2) );
    Vec(G) /* Joerg Arndt, Feb 10 2011 */
    
  • PARI
    /* As a continued fraction: */
    {a(n)=local(A=1+x,CF);CF=1+x;for(k=0,n,CF=1/(1-x^(n-k+1)*CF+x*O(x^n));A=CF);polcoeff(A,n)} /* Paul D. Hanna */
    
  • PARI
    /* By the Rogers-Ramanujan continued fraction identity: */
    {a(n)=local(A=1+x,P,Q);
    P=sum(m=0,sqrtint(n),(-1)^m*x^(m*(m+1))/prod(k=1,m,1-x^k));
    Q=sum(m=0,sqrtint(n),(-1)^m*x^(m^2)/prod(k=1,m,1-x^k));
    A=P/(Q+x*O(x^n));polcoeff(A,n)}  /* Paul D. Hanna */
    

Formula

A005169(n) = f(n, 1), where f(n, p) = 0 if p > n, 1 if p = n, Sum(1 <= q <= p+1; f(n-p, q)) if p < n. f=A168396.
G.f.: F(t) = Sum_{k>=0} P[k], where P[0]=1, P[n] = t*Sum_{j= 0..n-1} P[j]*P[n-j-1]*t^(n-j-1) for n >= 1. - Emeric Deutsch, Mar 22 2008
G.f.: 1/(1-x/(1-x^2/(1-x^3/(1-x^4/(1-x^5/(...)))))) [given on the first page of the Odlyzko/Wilf reference]. - Joerg Arndt, Mar 08 2011
G.f.: 1/G(0), where G(k)= 1 - x^(k+1)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Jun 29 2013
G.f.: A(x) = P(x)/Q(x) where
P(x) = Sum_{n>=0} (-1)^n* x^(n*(n+1)) / Product_{k=1..n} (1-x^k),
Q(x) = Sum_{n>=0} (-1)^n* x^(n^2) / Product_{k=1..n} (1-x^k),
due to the Rogers-Ramanujan continued fraction identity. - Paul D. Hanna, Jul 08 2011
From Peter Bala, Dec 26 2012: (Start)
Let F(x) denote the o.g.f. of this sequence. For positive integer n >= 3, the real number F(1/n) has the simple continued fraction expansion 1 + 1/(n-2 + 1/(1 + 1/(n-2 + 1/(1 + 1/(n^2-2 + 1/(1 + 1/(n^2-2 + 1/(1 + ...)))))))), while for n >= 2, F(-1/n) has the simple continued fraction expansion 1/(1 + 1/(n-1 + 1/(1 + 1/(n-1 + 1/(n^2-1 + 1/(1 + 1/(n^2-1 + 1/(n^3-1 + 1/(1 + ...))))))))). Examples are given below. Cf. A111317 and A143951.
(End)
a(n) = c * x^(-n) + O((5/3)^n), where c = 0.312363324596741... and x = A347901 = 0.576148769142756... is the lowest root of the equation Q(x) = 0, Q(x) see above (Odlyzko & Wilf 1988). - Vaclav Kotesovec, Jul 18 2013, updated Sep 24 2020
G.f.: G(0), where G(k)= 1 - x^(k+1)/(x^(k+1) - 1/G(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Aug 06 2013
G.f.: 1 - 1/x + 1/(x*W(0)), where W(k)= 1 - x^(2*k+2)/(1 - x^(2*k+1)/W(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Aug 16 2013

Extensions

More terms from David W. Wilson, Apr 30 2001

A006843 Triangle read by rows: row n gives denominators of Farey series of order n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 3, 2, 3, 1, 1, 4, 3, 2, 3, 4, 1, 1, 5, 4, 3, 5, 2, 5, 3, 4, 5, 1, 1, 6, 5, 4, 3, 5, 2, 5, 3, 4, 5, 6, 1, 1, 7, 6, 5, 4, 7, 3, 5, 7, 2, 7, 5, 3, 7, 4, 5, 6, 7, 1, 1, 8, 7, 6, 5, 4, 7, 3, 8, 5, 7, 2, 7, 5, 8, 3, 7, 4, 5, 6, 7, 8, 1, 1, 9, 8, 7, 6, 5, 9, 4, 7, 3, 8, 5, 7, 9, 2, 9, 7, 5, 8, 3, 7, 4, 9, 5, 6, 7, 8, 9, 1
Offset: 1

Views

Author

Keywords

Examples

			0/1, 1/1;
0/1, 1/2, 1/1;
0/1, 1/3, 1/2, 2/3, 1/1;
0/1, 1/4, 1/3, 1/2, 2/3, 3/4, 1/1;
0/1, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 1/1;
... = A006842/A006843.
		

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 152.
  • Martin Gardner, The Last Recreations, Chapter 12: Strong Laws of Small Primes, Springer-Verlag, 1997, pp. 191-205, especially p. 199.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 23.
  • W. J. LeVeque, Topics in Number Theory. Addison-Wesley, Reading, MA, 2 vols., 1956, Vol. 1, p. 154.
  • A. O. Matveev, Farey Sequences, De Gruyter, 2017.
  • I. Niven and H. S. Zuckerman, An Introduction to the Theory of Numbers. 2nd ed., Wiley, NY, 1966, p. 141.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row n has A005728(n) terms. - Michel Marcus, Jun 27 2014
Row sums give A240877.
Cf. A006842 (numerators), A049455, A049456, A007305, A007306.
See also A177405/A177407.

Programs

  • Maple
    Farey := proc(n) sort(convert(`union`({0},{seq(seq(m/k,m=1..k),k=1..n)}),list)) end: seq(denom(Farey(i)),i=1..5); # Peter Luschny, Apr 28 2009
  • Mathematica
    Farey[n_] := Union[ Flatten[ Join[{0}, Table[a/b, {b, n}, {a, b}]]]]; Flatten[ Table[ Denominator[ Farey[n]], {n, 9}]] (* Robert G. Wilson v, Apr 08 2004 *)
    Table[Denominator[FareySequence[n]],{n,10}]//Flatten (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Oct 04 2016 *)
  • PARI
    row(n) = {vf = [0]; for (k=1, n, for (m=1, k, vf = concat(vf, m/k););); vf = vecsort(Set(vf)); for (i=1, #vf, print1(denominator(vf[i]), ", "));} \\ Michel Marcus, Jun 27 2014

Extensions

More terms from Robert G. Wilson v, Apr 08 2004
Changed offset (=order of first row) to 1 by R. J. Mathar, Apr 26 2009

A005235 Fortunate numbers: least m > 1 such that m + prime(n)# is prime, where p# denotes the product of all primes <= p.

Original entry on oeis.org

3, 5, 7, 13, 23, 17, 19, 23, 37, 61, 67, 61, 71, 47, 107, 59, 61, 109, 89, 103, 79, 151, 197, 101, 103, 233, 223, 127, 223, 191, 163, 229, 643, 239, 157, 167, 439, 239, 199, 191, 199, 383, 233, 751, 313, 773, 607, 313, 383, 293, 443, 331, 283, 277, 271, 401, 307, 331
Offset: 1

Views

Author

Keywords

Comments

Reo F. Fortune conjectured that a(n) is always prime.
You might be searching for Fortunate Primes, which is an alternative name for this sequence. It is not the official name yet, because it is possible, although unlikely, that not all the terms are primes. - N. J. A. Sloane, Sep 30 2020
The first 500 terms are primes. - Robert G. Wilson v. The first 2000 terms are primes. - Joerg Arndt, Apr 15 2013
The strong form of Cramér's conjecture implies that a(n) is a prime for n > 1618, as previously noted by Golomb. - Charles R Greathouse IV, Jul 05 2011
a(n) is the smallest m such that m > 1 and A002110(n) + m is prime. For every n, a(n) must be greater than prime(n+1) - 1. - Farideh Firoozbakht, Aug 20 2003
If a(n) < prime(n+1)^2 then a(n) is prime. According to Cramér's conjecture a(n) = O(prime(n)^2). - Thomas Ordowski, Apr 09 2013
Conjectures from Pierre CAMI, Sep 08 2017: (Start)
If all terms are prime, then lim_{N->oo} (Sum_{n=1..N} primepi(a(n))) / (Sum_{n=1..N} n) = 3/2, and primepi(a(n))/n < 6 for all n.
Limit_{N->oo} (Sum_{n=1..N} a(n)) / (Sum_{n=1..N} prime(n)) = Pi/2.
a(n)/prime(n) < 8 for all n. (End)
Conjecture: Limit_{N->oo} (Sum_{n=1..N} a(n)) / (Sum_{n=1..N} prime(n)) = 3/2. - Alain Rocchelli, Dec 24 2022
The name "Fortunate numbers" was coined by Golomb (1981) after the New Zealand social anthropologist Reo Franklin Fortune (1903 - 1979). According to Golomb, Fortune's conjecture first appeared in print in Martin Gardner's Mathematical Games column in 1980. - Amiram Eldar, Aug 25 2020

Examples

			a(4) = 13 because P_4# = 2*3*5*7 = 210, plus one is 211, the next prime is 223 and the difference between 210 and 223 is 13.
		

References

  • Martin Gardner, The Last Recreations, Chapter 12: Strong Laws of Small Primes, Springer-Verlag, 1997, pp. 191-205, especially pp. 194-195.
  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd ed., Springer, 1994, Section A2, p. 11.
  • Stephen P. Richards, A Number For Your Thoughts, 1982, p. 200.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 114-115.
  • David Wells, Prime Numbers: The Most Mysterious Figures In Math, Hoboken, New Jersey: John Wiley & Sons (2005), pp. 108-109.

Crossrefs

Programs

  • Haskell
    a005235 n = head [m | m <- [3, 5 ..], a010051'' (a002110 n + m) == 1]
    -- Reinhard Zumkeller, Apr 02 2014
    
  • Maple
    Primorial:= 2:
    p:= 2:
    A[1]:= 3:
    for n from 2 to 100 do
      p:= nextprime(p);
      Primorial:= Primorial * p;
      A[n]:= nextprime(Primorial+p+1)-Primorial;
    od:
    seq(A[n],n=1..100); # Robert Israel, Dec 02 2015
  • Mathematica
    NPrime[n_Integer] := Module[{k}, k = n + 1; While[! PrimeQ[k], k++]; k]; Fortunate[n_Integer] := Module[{p, q}, p = Product[Prime[i], {i, 1, n}] + 1; q = NPrime[p]; q - p + 1]; Table[Fortunate[n], {n, 60}]
    r[n_] := (For[m = (Prime[n + 1] + 1)/2, ! PrimeQ[Product[Prime[k], {k, n}] + 2 m - 1], m++]; 2 m - 1); Table[r[n], {n, 60}]
    FN[n_] := Times @@ Prime[Range[n]]; Table[NextPrime[FN[k] + 1] - FN[k], {k, 60}] (* Jayanta Basu, Apr 24 2013 *)
    NextPrime[#]-#+1&/@(Rest[FoldList[Times,1,Prime[Range[60]]]]+1) (* Harvey P. Dale, Dec 15 2013 *)
  • PARI
    a(n)=my(P=prod(k=1,n,prime(k)));nextprime(P+2)-P \\ Charles R Greathouse IV, Jul 15 2011; corrected by Jean-Marc Rebert, Jul 28 2015
    
  • Python
    from sympy import nextprime, primorial
    def a(n): psharp = primorial(n); return nextprime(psharp+1) - psharp
    print([a(n) for n in range(1, 59)]) # Michael S. Branicky, Jan 15 2022
  • Sage
    def P(n): return prod(nth_prime(k) for k in range(1, n + 1))
    it = (P(n) for n in range(1, 31))
    print([next_prime(Pn + 2) - Pn for Pn in it]) # F. Chapoton, Apr 28 2020
    

Formula

If x(n) = 1 + Product_{i=1..n} prime(i), q(n) = least prime > x(n), then a(n) = q(n) - x(n) + 1.
a(n) = 1 + the difference between the n-th primorial plus one and the next prime.
a(n) = A035345(n) - A002110(n). - Jonathan Sondow, Dec 02 2015

A000068 Numbers k such that k^4 + 1 is prime.

Original entry on oeis.org

1, 2, 4, 6, 16, 20, 24, 28, 34, 46, 48, 54, 56, 74, 80, 82, 88, 90, 106, 118, 132, 140, 142, 154, 160, 164, 174, 180, 194, 198, 204, 210, 220, 228, 238, 242, 248, 254, 266, 272, 276, 278, 288, 296, 312, 320, 328, 334, 340, 352, 364, 374, 414, 430, 436, 442, 466
Offset: 1

Views

Author

Keywords

References

  • Harvey Dubner, Generalized Fermat primes, J. Recreational Math., 18 (1985): 279-280.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [n: n in [0..800] | IsPrime(n^4+1)]; // Vincenzo Librandi, Nov 18 2010
  • Mathematica
    Select[Range[10^2*2], PrimeQ[ #^4+1] &] (* Vladimir Joseph Stephan Orlovsky, May 01 2008 *)
  • PARI
    {a(n) = local(m); if( n<1, 0, for(k=1, n, until( isprime(m^4 + 1), m++)); m)};
    
  • PARI
    list(lim)=my(v=List([1])); forstep(k=2,lim,2, if(isprime(k^4+1), listput(v,k))); Vec(v) \\ Charles R Greathouse IV, Mar 31 2022
    

Formula

1+a(n)^4 = A037896(n).

A000127 Maximal number of regions obtained by joining n points around a circle by straight lines. Also number of regions in 4-space formed by n-1 hyperplanes.

Original entry on oeis.org

1, 2, 4, 8, 16, 31, 57, 99, 163, 256, 386, 562, 794, 1093, 1471, 1941, 2517, 3214, 4048, 5036, 6196, 7547, 9109, 10903, 12951, 15276, 17902, 20854, 24158, 27841, 31931, 36457, 41449, 46938, 52956, 59536, 66712, 74519, 82993, 92171, 102091, 112792, 124314, 136698
Offset: 1

Views

Author

Keywords

Comments

a(n) is the sum of the first five terms in the n-th row of Pascal's triangle. - Geoffrey Critzer, Jan 18 2009
{a(k): 1 <= k <= 5} = divisors of 16. - Reinhard Zumkeller, Jun 17 2009
Equals binomial transform of [1, 1, 1, 1, 1, 0, 0, 0, ...]. - Gary W. Adamson, Mar 02 2010
From Bernard Schott, Apr 05 2021: (Start)
As a(n) = 2^(n-1) for n = 1..5, it is misleading to believe that a(n) = 2^(n-1) for n > 5 (see Patrick Popescu-Pampu link); other curiosities: a(6) = 2^5 - 1 and a(10) = 2^8.
The sequence of the first differences is A000125, the sequence of the second differences is A000124, the sequence of the third differences is A000027 and the sequence of the fourth differences is the all 1's sequence A000012 (see J. H. Conway and R. K. Guy reference, p. 80). (End)
a(n) is the number of binary words of length n matching the regular expression 0*1*0*1*0*. A000124 and A000125 count binary words of the form 0*1*0* and 1*0*1*0*, respectively. - Manfred Scheucher, Jun 22 2023

Examples

			a(7)=99 because the first five terms in the 7th row of Pascal's triangle are 1 + 7 + 21 + 35 + 35 = 99. - _Geoffrey Critzer_, Jan 18 2009
G.f. = x + 2*x^2 + 4*x^3 + 8*x^4 + 16*x^5 + 31*x^6 + 57*x^7 + 99*x^8 + 163*x^9 + ...
		

References

  • R. B. Banks, Slicing Pizzas, Racing Turtles and Further Adventures in Applied Mathematics, Princeton Univ. Press, 1999. See p. 28.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 72, Problem 2.
  • J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, Chap. 3.
  • J. H. Conway and R. K. Guy, Le Livre des Nombres, Eyrolles, 1998, p. 80.
  • J.-M. De Koninck & A. Mercier, 1001 Problèmes en Théorie Classique Des Nombres, Problem 33 pp. 18; 128 Ellipses Paris 2004.
  • A. Deledicq and D. Missenard, A La Recherche des Régions Perdues, Math. & Malices, No. 22 Summer 1995 issue pp. 22-3 ACL-Editions Paris.
  • M. Gardner, Mathematical Circus, pp. 177; 180-1 Alfred A. Knopf NY 1979.
  • M. Gardner, The Colossal Book of Mathematics, 2001, p. 561.
  • James Gleick, Faster, Vintage Books, NY, 2000 (see pp. 259-261).
  • M. de Guzman, Aventures Mathématiques, Prob. B pp. 115-120 PPUR Lausanne 1990.
  • Ross Honsberger; Mathematical Gems I, Chap. 9.
  • Ross Honsberger; Mathematical Morsels, Chap. 3.
  • Jeux Mathématiques et Logiques, Vol. 3 pp. 12; 51 Prob. 14 FFJM-SERMAP Paris 1988.
  • J. N. Kapur, Reflections of a Mathematician, Chap.36, pp. 337-343, Arya Book Depot, New Delhi 1996.
  • C. D. Miller, V. E. Heeren, J. Hornsby, M. L. Morrow and J. Van Newenhizen, Mathematical Ideas, Tenth Edition, Pearson, Addison-Wesley, Boston, 2003, Cptr 1, 'The Art of Problem Solving, page 6.
  • I. Niven, Mathematics of Choice, pp. 158; 195 Prob. 40 NML 15 MAA 1965.
  • C. S. Ogilvy, Tomorrow's Math, pp. 144-6 OUP 1972.
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 252-255.
  • Alfred S. Posamentier & Ingmar Lehmann, The (Fabulous) Fibonacci Numbers, Prometheus Books, NY, 2007, page 81-87.
  • A. M. Robert, A Course in p-adic Analysis, Springer-Verlag, 2000; p. 213.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a000127 = sum . take 5 . a007318_row  -- Reinhard Zumkeller, Nov 24 2012
    
  • Magma
    [(n^4-6*n^3+23*n^2-18*n+24)/24: n in [1..50]]; // Vincenzo Librandi, Feb 16 2015
    
  • Maple
    A000127 := n->(n^4 - 6*n^3 + 23*n^2 - 18*n + 24)/24;
    with (combstruct):ZL:=[S, {S=Sequence(U, card=1)}, unlabeled]: seq(count(subs(r=6, ZL), size=m), m=0..41); # Zerinvary Lajos, Mar 08 2008
  • Mathematica
    f[n_] := Sum[Binomial[n, i], {i, 0, 4}]; Table[f@n, {n, 0, 40}] (* Robert G. Wilson v, Jun 29 2007 *)
    Total/@Table[Binomial[n-1,k],{n,50},{k,0,4}] (* or *) LinearRecurrence[ {5,-10,10,-5,1},{1,2,4,8,16},50] (* Harvey P. Dale, Aug 24 2011 *)
    Table[(n^4 - 6 n^3 + 23 n^2 - 18 n + 24) / 24, {n, 100}] (* Vincenzo Librandi, Feb 16 2015 *)
    a[ n_] := Binomial[n, 4] + Binomial[n, 2] + 1; (* Michael Somos, Dec 23 2017 *)
  • PARI
    a(n)=(n^4-6*n^3+23*n^2-18*n+24)/24 \\ Charles R Greathouse IV, Mar 22 2016
    
  • PARI
    {a(n) = binomial(n, 4) + binomial(n, 2) + 1}; /* Michael Somos, Dec 23 2017 */
    
  • Python
    def A000127(n): return n*(n*(n*(n - 6) + 23) - 18)//24 + 1 # Chai Wah Wu, Sep 18 2021

Formula

a(n) = C(n-1, 4) + C(n-1, 3) + ... + C(n-1, 0) = A055795(n) + 1 = C(n, 4) + C(n-1, 2) + n.
a(n) = Sum_{k=0..2} C(n, 2k). - Joel Sanderi (sanderi(AT)itstud.chalmers.se), Sep 08 2004
a(n) = (n^4 - 6*n^3 + 23*n^2 - 18*n + 24)/24.
G.f.: (1 - 3*x + 4*x^2 - 2*x^3 + x^4)/(1-x)^5. (for offset 0) - Simon Plouffe in his 1992 dissertation
E.g.f.: (1 + x + x^2/2 + x^3/6 + x^4/24)*exp(x) (for offset 0). [Typos corrected by Juan M. Marquez, Jan 24 2011]
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5), n > 4. - Harvey P. Dale, Aug 24 2011
a(n) = A000124(A000217(n-1)) - n*A000217(n-2) - A034827(n), n > 1. - Melvin Peralta, Feb 15 2016
a(n) = A223718(-n). - Michael Somos, Dec 23 2017
For n > 2, a(n) = n + 1 + sum_{i=2..(n-2)}sum_{j=1..(n-i)}(1+(i-1)(j-1)). - Alec Jones, Nov 17 2019

Extensions

Formula corrected and additional references from torsten.sillke(AT)lhsystems.com
Additional correction from Jonas Paulson (jonasso(AT)sdf.lonestar.org), Oct 30 2003

A007350 Where the prime race 4k-1 vs. 4k+1 changes leader.

Original entry on oeis.org

3, 26861, 26879, 616841, 617039, 617269, 617471, 617521, 617587, 617689, 617723, 622813, 623387, 623401, 623851, 623933, 624031, 624097, 624191, 624241, 624259, 626929, 626963, 627353, 627391, 627449, 627511, 627733, 627919, 628013, 628427, 628937, 629371
Offset: 1

Views

Author

Keywords

Comments

The following references include some on the "prime race" question that are not necessarily related to this particular sequence. - N. J. A. Sloane, May 22 2006
Starting from a(12502) = A051025(27556) = 9103362505801, the sequence includes the 8th sign-changing zone predicted by C. Bays et al. The sequence with the first 8 sign-changing zones contains 194367 terms (see a-file) with a(194367) = 9543313015387 as its last term. - Sergei D. Shchebetov, Oct 13 2017

References

  • Ford, Kevin; Konyagin, Sergei; Chebyshev's conjecture and the prime number race. IV International Conference "Modern Problems of Number Theory and its Applications": Current Problems, Part II (Russian) (Tula, 2001), 67-91.
  • Granville, Andrew; Martin, Greg; Prime number races. (Spanish) With appendices by Giuliana Davidoff and Michael Guy. Gac. R. Soc. Mat. Esp. 8 (2005), no. 1, 197-240.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A156749 [sequence showing Chebyshev bias in prime races (mod 4)]. - Daniel Forgues, Mar 26 2009

Programs

  • Mathematica
    lim = 10^5; k1 = 0; k3 = 0; t = Table[{p = Prime[k], If[Mod[p, 4] == 1, ++k1, k1], If[Mod[p, 4] == 3, ++k3, k3]}, {k, 2, lim}]; A007350 = {3}; Do[ If[t[[k-1, 2]] < t[[k-1, 3]] && t[[k, 2]] == t[[k, 3]] && t[[k+1, 2]] > t[[k+1, 3]] || t[[k-1, 2]] > t[[k-1, 3]] && t[[k, 2]] == t[[k, 3]] && t[[k+1, 2]] < t[[k+1, 3]], AppendTo[A007350, t[[k+1, 1]]]], {k, 2, Length[t]-1}]; A007350 (* Jean-François Alcover, Sep 07 2011 *)
    lim = 10^5; k1 = 0; k3 = 0; p = 2; t = {}; parity = Mod[p, 4]; Do[p = NextPrime[p]; If[Mod[p, 4] == 1, k1++, k3++]; If[(k1 - k3)*(parity - Mod[p, 4]) > 0, AppendTo[t, p]; parity = Mod[p, 4]], {lim}]; t (* T. D. Noe, Sep 07 2011 *)

A036262 Array of numbers read by upward antidiagonals, arising from Gilbreath's conjecture: leading row lists the primes; the following rows give absolute values of differences of previous row.

Original entry on oeis.org

2, 1, 3, 1, 2, 5, 1, 0, 2, 7, 1, 2, 2, 4, 11, 1, 2, 0, 2, 2, 13, 1, 2, 0, 0, 2, 4, 17, 1, 2, 0, 0, 0, 2, 2, 19, 1, 2, 0, 0, 0, 0, 2, 4, 23, 1, 2, 0, 0, 0, 0, 0, 2, 6, 29, 1, 0, 2, 2, 2, 2, 2, 2, 4, 2, 31, 1, 0, 0, 2, 0, 2, 0, 2, 0, 4, 6, 37, 1, 0, 0, 0, 2, 2, 0, 0, 2, 2, 2, 4, 41, 1, 0, 0, 0, 0, 2, 0, 0, 0
Offset: 0

Views

Author

Keywords

Comments

The conjecture is that the leading term is always 1.
Odlyzko has checked it for primes up to pi(10^13) = 3*10^11.
From M. F. Hasler, Jun 02 2012: (Start)
The second column, omitting the initial 3, is given in A089582. The number of "0"s preceding the first term > 1 in the n-th row is given in A213014. The first term > 1 in any row must equal 2, else the conjecture is violated: Obviously all terms except for the first one are even. Thus, if the 2nd term in some row is > 2, it is >= 4, and the first term of the subsequent row is >= 3. If there is a positive number of zeros preceding a first term > 2 (thus >= 4), this "jump" will remain constant and "propagate" (in subsequent rows) to the beginning of the row, and the previously discussed case applies.
The previous statement can also be formulated as: Gilbreath's conjecture is equivalent to: A036277(n) > A213014(n)+2 for all n.
CAVEAT: While table A036261 starts with the first absolute differences of the primes in its first row, the present sequence has the primes themselves in its uppermost row, which is sometimes referred to as "row 0". Thus, "first row" of this table A036262 may either refer to row 1 (1,2,2,...), or to row 0 (2,3,5,7,...), while the latter might, however, as well be referred to "row 1 of A036262" in other sequences or papers.
(End)
From Clark Kimberling, Nov 27 2022: (Start)
Suppose that S = (s(k)), for k >= 1, is a sequence of real numbers. For n >= 1, let g(1,n) = |s(n+1)-s(n)| and g(k,n) = |g(k-1,n+1) - g(k-1,n)| for k >= 2.
Call (g(k,n)) the Gilbreath array of S. Call the first column of this array the Gilbreath transform of S. Denote this transform by G(S), so that G(S) is the sequence (g(n,1)). If S is the sequence of primes, then the Gilbreath conjecture holds that G(S) consists exclusively of 1's. More generally, it appears that there are many S such that G(S) is eventually periodic. See A358691 for conjectured examples. (End)

Examples

			The array begins (conjecture is leading term is always 1):
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101
1 2 2 4  2  4  2  4  6  2  6  4  2  4  6  6  2  6  4  2  6  4  6  8  4   2
1 0 2 2  2  2  2  2  4  4  2  2  2  2  0  4  4  2  2  4  2  2  2  4  2   2
1 2 0 0  0  0  0  2  0  2  0  0  0  2  4  0  2  0  2  2  0  0  2  2  0   0
1 2 0 0  0  0  2  2  2  2  0  0  2  2  4  2  2  2  0  2  0  2  0  2  0   0
1 2 0 0  0  2  0  0  0  2  0  2  0  2  2  0  0  2  2  2  2  2  2  2  0   8
1 2 0 0  2  2  0  0  2  2  2  2  2  0  2  0  2  0  0  0  0  0  0  2  8   8
1 2 0 2  0  2  0  2  0  0  0  0  2  2  2  2  2  0  0  0  0  0  2  6  0   8
1 2 2 2  2  2  2  2  0  0  0  2  0  0  0  0  2  0  0  0  0  2  4  6  8   6
1 0 0 0  0  0  0  2  0  0  2  2  0  0  0  2  2  0  0  0  2  2  2  2  2   4
...
		

References

  • R. K. Guy, Unsolved Problems Number Theory, A10.
  • H. L. Montgomery, Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis, Amer. Math. Soc., 1996, p. 208.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 192.
  • W. Sierpiński, L'induction incomplète dans la théorie des nombres, Scripta Math. 28 (1967), 5-13.
  • C. A. Pickover, The Math Book, Sterling, NY, 2009; see p. 410.

Crossrefs

See A255483 for an interesting generalization.

Programs

  • Haskell
    a036262 n k = delta !! (n - k) !! (k - 1) where delta = iterate
       (\pds -> zipWith (\x y -> abs (x - y)) (tail pds) pds) a000040_list
    -- Reinhard Zumkeller, Jan 23 2011
  • Maple
    A036262 := proc(n, k)
        option remember ;
        if n = 0 then
            ithprime(k) ;
        else
            abs(procname(n-1, k+1)-procname(n-1, k)) ;
        end if;
    end proc:
    seq(seq( A036262(d-k,k),k=1..d),d=1..13) ; # R. J. Mathar, May 10 2023
  • Mathematica
    max = 14; triangle = NestList[ Abs[ Differences[#]] &, Prime[ Range[max]], max]; Flatten[ Table[ triangle[[n - k + 1, k]], {n, 1, max}, {k, 1, n}]] (* Jean-François Alcover, Nov 04 2011 *)

Formula

T(0,k) = A000040(k). T(n,k) = |T(n-1,k+1) - T(n-1,k)|, n > 0. - R. J. Mathar, Sep 19 2013

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 23 2003
Definition edited by N. J. A. Sloane, May 03 2023

A005727 n-th derivative of x^x at x=1. Also called Lehmer-Comtet numbers.

Original entry on oeis.org

1, 1, 2, 3, 8, 10, 54, -42, 944, -5112, 47160, -419760, 4297512, -47607144, 575023344, -7500202920, 105180931200, -1578296510400, 25238664189504, -428528786243904, 7700297625889920, -146004847062359040, 2913398154375730560, -61031188196889482880
Offset: 0

Views

Author

Keywords

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 139, table at foot of page.
  • G. H. Hardy, A Course of Pure Mathematics, 10th ed., Cambridge University Press, 1960, p. 428.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of A008296. Column k=2 of A215703 and of A277537.

Programs

  • Maple
    A005727 := proc(n) option remember; `if`(n=0, 1, A005727(n-1)+add((-1)^(n-k)*(n-2-k)!*binomial(n-1, k)*A005727(k), k=0..n-2)) end:
    seq(A005727(n), n=0..23); # Mélika Tebni, May 22 2022
  • Mathematica
    NestList[ Factor[ D[ #1, x ] ]&, x^x, n ] /. (x->1)
    Range[0, 22]! CoefficientList[ Series[(1 + x)^(1 + x), {x, 0, 22}], x] (* Robert G. Wilson v, Feb 03 2013 *)
  • PARI
    a(n)=if(n<0,0,n!*polcoeff((1+x+x*O(x^n))^(1+x),n))

Formula

For n>0, a(n) = Sum_{k=0..n} b(n, k), where b(n, k) is a Lehmer-Comtet number of the first kind (see A008296).
E.g.f.: (1+x)^(1+x). a(n) = Sum_{k=0..n} Stirling1(n, k)*A000248(k). - Vladeta Jovovic, Oct 02 2003
From Mélika Tebni, May 22 2022: (Start)
a(0) = 1, a(n) = a(n-1)+Sum_{k=0..n-2} (-1)^(n-k)*(n-2-k)!*binomial(n-1, k)*a(k).
a(n) = Sum_{k=0..n} (-1)^(n-k)*A293297(k)*binomial(n, k).
a(n) = Sum_{k=0..n} (-1)^k*A203852(k)*binomial(n, k). (End)

A050259 Numbers n such that 2^n == 3 (mod n).

Original entry on oeis.org

1, 4700063497, 3468371109448915, 8365386194032363, 10991007971508067
Offset: 1

Views

Author

Keywords

Comments

No other terms below 10^18. - Max Alekseyev, Oct 17 2017
Terms were computed: a(2) by the Lehmers, a(3) by Max Alekseyev, a(4) and a(5) by Joe K. Crump, a(?) = 63130707451134435989380140059866138830623361447484274774099906755 by P.-L. Montgomery.

References

  • R. Daniel Mauldin and S. M. Ulam, Mathematical problems and games. Adv. in Appl. Math. 8 (1987), pp. 281-344.

Crossrefs

Programs

  • Mathematica
    m = 2; Join[Select[Range[m], Divisible[2^# - m, #] &],
    Select[Range[m + 1, 10^6], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 08 2018 *)
  • PARI
    is(n)=Mod(2,n)^n==3 \\ Charles R Greathouse IV, Jun 11 2015
Previous Showing 21-30 of 67 results. Next