cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 152 results. Next

A084534 Triangle read by rows: row #n has n+1 terms. T(n,0)=1, T(n,n)=2, T(n,m) = T(n-1,m-1) + Sum_{k=0..m} T(n-1-k,m-k).

Original entry on oeis.org

1, 1, 2, 1, 4, 2, 1, 6, 9, 2, 1, 8, 20, 16, 2, 1, 10, 35, 50, 25, 2, 1, 12, 54, 112, 105, 36, 2, 1, 14, 77, 210, 294, 196, 49, 2, 1, 16, 104, 352, 660, 672, 336, 64, 2, 1, 18, 135, 546, 1287, 1782, 1386, 540, 81, 2, 1, 20, 170, 800, 2275, 4004, 4290, 2640, 825, 100, 2
Offset: 0

Views

Author

Gary W. Adamson, May 29 2003

Keywords

Comments

Sum of row #n = A000204(2n). (But sum of row #0 = 1.)
Row #n has the unsigned coefficients of the monic polynomial whose roots are 2 cos(Pi*(2k-1)/(4n)) for k=1..2n. [Comment corrected by Barry Brent, Jan 03 2006]
The positive roots are some diagonal lengths of a regular (4n)-gon, inscribed in the unit circle.
Polynomial of row #n = Sum_{m=0..n} (-1)^m * T(n,m) x^(2*n-2*m).
This is the unsigned version of the coefficient table for scaled Chebyshev T(2*n,x) polynomials. - Wolfdieter Lang, Mar 07 2007
Reversed A127677 (cf. A156308, A217476, A263916). - Tom Copeland, Nov 07 2015

Examples

			First few Chebyshev T(2*n,x) polynomials:
  T(2*0,x) = 1;
  T(2*1,x) = x^2 -   2;
  T(2*2,x) = x^4 -   4*x^2 +  2;
  T(2*3,x) = x^6 -   6*x^4 +  9*x^2 -  2;
  T(2*4,x) = x^8 -   8*x^6 + 20*x^4 - 16*x^2 +  2;
  T(2*5,x) = x^10 - 10*x^8 + 35*x^6 - 50*x^4 + 25*x^2 - 2;
Triangle begins as:
  1;
  1,  2;
  1,  4,  2;
  1,  6,  9,   2;
  1,  8, 20,  16,   2;
  1, 10, 35,  50,  25,  2;
  1, 12, 54, 112, 105, 36, 2;
		

References

  • I. Kaplansky and J. Riordan, The problème des ménages, Scripta Math. 12, (1946), 113-124. See p. 118.
  • Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990. p. 37, eq.(1.96) and p. 4. eq.(1.10).

Crossrefs

Row sums are A005248 for n > 0.
Companion triangle A082985.
Cf. A082985 (unsigned scaled coefficient table for Chebyshev's T(2*n+1, x) polynomials).

Programs

  • Magma
    A084534:= func< n,k | k eq 0 select 1 else 2*(n/k)*Binomial(2*n-k-1, k-1) >;
    [A084534(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 02 2022
    
  • Maple
    T := proc(n, m): if n=0 then 1 else binomial(2*n-m, m)*2*n/(2*n-m) fi: end: seq(seq(T(n,m),m=0..n),n=0..10); # Johannes W. Meijer, May 31 2018
  • Mathematica
    a[n_, m_] := Binomial[2n-m, m]*2n/(2n-m); a[0, 0] = 1; Table[a[n, m], {n, 0, 10}, {m, 0, n}] // Flatten (* Jean-François Alcover, Apr 12 2016, after Wolfdieter Lang *)
  • PARI
    T(n,m) = if(n==0, m==0, binomial(2*n-m, m)*2*n/(2*n-m)) \\ Andrew Howroyd, Dec 18 2017
    
  • Sage
    def A084534(n,k): return 1 if (k==0) else 2*(n/k)*binomial(2*n-k-1, k-1)
    flatten([[A084534(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 02 2022

Formula

T(n,m) = binomial(2*n-m, m)*2*n/(2*n-m) for n > 0. - Andrew Howroyd, Dec 18 2017
Signed version from Wolfdieter Lang, Mar 07 2007: (Start)
a(n,m)=0 if n
a(n,m)=0 if n
a(n,m)=0 if nA127674(n,n-m)/2^(2*(n-m)-1) (scaled coefficients of Chebyshev's T(2*n,x), decreasing even powers). [corrected by Johannes W. Meijer, May 31 2018] (End)

Extensions

Edited by Don Reble, Nov 12 2005

A178482 Phi-antipalindromic numbers.

Original entry on oeis.org

1, 3, 4, 7, 8, 10, 11, 18, 19, 21, 22, 25, 26, 28, 29, 47, 48, 50, 51, 54, 55, 57, 58, 65, 66, 68, 69, 72, 73, 75, 76, 123, 124, 126, 127, 130, 131, 133, 134, 141, 142, 144, 145, 148, 149, 151, 152, 170, 171, 173, 174
Offset: 1

Author

Vladimir Shevelev, May 28 2010

Keywords

Comments

We call m a phi-antipalindromic number if for the vector (a,...,b) (a<...=2, either a(n)+1 or a(n)-1 is in the sequence; also either a(n)+3 or a(n)-3 is in the sequence.
Conjecture: this is the sequence of numbers k for which f(k) is an integer, where f(x) is the change-of-base function defined at A214969 using b=phi and c=b^2. - Clark Kimberling, Oct 17 2012
There is a 21-state automaton accepting the Zeckendorf representations of those n in this sequence. - Jeffrey Shallit, May 03 2023
Kimberling's conjecture has been proven by Ingrid Vukusic and myself. Along the way we prove an alternate characterization of the sequence: they are the positive integers whose base-phi expansion consists only of even exponents of phi. - Jeffrey Shallit, Aug 28 2025
Alternatively, this sequence consists of those numbers k such that either k or k-1 can be written as the (possibly empty) sum of distinct Lucas numbers L_i where i>=2 and i is even. - Jeffrey Shallit, Aug 28 2025

Examples

			The vectors of exponents of 4 and 5 are (-2,0,2) and (-4,-1,3) correspondingly (cf.A104605). Therefore by definition 4 is a phi-antipalindromic number, while 5 is not. Let n=38. Then k=5. Thus a(38)=A005248(5)+a(6)=123+10=133. The vector of exponents of phi in the base-phi expansion of 133 is (-10,-4,-2,2,4,10).
		

Crossrefs

For bisections see A171070, A171071.

Programs

  • Mathematica
    phiAPQ[1] = True; phiAPQ[n_] := Module[{d = RealDigits[n, GoldenRatio, 2*Ceiling[Log[GoldenRatio, n]]]}, e = d[[2]] - Flatten @ Position[d[[1]], 1]; Reverse[e] == -e]; Select[Range[200], phiAPQ] (* Amiram Eldar, Apr 23 2020 *)

Formula

For k>=1, a(2^k)=A005248(k); if 2^k

A180664 Golden Triangle sums: a(n) = a(n-1) + A001654(n+1) with a(0)=0.

Original entry on oeis.org

0, 2, 8, 23, 63, 167, 440, 1154, 3024, 7919, 20735, 54287, 142128, 372098, 974168, 2550407, 6677055, 17480759, 45765224, 119814914, 313679520, 821223647, 2149991423, 5628750623, 14736260448, 38580030722, 101003831720
Offset: 0

Author

Johannes W. Meijer, Sep 21 2010

Keywords

Comments

The a(n+1) (terms doubled) are the Kn13 sums of the Golden Triangle A180662. See A180662 for information about these knight and other chess sums.

Programs

  • Magma
    [(1/10)*((-1)^n - 15 + 2*Lucas(2*n+4)): n in [0..40]]; // G. C. Greubel, Jan 21 2022
    
  • Maple
    nmax:=26: with(combinat): for n from 0 to nmax+1 do A001654(n):=fibonacci(n) * fibonacci(n+1) od: a(0):=0: for n from 1 to nmax do a(n) := a(n-1)+A001654(n+1) od: seq(a(n),n=0..nmax);
  • Mathematica
    Table[Sum[Fibonacci[i+2]*Fibonacci[i+3], {i,0,n-1}], {n,0,40}] (* Rigoberto Florez, Jul 07 2020 *)
    LinearRecurrence[{3,0,-3,1},{0,2,8,23},30] (* Harvey P. Dale, Mar 30 2023 *)
  • Sage
    [(1/10)*((-1)^n - 15 + 2*lucas_number2(2*n+4,1,-1)) for n in (0..40)] # G. C. Greubel, Jan 21 2022

Formula

a(n+1) = Sum_{k=0..n} A180662(2*n-k+2, k+2).
a(n) = (-15 + (-1)^n + (6-2*A)*A^(-n-1) + (6-2*B)*B^(-n-1))/10 with A=(3+sqrt(5))/2 and B=(3-sqrt(5))/2.
G.f.: (2*x+2*x^2-x^3)/(1-3*x-x^4+3*x^3).
a(n) = Sum_{i=0..n-1} F(i+2)*F(i+3), where F(i) = A000045(i). - Rigoberto Florez, Jul 07 2020
a(n) = (1/10)*((-1)^n - 15 + 2*Lucas(2*n+4)). - G. C. Greubel, Jan 21 2022

A198633 Total number of round trips, each of length 2*n on the graph P_3 (o-o-o).

Original entry on oeis.org

3, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648
Offset: 0

Author

Wolfdieter Lang, Nov 02 2011

Keywords

Comments

See the array and triangle A198632 for the general case for the graph P_N (there N is n and the length is l=2*k).

Examples

			With the graph P_3 as 1-2-3:
n=0: 3, from the length 0 walks starting at 1, 2 and 3.
n=2: 8, from the walks of length 4, namely 12121, 12321, 21212, 23232, 21232, 23212, 32323 and 32123.
		

Crossrefs

Essentially the same as A000079, A020707, A077552 etc.

Programs

  • Mathematica
    Join[{3},NestList[2#&,4,30]] (* Harvey P. Dale, Nov 07 2020 *)
  • PARI
    a(n)=if(n,2<Charles R Greathouse IV, Jan 02 2012

Formula

a(n) = w(3,2*n), n>=0, with w(3,l) the total number of closed walks on the graph P_3 (the simple path with 3 points (vertices) and 2 lines (or edges)).
O.g.f. for w(3,l) (with zeros for odd l): y*(d/dy)S(3,y)/S(3,y) with y=1/x and Chebyshev S-polynomials (coefficients A049310). See A198632, also for a rewritten form.
Empirical g.f.: (3-2*x)/(1-2*x). - Colin Barker, Jan 02 2012
This g.f. follows from the Chebyshev o.g.f. given above with x -> sqrt(x). Therefore a(0) = 3 and a(n) = 2^(n+1), n >= 1. - Wolfdieter Lang, Feb 18 2013.

A032170 "CHK" (necklace, identity, unlabeled) transform of 1, 2, 3, 4, ...

Original entry on oeis.org

1, 2, 5, 10, 24, 50, 120, 270, 640, 1500, 3600, 8610, 20880, 50700, 124024, 304290, 750120, 1854400, 4600200, 11440548, 28527320, 71289000, 178526880, 447910470, 1125750120, 2833885800, 7144449920, 18036373140, 45591631800, 115381697740, 292329067800
Offset: 1

Keywords

Comments

Apparently, for n > 2, the same as A072337. - Ralf Stephan, Feb 01 2004
a(n) is the number of prime period-n periodic orbits of Arnold's cat map. - Bruce Boghosian, Apr 26 2009
From Petros Hadjicostas, Nov 17 2017: (Start)
A first proof of the g.f., given below, can be obtained using the first of Vladeta Jovovic's formulae. If b(n) = A004146(n), then B(x) = Sum_{n >= 1} b(n)*x^n = x*(1 + x)/((1 - x)*(1 - 3*x + x^2)) (see the documentation for sequence A004146). From Jovovich's first formula, A(x) = Sum_{n >= 1} a(n)*x^n = Sum_{n >= 1} (1/n)*Sum_{d | n} mu(d)*b(n/d)*x^n. Letting m = n/d, we get A(x) = Sum_{d >= 1} (mu(d)/d)*Sum_{m >= 1} b(m)*(x^d)^m/m = Sum_{d >= 1} (mu(d)/d)*f(x^d), where f(y) = Sum_{m >= 1} b(m)*y^m/m = int(B(w)/w, w = 0..y) = int((1 + w)/((1 - w)*(1 - 3*w + w^2)), w = 0..y) = log((1 - y)^2/(1 - 3*y + y^2)) for |y| < (3 - sqrt(5))/2.
A second proof of the g.f. can be obtained using C. G. Bower's definition of the CHK transform of a sequence (e(n): n>=1) with g.f. E(x) (see the links below). If (c_k(n): n >= 1) = CHK_k(e(n): n >= 1), then (c_k(n): n >= 1) = (1/k)*(MOEBIUS*AIK)k (e_n: n >= 1) = (1/k)*Sum{d | gcd(n,k)} mu(d)*AIK_{k/d}(e(n/d): n multiple of d), where the * between MOEBIUS and AIK denotes Dirichlet convolution and (d_k(n): n >= 1) = AIK_k(e(n): n >= 1) has g.f. E(x)^k. (There is a typo in the given definition of CHK in the link.)
If C(x) is the g.f. of CHK(e(n): n >= 1) = Sum_{k = 1..n} CHK_k(e(n): n >= 1), then C(x) = Sum_{n>=1} Sum_{k = 1..n} c_k(n)*x^n = Sum_{k >= 1} (1/k) Sum_{n >= k} Sum_{d | gcd(n,k)} mu(d)*d_{k/d}(n/d)*x^n. Letting m = n/d and s = k/d and using the fact that E(0) = 0, we get C(x) = Sum_{d >= 1} (mu(d)/d)*Sum_{s >= 1} (1/s)*Sum_{m >= s} d_s(m)*(x^d)^m = Sum_{d >= 1} (mu(d)/d)*Sum_{s >= 1} E(x^d)^s. Thus, C(x) = -Sum_{d >= 1} (mu(d)/d)*log(1 - E(x^d)).
For the sequence (e(n): n >= 1) = (n: n >= 1), we have E(x) = Sum_{n>=1} n*x^n = x/(1 - x)^2, and thus A(x) = C(x) = -Sum_{d >= 1} (mu(d)/d)*log(1 - x/(1-x)^2), from which we can easily get the g.f. given in the formula section.
Apparently, for this sequence and for sequences A032165, A032166, A032167, the author assumes that C(0) = 0 (i.e., he assumes the CHK transform has no constant term), while for sequences A032164, A108529, and possibly others, he assumes that the CHK transform starts with the constant term 1 (i.e., he assumes C(x) = 1 - Sum_{d >= 1} (mu(d)/d)*log(1 - E(x^d))). (End)
From Petros Hadjicostas, Jul 13 2020: (Start)
We elaborate further on Michel Marcus's claim below. Consider his sequence (b(n): n >= 1) with b(1) = 3 and b(n) = a(n) for n >= 2.
Using the identity -Sum_{k >= 1} (mu(k)/k)*log(1 - x^k) = x for |x| < 1 and the g.f. of (a(n): n >= 1) below, we see that Sum_{n >= 1} b(n)*x^n = 3*x - a(1)*x + Sum_{n >= 1} a(n)*x^n = 2*x + Sum_{k >= 1} (mu(k)/k)*(2*log(1 - x^k) - log(1 - 3*x^k + x^(2*k))) = -Sum_{k >= 1} (mu(k)/k)*log(1 - 3*x^k + x^(2*k)).
Following Kam Cheong Au (2020), let d(w,N) be the dimension of the Q-span of weight w and level N of colored multiple zeta values (CMZV). Here Q are the rational numbers.
Deligne's bound says that d(w,N) <= D(w,N), where 1 + Sum_{w >= 1} D(w,N)*t^w = (1 - a*t + b*t^2)^(-1) when N >= 3, where a = phi(N)/2 + omega(N) and b = omega(N) - 1 (with omega(N) being the number of distinct primes of N).
For N = 6, a = phi(6)/2 + omega(6) = 2/2 + 2 = 3 and b = omega(6) - 1 = 1. It follows that D(w, N=6) = A001906(w+1) = Fibonacci(2*(w+1)).
For some reason, Kam Cheong Au (2020) assumes Deligne's bound is tight, i.e., d(w,N) = D(w,N). He sets Sum_{w >= 1} c(w,N)*t^w = log(1 + Sum_{w >= 1} d(w,N)*t^w) = log(1 + Sum_{w >= 1} D(w,N)*t^w) = -log(1 - a*t + b*t^2) for N >= 3.
For N = 6, we get that c(w, N=6) = A005248(w)/w.
He defines d*(w,N) = Sum_{k | w} (mu(k)/k)*c(w/k,N) to be the "number of primitive constants of weight w and level N". (Using the terminology of A113788, we may perhaps call d*(w,N) the number of irreducible colored multiple zeta values at weight w and level N.)
Using standard techniques of the theory of g.f.'s, we can prove that Sum_{w >= 1} d*(w,N)*t^w = Sum_{s >= 1} (mu(s)/s) Sum_{k >= 1} c(k,N)*(t^s)^k = -Sum_{s >= 1} (mu(s)/s)*log(1 - a*t^s + b*t^(2*s)).
For N = 6, we saw that a = 3 and b = 1, and hence d*(w, N=6) = b(w) for w >= 1 (as claimed by Michel Marcus below). See Table 1 on p. 6 in Kam Cheong Au (2020). (End)

Programs

  • Mathematica
    Table[DivisorSum[n, MoebiusMu[n/#] (LucasL[2 #] - 2) &]/n, {n, 31}] (* Michael De Vlieger, Nov 18 2017 *)

Formula

a(n) = (1/n)*Sum_{d | n} mu(n/d)*A004146(d). - Vladeta Jovovic, Feb 15 2003
Inverse EULER transform of Fibonacci(2*n). - Vladeta Jovovic, May 04 2006
G.f.: Sum_{n >= 1} (mu(n)/n)*f(x^n), where f(y) = log((1 - y)^2/(1 - 3*y + y^2)). - Petros Hadjicostas, Nov 17 2017
It appears that the sequence b(1) = 3, b(n) = a(n) for n >= 2 is related to the rational sequence (c(w, N=6): w >= 1) = (A005248(w)/w: w >= 1) whose g.f. is log(1/(1 - a*t + b*t^2)), where a = phi(N)/2 + omega(N) and b = omega(N) - 1 when N = 6, where phi is A000010 and omega is A001221. See Kam Cheong Au (2020). - Michel Marcus, Jul 13 2020 [Edited by Petros Hadjicostas, Jul 13 2020]

A067902 a(n) = 14*a(n-1) - a(n-2); a(0) = 2, a(1) = 14.

Original entry on oeis.org

2, 14, 194, 2702, 37634, 524174, 7300802, 101687054, 1416317954, 19726764302, 274758382274, 3826890587534, 53301709843202, 742397047217294, 10340256951198914, 144021200269567502, 2005956546822746114, 27939370455248878094, 389145229826661547202, 5420093847118012782734
Offset: 0

Author

Lekraj Beedassy, May 13 2003

Keywords

Comments

Solves for x in x^2 - 3*y^2 = 4. [Complete nonnegative solutions are in A003500 and A052530. - Wolfdieter Lang, Sep 05 2021]
For n>0, a(n)+2 is the number of dimer tilings of a 4 X 2n Klein bottle (cf. A103999).
This is the Lucas sequence V(14,1). In addition to the comment above: If x = a(n) then y(n) = (a(n+1) - a(n-1))/24, n >= 1. - Klaus Purath, Aug 17 2021

Examples

			G.f. = 2 + 14*x + 194*x^2 + 2702*x^3 + 37634*x^4 + 524174*x^5 + ...
		

Crossrefs

Row 2 * 2 of array A188644.

Programs

  • GAP
    m:=7;; a:=[2,14];; for n in [3..20] do a[n]:=2*m*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 23 2019
  • Magma
    [Floor((2+Sqrt(3))^(2*n)+(1+Sqrt(3))^(-n)): n in [0..19]]; // Vincenzo Librandi, Mar 31 2011
    
  • Maple
    a := proc(n) option remember: if n=0 then RETURN(2) fi: if n=1 then RETURN(14) fi: 14*a(n-1)-a(n-2): end: for n from 0 to 30 do printf(`%d,`,a(n)) od:
    seq( simplify(2*ChebyshevT(n, 7)), n=0..20); # G. C. Greubel, Dec 23 2019
  • Mathematica
    a[0]=2; a[1]=14; a[n_]:= 14a[n-1] -a[n-2]; Table[a[n], {n,0,20}] (* Robert G. Wilson v, Jan 30 2004 *)
    2*ChebyshevT[Range[21] -1, 7] (* G. C. Greubel, Dec 23 2019 *)
  • PARI
    vector( 21, n, 2*polchebyshev(n-1, 1, 7) ) \\ G. C. Greubel, Dec 23 2019
    
  • Sage
    [lucas_number2(n,14,1) for n in range(0,20)] # Zerinvary Lajos, Jun 26 2008
    
  • Sage
    [2*chebyshev_T(n,7) for n in (0..20)] # G. C. Greubel, Dec 23 2019
    

Formula

G.f.: 2*(1-7*x)/(1-14*x+x^2). - N. J. A. Sloane, Nov 22 2006
a(n) = p^n + q^n, where p = 7 + 4*sqrt(3) and q = 7 - 4*sqrt(3). - Tanya Khovanova, Feb 06 2007
a(n) = 2*A011943(n+1). - R. J. Mathar, Sep 27 2014
From Peter Bala, Oct 16 2019: (Start)
Let F(x) = Product_{n >= 0} (1 + x^(4*n+1))/(1 + x^(4*n+3)). Let alpha = 7 - 4*sqrt(3). This sequence gives the partial denominators in the simple continued fraction expansion of 1 + F(alpha) = 2.07140228197873197080... = 2 + 1/(14 + 1/(194 + 1/(2702 + ...))). Cf. A005248.
12*Sum_{n >= 1} 1/(a(n) - 16/a(n)) = 1.
16*Sum_{n >= 1} (-1)^(n+1)/(a(n) + 12/a(n)) = 1.
Series acceleration formula for sum of reciprocals:
Sum_{n >= 1} 1/a(n) = 1/12 - 16*Sum_{n >= 1} 1/(a(n)*(a(n)^2 - 16)).
Sum_{n >= 1} 1/a(n) = ( (theta_3(7-4*sqrt(3)))^2 - 1 )/4, where theta_3(x) = 1 + 2*Sum_{n >= 1} x^(n^2) (see A000122). Cf. A153415 and A003499.
(End)
From Klaus Purath, Aug 17 2021: (Start)
a(n) = (a(n-1)*a(n-2) + 2688)/a(n-3), n >= 3.
a(n) = (a(n-1)^2 + 192)/a(n-2), n >= 2.
a(2*n) = A302332(n-1) + A302332(n), n >= 1.
a(2*n+1) = 14*A302332(n). (End)
a(n) = A003500(2*n) = S(2*n,4) - S(2*n-2, 4) = 2*T(2*n,2), for n >= 0, with Chebyshev S and T. S(n, 4) = A001353(n+1) and T(n, 2) = A001075(n). - Wolfdieter Lang, Sep 06 2021

A100545 Expansion of (7-2*x) / (1-3*x+x^2).

Original entry on oeis.org

7, 19, 50, 131, 343, 898, 2351, 6155, 16114, 42187, 110447, 289154, 757015, 1981891, 5188658, 13584083, 35563591, 93106690, 243756479, 638162747, 1670731762, 4374032539, 11451365855, 29980065026, 78488829223, 205486422643, 537970438706, 1408424893475, 3687304241719, 9653487831682, 25273159253327
Offset: 0

Author

Creighton Dement, Dec 31 2004

Keywords

Comments

A Floretion integer sequence relating to Fibonacci numbers.
Inverse binomial transform of A013655; inversion of A097924.

Programs

  • GAP
    List([0..30], n-> Fibonacci(2*n+4) +Lucas(1,-1,2*n+3)[2] ); # G. C. Greubel, Jan 17 2020
  • Magma
    [Fibonacci(2*n+4) +Lucas(2*n+3): n in [0..30]]; // G. C. Greubel, Jan 17 2020
    
  • Maple
    F := proc(n) combinat[fibonacci](n) ; end: A100545 := proc(n) 4*F(2*(n+1)) + F(2*n+1)+F(2*n+3) ; end: for n from 0 to 30 do printf("%d,",A100545(n)) ; od ; # R. J. Mathar, Oct 26 2006
  • Mathematica
    Table[Fibonacci[2*(n+2)] + LucasL[2*n+3], {n,0,30}] (* G. C. Greubel, Jan 17 2020 *)
  • PARI
    Vec((7-2*x)/(1-3*x+x^2) + O(x^30)) \\ Michel Marcus, Feb 11 2015
    
  • Sage
    [fibonacci(2*n+4) +lucas_number2(2*n+3,1,-1) for n in (0..30)] # G. C. Greubel, Jan 17 2020
    

Formula

a(n-1) = 4*Fibonacci(2*n) + Fibonacci(2*n-1) + Fibonacci(2*n+1).
a(n) + a(n+1) = A055849(n+2).
a(n) = 3*a(n-1) - a(n-2) with a(0)=7 and a(1)=19. - Philippe Deléham, Nov 16 2008
a(n) = (2^(-1-n)*((3-sqrt(5))^n*(-17+7*sqrt(5)) + (3+sqrt(5))^n*(17+7*sqrt(5)))) / sqrt(5). - Colin Barker, Oct 14 2015
From G. C. Greubel, Jan 17 2020: (Start)
a(n) = Fibonacci(2*n+4) + Lucas(2*n+3).
E.g.f.: 2*exp(3*t/2)*(cosh(sqrt(5)*t/2) + (4/sqrt(5))*sinh(sqrt(5)*t/2)). (End)

Extensions

Corrected and extended by T. D. Noe and R. J. Mathar, Oct 26 2006

A153173 a(n) = L(5*n)/L(n) where L(n) = Lucas number A000204(n).

Original entry on oeis.org

11, 41, 341, 2161, 15251, 103361, 711491, 4868641, 33391061, 228811001, 1568437211, 10749853441, 73681573691, 505018447961, 3461454668501, 23725145626561, 162614613425891, 1114577020834241, 7639424866266611
Offset: 1

Author

Artur Jasinski, Dec 20 2008

Keywords

Comments

All numbers in this sequence are congruent to 1 mod 10.

Programs

  • Magma
    I:=[11, 41, 341, 2161, 15251]; [n le 5 select I[n] else 5*Self(n-1)+15*Self(n-2)-15*Self(n-3)-5*Self(n-4)+Self(n-5): n in [1..30]]; // G. C. Greubel, Dec 21 2017
  • Mathematica
    Table[LucasL[5*n]/LucasL[n], {n, 1, 50}]
    CoefficientList[Series[x*(11-14*x-29*x^2+6*x^3+x^4)/((1-x)*(x^2-7*x+1)*(x^2+3*x+1)), {x,0,50}], x] (* G. C. Greubel, Dec 21 2017 *)
    a[ n_] := 1 + 5*Fibonacci[n]*Fibonacci[3*n]; (* Michael Somos, Apr 23 2022 *)
  • PARI
    {L(n)=fibonacci(n-1)+fibonacci(n+1)}; a(n) = L(5*n)/L(n) \\ Charles R Greathouse IV, Jun 11 2015
    
  • PARI
    my(x='x+O('x^30)); Vec(x*(11-14*x-29*x^2+6*x^3+x^4 )/((1-x)*(x^2-7*x +1)*(x^2+3*x+1))) \\ G. C. Greubel, Dec 21 2017
    
  • PARI
    {a(n) = 1 + 5*fibonacci(n)*fibonacci(3*n)}; /* Michael Somos, Apr 23 2022 */
    

Formula

From R. J. Mathar, Oct 22 2010: (Start)
a(n) = 5*a(n-1) + 15*a(n-2) - 15*a(n-3) - 5*a(n-4) + a(n-5).
G.f.: -x*(11-14*x-29*x^2+6*x^3+x^4)/( (x-1)*(x^2-7*x+1)*(x^2+3*x+1) ).
a(n) = 1 + A056854(n) - (-1)^n*A005248(n). (End)
From Amiram Eldar, Feb 02 2022: (Start)
a(n) = Lucas(2*n)^2 - (-1)^n*Lucas(2*n) - 1 (Carlitz, Problem B-185).
a(n) = (Lucas(2*n) - 3*(-1)^n)^2 + (-1)^n*(5*Fibonacci(n))^2 (Carlitz, Problem B-186). (End)
a(n) = a(-n) = 1 + 10*A085695(n) = 5 + L(n-1)*L(n)^2*L(n+1) for all n in Z. - Michael Somos, Apr 23 2022

A195693 Decimal expansion of arctan(1/phi), where phi = (1+sqrt(5))/2 (the golden ratio).

Original entry on oeis.org

5, 5, 3, 5, 7, 4, 3, 5, 8, 8, 9, 7, 0, 4, 5, 2, 5, 1, 5, 0, 8, 5, 3, 2, 7, 3, 0, 0, 8, 9, 2, 6, 8, 5, 2, 0, 0, 3, 5, 0, 2, 3, 8, 2, 2, 7, 0, 0, 7, 1, 6, 3, 2, 3, 3, 3, 8, 2, 6, 9, 6, 0, 3, 7, 1, 6, 8, 5, 5, 1, 6, 9, 4, 8, 8, 6, 8, 1, 3, 9, 7, 0, 0, 6, 7, 0, 8, 5, 6, 4, 3, 4, 3, 0, 8, 5, 3, 2, 0, 7
Offset: 0

Author

Clark Kimberling, Sep 22 2011

Keywords

Comments

Radian measure of half the smaller angle in the golden rhombus. - Eric W. Weisstein, Dec 11 2018
The angle between the diagonal and the longer side of a golden rectangle. - Amiram Eldar, May 18 2021

Examples

			arctan(1/phi) = 0.5535743588970452515085327300892685200... .
tan(0.5535743588970452515085327300...) = 1/(golden ratio).
cot(0.5535743588970452515085327300...) = (golden ratio).
		

Programs

  • Mathematica
    (See also A195692.)
    RealDigits[ArcCot[GoldenRatio], 10, 100][[1]] (* or *) RealDigits[(Pi - ArcTan[4/3])/4, 10, 100][[1]] (* Eric W. Weisstein, Dec 11 2018 *)
  • PARI
    atan(2)/2 \\ Michel Marcus, Feb 05 2022

Formula

Equals Pi/2 - A195723. - Amiram Eldar, May 18 2021
Equals arctan(2)/2. - Christoph B. Kassir, Dec 04 2021
From Amiram Eldar, Jan 11 2022: (Start)
Equals arccot(phi).
Equals (Pi - arctan(phi^5))/3.
Equals (Pi - arctan(4/3))/4.
Equals Sum_{k>=1} ((-1)^(k+1) * arctan(1/Fibonacci(2*k))) (Bruckman, 1999). (End)
Equals Sum_{k>=1} arctan(1/Lucas(2*k)) (Hoggatt and Bruggles, 1964). - Amiram Eldar, Feb 05 2022

A005247 a(n) = 3*a(n-2) - a(n-4), a(0)=2, a(1)=1, a(2)=3, a(3)=2. Alternates Lucas (A000032) and Fibonacci (A000045) sequences for even and odd n.

Original entry on oeis.org

2, 1, 3, 2, 7, 5, 18, 13, 47, 34, 123, 89, 322, 233, 843, 610, 2207, 1597, 5778, 4181, 15127, 10946, 39603, 28657, 103682, 75025, 271443, 196418, 710647, 514229, 1860498, 1346269, 4870847, 3524578, 12752043, 9227465, 33385282, 24157817
Offset: 0

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Haskell
    a005247 n = a005247_list !! n
    a005247_list = f a000032_list a000045_list where
       f (x::xs) (:y:ys) = x : y : f xs ys
    -- Reinhard Zumkeller, Dec 27 2012
    
  • Magma
    I:=[2,1,3,2]; [n le 4 select I[n] else 3*Self(n-2) - Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 21 2017
  • Maple
    with(combinat): A005247 := n-> if n mod 2 = 1 then fibonacci(n) else fibonacci(n+1)+fibonacci(n-1); fi;
    A005247:=-(z+1)*(3*z**2-z-1)/(z**2-z-1)/(z**2+z-1); # Simon Plouffe in his 1992 dissertation. Gives sequence with an additional leading 1.
  • Mathematica
    CoefficientList[Series[(2 + x - 3x^2 - x^3)/(1 - 3x^2 + x^4), {x, 0, 40}], x]
    LinearRecurrence[{0,3,0,-1},{2,1,3,2},50] (* Harvey P. Dale, Oct 10 2012 *)
  • PARI
    a(n)=if(n%2,fibonacci(n),fibonacci(n+1)+fibonacci(n-1))
    

Formula

a(0)=2, a(1)=1, a(2)=3, a(n) = (1+a(n-1)a(n-2))/a(n-3), n >= 3. a(-n) = a(n).
G.f.: (2+x-3*x^2-x^3)/((1-x-x^2)*(1+x-x^2))
a(n) = F(n) if n odd, a(n) = L(n) if n even. a(n) = F(n+1)+(-1)^nF(n-1). - Mario Catalani (mario.catalani(AT)unito.it), Sep 20 2002
a(n) = ((5+sqrt(5))/10)*(((1+sqrt(5))/2)^n+((-1+sqrt(5))/2)^n)+((5-sqrt(5))/10)*(((1-sqrt(5))/2)^n+((-1-sqrt(5))/2)^n). With additional leading 1: a(n)=((sqrt(5))/5)*(((1+sqrt(5))/2)^n-((1-sqrt(5))/2)^n)+((5+3*sqrt(5))/10)*((-1+sqrt(5))/2)^n+((5-3*sqrt(5))/10)*((-1-sqrt(5))/2)^n. - Tim Monahan, Jul 25 2011
From Peter Bala, Jan 11 2013: (Start)
Let phi = 1/2*(sqrt(5) - 1). This sequence is the simple continued fraction expansion of the real number 1 + product {n >= 0} (1 + sqrt(5)*phi^(4*n+1))/(1 + sqrt(5)*phi^(4*n+3)) = 2.77616 23282 02325 23857 ... = 2 + 1/(1 + 1/(3 + 1/(2 + 1/(7 + ...)))). Cf. A005248.
Furthermore, for k = 0,1,2,... the simple continued fraction expansion of 1 + product {n >= 0} (1 + 1/5^k*sqrt(5)*phi^(4*n+1))/(1 + 1/5^k*sqrt(5)*phi^(4*n+3)) equals [2; 1*5^k, 3, 2*5^k, 7, 5*5^k, 18, 13*5^k, 47, ...]. (End)
a(n) = hypergeom([(1-n)/2, n mod 2 - n/2], [1 - n], -4) for n > 2. - Peter Luschny, Sep 03 2019
E.g.f.: 2*cosh(x/2)*(5*cosh(sqrt(5)*x/2) + sqrt(5)*sinh(sqrt(5)*x/2))/5. - Stefano Spezia, Mar 15 2022

Extensions

Additional comments from Michael Somos, May 01 2000
Previous Showing 51-60 of 152 results. Next