cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A005708 a(n) = a(n-1) + a(n-6), with a(i) = 1 for i = 0..5.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 9, 12, 16, 21, 27, 34, 43, 55, 71, 92, 119, 153, 196, 251, 322, 414, 533, 686, 882, 1133, 1455, 1869, 2402, 3088, 3970, 5103, 6558, 8427, 10829, 13917, 17887, 22990, 29548, 37975, 48804, 62721, 80608, 103598, 133146, 171121, 219925, 282646
Offset: 0

Views

Author

Keywords

Comments

This comment covers a family of sequences which satisfy a recurrence of the form a(n) = a(n-1) + a(n-m), with a(n) = 1 for n = 0...m-1. The generating function is 1/(1-x-x^m). Also a(n) = sum_{i=0..n/m} binomial(n-(m-1)*i, i). This family of binomial summations or recurrences gives the number of ways to cover (without overlapping) a linear lattice of n sites with molecules that are m sites wide. Special case: m=1: A000079; m=4: A003269; m=5: A003520; m=6: A005708; m=7: A005709; m=8: A005710.
For n>=6, a(n-6) = number of compositions of n in which each part is >=6. - Milan Janjic, Jun 28 2010
Number of compositions of n into parts 1 and 6. - Joerg Arndt, Jun 24 2011
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n>=6, 2*a(n-6) equals the number of 2-colored compositions of n with all parts >=6, such that no adjacent parts have the same color. - Milan Janjic, Nov 27 2011
a(n+5) equals the number of binary words of length n having at least 5 zeros between every two successive ones. - Milan Janjic, Feb 07 2015
Number of tilings of a 6 X n rectangle with 6 X 1 hexominoes. - M. Poyraz Torcuk, Mar 26 2022

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    with(combstruct): SeqSetU := [S, {S=Sequence(U), U=Set(Z, card > 5)}, unlabeled]: seq(count(SeqSetU, size=j), j=6..59); # Zerinvary Lajos, Oct 10 2006
    ZL:=[S, {a = Atom, b = Atom, S = Prod(X,Sequence(Prod(X,b))), X = Sequence(b,card >= 5)}, unlabelled]: seq(combstruct[count](ZL, size=n), n=5..58); # Zerinvary Lajos, Mar 26 2008
    M := Matrix(6, (i,j)-> if j=1 and member(i,[1,6]) then 1 elif (i=j-1) then 1 else 0 fi); a:= n-> (M^(n))[1,1]; seq(a(n), n=0..60); # Alois P. Heinz, Jul 27 2008
  • Mathematica
    LinearRecurrence[{1, 0, 0, 0, 0, 1}, {1, 1, 1, 1, 1, 1}, 80] (* Vladimir Joseph Stephan Orlovsky, Feb 16 2012 *)
  • PARI
    x='x+O('x^66); Vec(x/(1-(x+x^6))) /* Joerg Arndt, Jun 25 2011 */

Formula

G.f.: 1/(1-x-x^6). - Simon Plouffe in his 1992 dissertation
a(n) = term (1,1) in the 6 X 6 matrix [1,1,0,0,0,0; 0,0,1,0,0,0; 0,0,0,1,0,0; 0,0,0,0,1,0; 0,0,0,0,0,1; 1,0,0,0,0,0]^n. - Alois P. Heinz, Jul 27 2008
For positive integers n and k such that k <= n <= 6*k and 5 divides n-k, define c(n,k) = binomial(k,(n-k)/5), and c(n,k)=0, otherwise. Then, for n>= 1, a(n) = sum_{k=1..n} c(n,k). - Milan Janjic, Dec 09 2011
Apparently a(n) = hypergeometric([1/6-n/6, 1/3-n/6, 1/2-n/6, 2/3-n/6, 5/6-n/6, -n/6], [1/5-n/5, 2/5-n/5, 3/5- n/5, 4/5-n/5, -n/5], -6^6/5^5) for n>=25. - Peter Luschny, Sep 19 2014

Extensions

Additional comments from Yong Kong (ykong(AT)curagen.com), Dec 16 2000

A003518 a(n) = 8*binomial(2*n+1,n-3)/(n+5).

Original entry on oeis.org

1, 8, 44, 208, 910, 3808, 15504, 62016, 245157, 961400, 3749460, 14567280, 56448210, 218349120, 843621600, 3257112960, 12570420330, 48507033744, 187187399448, 722477682080, 2789279908316, 10772391370048, 41620603020640, 160878516023680, 622147386185325
Offset: 3

Views

Author

Keywords

Comments

a(n-6) is the number of n-th generation nodes in the tree of sequences with unit increase labeled by 7 (cf. Zoran Sunic reference). - Benoit Cloitre, Oct 07 2003
Number of standard tableaux of shape (n+4,n-3). - Emeric Deutsch, May 30 2004

Examples

			G.f. = x^3 + 8*x^4 + 44*x^5 + 208*x^6 + 910*x^7 + 3808*x^8 + 15504*x^9 + ...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002057.
First differences are in A026018.
A diagonal of any of the essentially equivalent arrays A009766, A030237, A033184, A059365, A099039, A106566, A130020, A047072.

Programs

  • Magma
    [8*Binomial(2*n+1,n-3)/(n+5): n in [3..30]]; // Vincenzo Librandi, Jan 23 2017
  • Mathematica
    Table[8 Binomial[2 n + 1, n - 3]/(n + 5), {n, 3, 25}] (* Michael De Vlieger, Oct 26 2016 *)
    CoefficientList[Series[((1 - Sqrt[1 - 4 x])/(2 x))^8, {x, 0, 30}], x] (* Vincenzo Librandi, Jan 23 2017 *)
  • PARI
    {a(n) = if( n<3, 0, 8 * binomial(2*n + 1, n-3) / (n + 5))}; /* Michael Somos, Mar 14 2011 */
    
  • PARI
    my(x='x+O('x^50)); Vec(x^3*((1-(1-4*x)^(1/2))/(2*x))^8) \\ Altug Alkan, Nov 01 2015
    

Formula

G.f.: x^3*C(x)^8, where C(x)=(1-sqrt(1-4*x))/(2*x) is g.f. for the Catalan numbers (A000108). - Emeric Deutsch, May 30 2004
The convolution of A002057 with itself. - Gerald McGarvey, Nov 08 2007
Let A be the Toeplitz matrix of order n defined by: A[i,i-1]=-1, A[i,j]=Catalan(j-i), (i<=j), and A[i,j]=0, otherwise. Then, for n>=7, a(n-4)=(-1)^(n-7)*coeff(charpoly(A,x),x^7). - Milan Janjic, Jul 08 2010
a(n) = A214292(2*n,n-4) for n > 3. - Reinhard Zumkeller, Jul 12 2012
Integral representation as the n-th moment of the signed weight function W(x) on (0,4), i.e.: a(n+3) = Integral_{x=0..4} x^n*W(x) dx, n >= 0, with W(x) = (1/2)*x^(7/2)*(x-2)*(x^2-4*x+2)*sqrt(4-x)/Pi. - Karol A. Penson, Oct 26 2016
From Ilya Gutkovskiy, Jan 22 2017: (Start)
E.g.f.: 4*BesselI(4,2*x)*exp(2*x)/x.
a(n) ~ 4^(n+2)/(sqrt(Pi)*n^(3/2)). (End)
D-finite with recurrence: -(n+5)*(n-3)*a(n) +2*n*(2*n+1)*a(n-1)=0. - R. J. Mathar, Feb 20 2020
From Amiram Eldar, Jan 02 2022: (Start)
Sum_{n>=3} 1/a(n) = 43*Pi/(36*sqrt(3)) - 81/80.
Sum_{n>=3} (-1)^(n+1)/a(n) = 6213*log(phi)/(50*sqrt(5)) - 10339/400, where phi is the golden ratio (A001622). (End)

Extensions

More terms from Jon E. Schoenfield, May 06 2010

A003519 a(n) = 10*C(2n+1, n-4)/(n+6).

Original entry on oeis.org

1, 10, 65, 350, 1700, 7752, 33915, 144210, 600875, 2466750, 10015005, 40320150, 161280600, 641886000, 2544619500, 10056336264, 39645171810, 155989499540, 612815891050, 2404551645100, 9425842448792, 36921502679600, 144539291740025, 565588532895750, 2212449261033375
Offset: 4

Views

Author

Keywords

Comments

Number of standard tableaux of shape (n+5,n-4). - Emeric Deutsch, May 30 2004
a(n) is the number of North-East paths from (0,0) to (n,n) that cross the diagonal y = x horizontally exactly twice. By symmetry, it is also the number of North-East paths from (0,0) to (n,n) that cross the diagonal y = x vertically exactly twice. Details can be found in Section 3.3 in Pan and Remmel's link. - Ran Pan, Feb 02 2016

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of any of the essentially equivalent arrays A009766, A030237, A033184, A059365, A099039, A106566, A130020, A047072.

Programs

  • Magma
    [10*Binomial(2*n+1, n-4)/(n+6): n in [4..35]]; // Vincenzo Librandi, Feb 03 2016
  • Maple
    seq(10*binomial(2*n+1,n-4)/(n+6), n=4..50); # Robert Israel, Feb 02 2016
  • Mathematica
    Table[10 Binomial[2 n + 1, n - 4]/(n + 6), {n, 4, 28}] (* Michael De Vlieger, Feb 03 2016 *)
  • PARI
    a(n) = 10*binomial(2*n+1, n-4)/(n+6); \\ Michel Marcus, Feb 02 2016
    

Formula

G.f.: x^4*C(x)^10, where C(x)=[1-sqrt(1-4x)]/(2x) is g.f. for the Catalan numbers (A000108). - Emeric Deutsch, May 30 2004
Let A be the Toeplitz matrix of order n defined by: A[i,i-1]=-1, A[i,j]=Catalan(j-i), (i<=j), and A[i,j]=0, otherwise. Then, for n>=9, a(n-5)=(-1)^(n-9)*coeff(charpoly(A,x),x^9). [Milan Janjic, Jul 08 2010]
a(n) = A214292(2*n,n-5) for n > 4. - Reinhard Zumkeller, Jul 12 2012
From Robert Israel, Feb 02 2016: (Start)
D-finite with recurrence a(n+1) = 2*(n+1)*(2n+3)/((n+7)*(n-3)) * a(n).
a(n) ~ 20 * 4^n/sqrt(Pi*n^3). (End)
E.g.f.: 5*BesselI(5,2*x)*exp(2*x)/x. - Ilya Gutkovskiy, Jan 23 2017
From Amiram Eldar, Jan 02 2022: (Start)
Sum_{n>=4} 1/a(n) = 34*Pi/(45*sqrt(3)) - 44/175.
Sum_{n>=4} (-1)^n/a(n) = 53004*log(phi)/(125*sqrt(5)) - 79048/875, where phi is the golden ratio (A001622). (End)

A089270 Positive numbers represented by the integer binary quadratic form x^2 + x*y - y^2 with x and y relatively prime.

Original entry on oeis.org

1, 5, 11, 19, 29, 31, 41, 55, 59, 61, 71, 79, 89, 95, 101, 109, 121, 131, 139, 145, 149, 151, 155, 179, 181, 191, 199, 205, 209, 211, 229, 239, 241, 251, 269, 271, 281, 295, 305, 311, 319, 331, 341, 349, 355, 359, 361, 379, 389, 395, 401, 409, 419, 421, 431
Offset: 1

Views

Author

Wolfdieter Lang, Nov 07 2003

Keywords

Comments

The negative numbers represented by x^2 + x*y - y^2 with relative prime x and y are -a(n).
The discriminant of this binary form is D = 5 > 0, hence this is an indefinite form.
It appears that these are also the numbers k for which the equation x^2 = x+1 (mod k) has solutions. The number of solutions is 0 or a power of 2. It appears that k=5 is the only k for which x^2 = x+1 (mod k) has just one solution. The first k producing 4 solutions is 209. The first k producing 8 solutions is 6061. - T. D. Noe, Nov 04 2009 [For a proof see the W. Lang link, Proposition. - Wolfdieter Lang, Jul 04 2019]
(Conjecture) The terms are the products of primes congruent to {0,1,4} mod 5 (using at most a single 5, but repeating other primes is allowed), which is A038872. - T. D. Noe, Nov 14 2010 [Comment in brackets from Shreevatsa R, Mar 27 2019. For a proof see the W. Lang link, Lemma 1, iii) and the Proposition. - Wolfdieter Lang, Jul 04 2019]
Brousseau's paper lists these numbers (less than 1000) as discriminants of Fibonacci sequences. For each number, he also lists the (a,b) pairs that are the first two terms of a unique Fibonacci sequence. [These numbers are not discriminants, which is evident from the fact that not all of them are congruent to 0 or 1 modulo 4. Although Brousseau denotes them with D, he calls them "quantity ... which is characteristic of any given sequence". The same list can be found in the letter to N. J. A. Sloane by Hoggatt, Jr. where the numbers are called "characteristic numbers of Fibonacci sequences". Finally, Matthew Staller in his comment below calls them "determinants", which is probably the most appropriate term. - Klaus Purath, Sep 08 2022]
From Matthew Staller, Oct 01 2015: (Start)
The number of fundamental solutions to n = |y^2 - x^2 - x*y| with relatively prime x and y is 0 or 2^k, where k is the number of distinct prime factors of n that are congruent to {1,4} mod 5 (conjecture). For example, n=187891=11*19*29*31 has 16=2^4 solutions; the prime n=9999999929 has 2=2^1 solutions; n=84182245951=31^3*41^4 has 4=2^2 solutions. [For a proof of the conjecture see the W. Lang link, Lemma 1, iii) and the Proposition. - Wolfdieter Lang, Jul 04 2019]
Recurring sequences (as Fibonacci sequences) may be ordered by determinant (|y^2 - x^2 - x*y| for consecutive (x,y) terms), and further by individual terms to clarify where necessary. For example, the four distinct sequences that have a determinant of 209 are (13,8), (13,5), (14,13), (14,1), which shows how they were found but which would be more commonly understood as (8,21), (5,18), (13,27), (1,15). For a determinant of 1 there is exactly one sequence (Fibonacci, A000045); for a determinant of 5 there is just one (Lucas, A000032). For 11 there are two (1,4) and (2,5), the latter of which is known as the Evangelist Sequence (A001060).
(End)
The linear map (x,y) -> (5x+8y, 8x+13y) maps coprime integer solutions of x^2 + x*y - y^2 = n to coprime integer solutions, so if there is such a solution with nonnegative x,y there must be one with y < 8*sqrt(n). - Robert Israel, Oct 01 2015
Odd numbers k such that 5 is a square mod k. - Shreevatsa R, Mar 27 2019 [For a proof see the W. Lang link, Lemma 1, iii) and Proposition. - Wolfdieter Lang, Jul 04 2019]
Let m = a^2 + a*b - b^2 and n = c^2 + c*d - d^2, where gcd(a, b) = gcd(c, d) = 1. If a*d - b*c = 1, then A165900(a*c + a*d - b*d) = m*n. - Isaac Saffold, Feb 23 2020

Examples

			n=2: a(2)=5 with, for example, (x,y)= (2,1): 4+2-1=5 (there are infinitely many proper (x,y) solutions).
n=8: a(8)=55 with, for example, (x,y)=(7,6) or (7,1). In this case there exist two fundamental proper solutions.
		

Crossrefs

Odd numbers in A057762.
Disjoint union of A336403 and 5*A336403.

Programs

  • Maple
    F:= proc(n) local x,y;
          for y from 1 to floor(8*sqrt(n)) do
             x := (-y+sqrt(5*y^2+4*n))/2;
             if x::integer and igcd(x,y) = 1 then return true fi;
          od:
          false
    end proc:
    select(F, [$1..1000]); # Robert Israel, Oct 01 2015
  • Mathematica
    Reap[For[n = 1, n < 1000, n++, r = Reduce[x^2 + x y - y^2 == n, {x, y}, Integers]; If[r =!= False, If[AnyTrue[{x, y} /. {ToRules[r /. C[1] -> 0]}, CoprimeQ @@ # &], Print[n]; Sow[n]]]]][[2, 1]] (* Jean-François Alcover, Oct 31 2016 *)
  • PARI
    for (k=1, 431, if(#qfbsolve(Qfb(1,1,-1),factor(k),1), print1(k,", "))) \\ Hugo Pfoertner, Sep 09 2022

Formula

a(n) = x^2 + x*y - y^2 with relatively prime integers x and y (proper solutions of the Diophantine equation).

Extensions

Minor edits by Matthew Staller, Jun 05 2019

A005252 a(n) = Sum_{k=0..floor(n/4)} binomial(n-2k,2k).

Original entry on oeis.org

1, 1, 1, 1, 2, 4, 7, 11, 17, 27, 44, 72, 117, 189, 305, 493, 798, 1292, 2091, 3383, 5473, 8855, 14328, 23184, 37513, 60697, 98209, 158905, 257114, 416020, 673135, 1089155, 1762289, 2851443, 4613732, 7465176, 12078909, 19544085, 31622993
Offset: 0

Views

Author

Keywords

Comments

The Twopins/t sequence (see Guy).
Number of closed walks of length n at a vertex of the graph with adjacency matrix [1,1,0,0;0,0,0,1;1,0,0,0;0,0,1,1]. - Paul Barry, Mar 15 2004
a(n+3) = number of n-bit sequences that avoid both 010 and 0110. Example: for n=3, there are 8 3-bit sequences and only 010 fails to qualify, so a(6)=7. - David Callan, Mar 25 2004
a(n) is the number of length n binary words that have an even number of 0's and every 0 is immediately followed by a 1. a(6) = 7 because we have: 010111, 011011, 011101, 101011, 101101, 110101, 111111. - Geoffrey Critzer, Jan 08 2014
a(n) is the number of vertices of the Fibonacci cube Gamma(n-1) having an even number of ones. The Fibonacci cube Gamma(n) can be defined as the graph whose vertices are the binary strings of length n without two consecutive 1's and in which two vertices are adjacent when their Hamming distance is exactly 1. Example: a(4) = 2; indeed, the Fibonacci cube Gamma(3) has the five vertices 000, 010, 001, 100, 101, two of which have an even number of ones. See the E. Munarini et al. reference, p. 323. - Emeric Deutsch, Jun 28 2015
a(n) is the number of even permutations p of 1,2,...,n such that |p(i)-i| <= 1 for i=1,2,...,n. - Dmitry Efimov, Jan 08 2016
This sequence (prefixed with 0) is an autosequence of the first kind, whose second kind companion is (2 followed by abs(A111734)). - Jean-François Alcover, Oct 30 2017
a(n+1) is the number of n-bit sequences such that 1's appear in groups of three or more. Example: for n = 5, a(6) = 7 because we have 00000, 00111, 01110, 11100, 11110, 01111, 11111. Source: exercise 1.11 in I. Stewart. - João Camarneiro, Dec 23 2024

References

  • John H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, p. 205 of first edition.
  • R. K. Guy, Anyone for Twopins?, in D. A. Klarner, editor, The Mathematical Gardner. Prindle, Weber and Schmidt, Boston, 1981, pp. 2-15.
  • David J. C. MacKay, Information Theory, Inference and Learning Algorithms, CUP, 2003, p. 251.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Ian Stewart, Galois theory, CRC Press, Boca Raton, FL, 2015, p. 32.
  • E. L. Tan, On the cycle graph of a graph and inverse cycle graphs, Ph.D. Dissertation, Univ. of Philippines, Diliman, Quezon City, 1987.
  • E. L. Tan, On Fibonacci numbers and cycle graphs, Matimyas Matemaka (Published by the Mathematical Society of the Philippines), 13 (No. 2, 1990), 1-4.

Crossrefs

First differences of A024490.

Programs

  • Haskell
    a005252 n = sum $ map (\x -> a007318 (n - x) x) [0, 2 .. 2 * div n 4]
    -- Reinhard Zumkeller, Jul 05 2013
    
  • Magma
    I:=[1,1,1,1]; [n le 4 select I[n] else 2*Self(n-1)-Self(n-2)+Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jan 09 2016
  • Maple
    ZL:=[S, {a = Atom, b = Atom, S = Prod(X,Sequence(Prod(X,X))), X = Sequence(b,card >= 2)}, unlabelled]: seq(combstruct[count](ZL, size=n), n=2..40); # Zerinvary Lajos, Mar 26 2008
  • Mathematica
    Table[Sum[Binomial[n-2k,2k],{k,0,Floor[n/4]}],{n,0,50}] (* or *) LinearRecurrence[{2,-1,0,1},{1,1,1,1},50] (* Harvey P. Dale, Dec 09 2011 *)
    Table[HypergeometricPFQ[{1/4-n/4, 1/2-n/4, 3/4-n/4, -n/4}, {1/2, 1/2-n/2, -n/2}, 16], {n, 0, 38}] (* Jean-François Alcover, Oct 04 2012 *)
  • PARI
    Vec((1-x)/((1-x-x^2)*(1-x+x^2)) + O(x^100)) \\ Altug Alkan, Jan 08 2015
    
  • PARI
    a(n) = fibonacci(n+1)>>1 + (n%6<2); \\ Kevin Ryde, Apr 29 2021
    

Formula

Second differences give sequence shifted twice. - E. L. Tan, Univ. Phillipines.
G.f.: (1-x)/((1-x-x^2)*(1-x+x^2)). Simon Plouffe in his 1992 dissertation.
From Paul Barry, Mar 15 2004: (Start)
a(n) = Fibonacci(n+1)/2 + A010892(n)/2;
a(n) = (((1+sqrt(5))/2)^(n+1)/sqrt(5) - ((1-sqrt(5))/2)^(n+1)/sqrt(5) + cos(Pi*n/3) + sin(Pi*n/3)/sqrt(3))/2. (End)
a(n) = 2*a(n-1) - a(n-2) + a(n-4); a(0) = a(1) = a(2) = a(3) = 1. - Philippe Deléham, May 01 2006
a(n) = A173021(2^(n-1) - 1) for n > 0. - Reinhard Zumkeller, Feb 07 2010
Limit_{n->oo} a(n)/a(n+1) = (sqrt(5) - 1)/2. - Sergei N. Gladkovskii, Jan 05 2014
G.f.: (1 + Q(0)*x^4/2)/(1-x), where Q(k) = 1 + 1/(1 - x*( 4*k + 2 - x + x^3)/( x*( 4*k + 4 - x + x^3) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 07 2014
a(n) = Fibonacci(n+1) + (-1)^(n+1)*A106511(n+2). - Katharine Ahrens, May 05 2019
E.g.f.: exp(x/2)*(15*(cos(sqrt(3)*x/2) + cosh(sqrt(5)*x/2)) + 5*sqrt(3)*sin(sqrt(3)*x/2) + 3*sqrt(5)*sinh(sqrt(5)*x/2))/30. - Stefano Spezia, Aug 03 2022

Extensions

More terms from (and formula corrected by) James Sellers, Feb 06 2000
Definition revised at the suggestion of Alessandro Orlandi by N. J. A. Sloane, Aug 16 2009

A003522 a(n) = Sum_{k=0..n} C(n-k,3k).

Original entry on oeis.org

1, 1, 1, 1, 2, 5, 11, 21, 37, 64, 113, 205, 377, 693, 1266, 2301, 4175, 7581, 13785, 25088, 45665, 83097, 151169, 274969, 500162, 909845, 1655187, 3011157, 5477917, 9965312, 18128529, 32978725, 59993817, 109139117, 198543154
Offset: 0

Views

Author

Keywords

References

  • A. Brousseau, Fibonacci and Related Number Theoretic Tables. Fibonacci Association, San Jose, CA, 1972, p. 113.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Maple
    A003522:=-(z-1)**2/(-1+3*z-3*z**2+z**4+z**3); # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    LinearRecurrence[{3, -3, 1, 1},{1, 1, 1, 1},35] (* Ray Chandler, Sep 23 2015 *)
  • PARI
    a(n)=if(n<0, 0, polcoeff((1-x)^2/(1-3*x+3*x^2-x^3-x^4)+x*O(x^n), n)) /* Michael Somos, Sep 20 2005 */

Formula

G.f. : (1-x)^2/(1-3x+3x^2-x^3-x^4); a(n)=3a(n-1)-3a(n-2)+a(n-3)+a(n-4). - Paul Barry, Jul 07 2004

A306680 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of g.f. ((1-x)^(k-1))/((1-x)^k-x^(k+1)).

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 1, 1, 2, 4, 1, 1, 1, 3, 5, 1, 1, 1, 2, 5, 6, 1, 1, 1, 1, 4, 8, 7, 1, 1, 1, 1, 2, 7, 13, 8, 1, 1, 1, 1, 1, 5, 12, 21, 9, 1, 1, 1, 1, 1, 2, 11, 21, 34, 10, 1, 1, 1, 1, 1, 1, 6, 21, 37, 55, 11, 1, 1, 1, 1, 1, 1, 2, 16, 37, 65, 89, 12
Offset: 0

Views

Author

Seiichi Manyama, Mar 05 2019

Keywords

Examples

			A(4,1) = A306713(4,1) = 5, A(4,2) = A306713(8,2) = 4.
Square array begins:
   1,  1,  1,  1,  1,  1, 1, 1, 1, ...
   2,  1,  1,  1,  1,  1, 1, 1, 1, ...
   3,  2,  1,  1,  1,  1, 1, 1, 1, ...
   4,  3,  2,  1,  1,  1, 1, 1, 1, ...
   5,  5,  4,  2,  1,  1, 1, 1, 1, ...
   6,  8,  7,  5,  2,  1, 1, 1, 1, ...
   7, 13, 12, 11,  6,  2, 1, 1, 1, ...
   8, 21, 21, 21, 16,  7, 2, 1, 1, ...
   9, 34, 37, 37, 36, 22, 8, 2, 1, ...
		

Crossrefs

Columns 0-9 give A000027(n+1), A000045(n+1), A005251(n+1), A003522, A005676, A099132, A293169, A306721, A306752, A306753.

Programs

  • Mathematica
    T[n_, k_] := Sum[Binomial[n - j, k*j], {j, 0, n}]; Table[T[k, n - k], {n, 0, 11}, {k, 0, n}] // Flatten (* Amiram Eldar, Jun 21 2021 *)

Formula

A(n,k) = Sum_{j=0..n} binomial(n-j,k*j).
A(n,k) = A306713(k*n,k) for k > 0.

A090749 a(n) = 12 * C(2n+1,n-5) / (n+7).

Original entry on oeis.org

1, 12, 90, 544, 2907, 14364, 67298, 303600, 1332045, 5722860, 24192090, 100975680, 417225900, 1709984304, 6962078952, 28192122176, 113649492522, 456442180920, 1827459250276, 7297426411968, 29075683360185, 115631433392020, 459124809056550, 1820529677650320, 7210477496434485
Offset: 5

Views

Author

Philippe Deléham, Feb 15 2004

Keywords

Comments

Also a diagonal of A059365 and A009766. See also A000108, A002057, A003517, A003518, A003519.
Number of standard tableaux of shape (n+6,n-5). - Emeric Deutsch, May 30 2004

Crossrefs

Programs

  • Mathematica
    Table[12*Binomial[2*n + 1, n - 5]/(n + 7), {n,5,50}] (* G. C. Greubel, Feb 07 2017 *)
  • PARI
    for(n=5,50, print1(12*binomial(2*n+1,n-5)/(n+7), ", ")) \\ G. C. Greubel, Feb 07 2017

Formula

a(n) = A039598(n, 5) = A033184(n+7, 12).
G.f.: x^5*C(x)^12 with C(x) g.f. of A000108(Catalan).
Let A be the Toeplitz matrix of order n defined by: A[i,i-1]=-1, A[i,j]=Catalan(j-i), (i<=j), and A[i,j]=0, otherwise. Then, for n>=11, a(n-6)=(-1)^(n-11)*coeff(charpoly(A,x),x^11). - Milan Janjic, Jul 08 2010
a(n) = A214292(2*n,n-6) for n > 5. - Reinhard Zumkeller, Jul 12 2012
From Karol A. Penson, Nov 21 2016: (Start)
O.g.f.: z^5 * 4^6/(1+sqrt(1-4*z))^12.
Recurrence: (-4*(n-5)^2-58*n+80)*a(n+1)-(-n^2-6*n+27)*a(n+2)=0, a(0),a(1),a(2),a(3),a(4)=0,a(5)=1,a(6)=12, n>=5.
Asymptotics: (-903+24*n)*4^n*sqrt(1/n)/(sqrt(Pi)*n^2).
Integral representation as n-th moment of a signed function W(x) on x=(0,4),in Maple notation: a(n+5)=int(x^n*W(x),x=0..4),n=0,1,..., where W(x)=(256/231)*sqrt(4-x)*JacobiP(5, 1/2, 1/2, (1/2)*x-1)*x^(11/2)/Pi and JacobiP are Jacobi polynomials. Note that W(0)=W(4)=0. (End).
From Ilya Gutkovskiy, Nov 21 2016: (Start)
E.g.f.: 6*exp(2*x)*BesselI(6,2*x)/x.
a(n) ~ 3*2^(2*n+3)/(sqrt(Pi)*n^(3/2)). (End)
From Amiram Eldar, Sep 26 2022: (Start)
Sum_{n>=5} 1/a(n) = 88699/15120 - 71*Pi/(27*sqrt(3)).
Sum_{n>=5} (-1)^(n+1)/a(n) = 102638*log(phi)/(75*sqrt(5)) - 22194839/75600, where phi is the golden ratio (A001622). (End)

Extensions

Missing term 113649492522 inserted by Ilya Gutkovskiy, Dec 07 2016

A099132 Quintisection of 1/(1-x^5-x^6).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 7, 22, 57, 127, 253, 464, 804, 1354, 2289, 4005, 7372, 14198, 28033, 55523, 108699, 208982, 394555, 734561, 1357136, 2504932, 4643816, 8671852, 16313856, 30855957, 58502733, 110882143, 209689343, 395358538, 743376838
Offset: 0

Views

Author

Paul Barry, Sep 29 2004

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{5,-10,10,-5,1,1},{1,1,1,1,1,1},40] (* Harvey P. Dale, Aug 20 2012 *)
  • PARI
    Vec((1-x)^4/((1-x)^5-x^6) + O(x^40)) \\ Michel Marcus, Sep 06 2017

Formula

G.f.: (1-x)^4/((1-x)^5-x^6);
a(n) = Sum_{k=0..n} binomial(k, 5(n-k));
a(n) = 5a(n-1)-10a(n-2)+10a(n-3)-5a(n-4)+a(n-5)+a(n-6);
a(n) = A017837(5n).
a(n) = Sum_{k=0..floor(n/5)} binomial(n-k, 5k). - Paul Barry, May 09 2005

A293169 a(n) = Sum_{k=0..n} binomial(k, 6*(n-k)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 8, 29, 85, 211, 463, 925, 1718, 3017, 5097, 8464, 14197, 24753, 45697, 89150, 180254, 368734, 748924, 1493990, 2914906, 5565127, 10434412, 19322901, 35583926, 65615746, 121847272, 228638698, 433747259, 830227401, 1597653852, 3078928619, 5922703731, 11347651254
Offset: 0

Views

Author

N. J. A. Sloane, Oct 17 2017

Keywords

Crossrefs

Programs

  • Maple
    f:=n-> add( binomial(k, 6*(n-k)), k=0..n);
    [seq(f(n),n=0..30)];
  • Mathematica
    Table[Sum[Binomial[k,6(n-k)],{k,0,n}],{n,0,40}] (* or *)  LinearRecurrence[{6,-15,20,-15,6,-1,1},{1,1,1,1,1,1,1},50] (* Harvey P. Dale, Apr 10 2022 *)
  • PARI
    Vec((1 - x)^5 / (1 - 6*x + 15*x^2 - 20*x^3 + 15*x^4 - 6*x^5 + x^6 - x^7) + O(x^30)) \\ Colin Barker, Oct 18 2017

Formula

From Colin Barker, Oct 17 2017: (Start)
G.f.: (1 - x)^5 / (1 - 6*x + 15*x^2 - 20*x^3 + 15*x^4 - 6*x^5 + x^6 - x^7).
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) + a(n-7) for n>6.
(End)
Previous Showing 11-20 of 20 results.