A026769
Triangular array T read by rows: T(n,0)=T(n,n)=1 for n >= 0; T(2,1)=2; for n >= 3 and 1<=k<=n-1, T(n,k) = T(n-1,k-1) + T(n-2,k-1) + T(n-1,k) if 1<=k<=(n-1)/2, else T(n,k) = T(n-1,k-1) + T(n-1,k).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 6, 7, 4, 1, 1, 8, 17, 11, 5, 1, 1, 10, 31, 28, 16, 6, 1, 1, 12, 49, 76, 44, 22, 7, 1, 1, 14, 71, 156, 120, 66, 29, 8, 1, 1, 16, 97, 276, 352, 186, 95, 37, 9, 1, 1, 18, 127, 444, 784, 538, 281, 132, 46, 10, 1, 1, 20, 161, 668, 1504, 1674, 819, 413, 178, 56, 11, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 2, 1;
1, 4, 3, 1;
1, 6, 7, 4, 1;
1, 8, 17, 11, 5, 1;
1, 10, 31, 28, 16, 6, 1;
1, 12, 49, 76, 44, 22, 7, 1;
1, 14, 71, 156, 120, 66, 29, 8, 1;
1, 16, 97, 276, 352, 186, 95, 37, 9, 1;
1, 18, 127, 444, 784, 538, 281, 132, 46, 10, 1;
-
T:= function(n,k)
if k=0 or k=n then return 1;
elif (n=2 and k=1) then return 2;
elif (k <= Int((n-1)/2)) then return T(n-1,k-1)+T(n-2,k-1) +T(n-1,k);
else return T(n-1,k-1) + T(n-1,k);
fi;
end;
Flat(List([0..12], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Oct 31 2019
-
A026769 := proc(n,k)
option remember;
if k= 0 or k =n then
1;
elif n= 2 and k= 1 then
2;
elif k <= (n-1)/2 then
procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ;
else
procname(n-1,k-1)+procname(n-1,k) ;
fi ;
end proc: # R. J. Mathar, Jun 15 2014
-
T[n_, k_] := T[n, k] = Which[k==0 || k==n, 1, n==2 && k==1, 2, k <= (n-1)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], True, T[n-1, k-1] + T[n-1, k]];
Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 10 2017, from Maple *)
-
T(n,k) = if(k==0 || k==n, 1, if(n==2 && k==1, 2, if( k<=(n-1)/2, T(n-1,k-1) + T(n-2,k-1) + T(n-1,k), T(n-1,k-1) + T(n-1,k) )));
for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Oct 31 2019
-
@CachedFunction
def T(n, k):
if (k==0 or k==n): return 1
elif (n==2 and k==1): return 2
elif (k<=(n-1)/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k)
else: return T(n-1,k-1) + T(n-1,k)
[[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Oct 31 2019
A073157
Number of Schroeder n-paths containing no FFs.
Original entry on oeis.org
1, 2, 5, 18, 70, 293, 1283, 5808, 26960, 127628, 613814, 2990681, 14730713, 73229291, 366936231, 1851352820, 9397497758, 47957377934, 245903408244, 1266266092112, 6545667052320, 33954266444498, 176689391245146
Offset: 0
G.f.: A(x) = 1 + 2*x + 5*x^2 + 18*x^3 + 70*x^4 + 293*x^5 + 1283*x^6 + ...
Leftmost column of triangle
A073154 (was previous name).
-
List([0..25],n->Sum([0..n],i->Binomial(2*i+1,i)*Binomial(2*i+1,n-i)/(2*i+1))); # Muniru A Asiru, Oct 11 2018
-
a:=n->add(binomial(2*i+1,i)*binomial(2*i+1,n-i)/(2*i+1),i=0..n): seq(a(n),n=0..25); # Muniru A Asiru, Oct 11 2018
-
Table[Sum[Binomial[2*i + 1, i]*Binomial[2*i + 1, n - i]/(2*i + 1), {i, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Oct 11 2018 *)
-
a(n):=sum((sum((binomial(2*k+2,j-k)*binomial(2*k,k)/(k+1)),k,0,j))*(-1)^(n-j),j,0,n); /* Vladimir Kruchinin, Mar 13 2016 */
-
{a(n)=local(A=1); for(i=0,n-1,A=(1+x)*(1+x*(A+x*O(x^n))^2));polcoeff(A,n)} /* Paul D. Hanna, Mar 03 2008 */
A047891
Number of planar rooted trees with n nodes and tricolored end nodes.
Original entry on oeis.org
1, 3, 12, 57, 300, 1686, 9912, 60213, 374988, 2381322, 15361896, 100389306, 663180024, 4421490924, 29712558576, 201046204173, 1368578002188, 9366084668802, 64403308499592, 444739795023054, 3082969991029800
Offset: 1
G.f. = x + 3*x^2 + 12*x^3 + 57*x^4 + 300*x^5 + 1686*x^6 + 9912*x^7 + ...
- Lin Yang and S.-L. Yang, The parametric Pascal rhombus. Fib. Q., 57:4 (2019), 337-346.
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.
- Paul Barry, Generalized Catalan Numbers Associated with a Family of Pascal-like Triangles, J. Int. Seq., Vol. 22 (2019), Article 19.5.8.
- Paul Barry and A. Hennessy, A Note on Narayana Triangles and Related Polynomials, Riordan Arrays, and MIMO Capacity Calculations, J. Int. Seq. 14 (2011), Article 11.3.8.
- Veronica Bitonti, Bishal Deb, and Alan D. Sokal, Thron-type continued fractions (T-fractions) for some classes of increasing trees, arXiv:2412.10214 [math.CO], 2024. See p. 58.
- Zhi Chen and Hao Pan, Identities involving weighted Catalan-Schroder and Motzkin Paths, arXiv:1608.02448 [math.CO] (2016), eq. (1.13), a=3, b=1.
- Shishuo Fu and Yaling Wang, Bijective recurrences concerning two Schröder triangles, arXiv:1908.03912 [math.CO], 2019.
- Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
- Luis Verde-Star, A Matrix Approach to Generalized Delannoy and Schröder Arrays, J. Int. Seq., Vol. 24 (2021), Article 21.4.1.
- Eric Weisstein's MathWorld, Legendre Polynomial.
- Index entries for sequences related to rooted trees
-
Q:=Rationals(); R:=PowerSeriesRing(Q, 40); Coefficients(R!((1-2*x-Sqrt(1-8*x+4*x^2))/(2*x))); // G. C. Greubel, Feb 10 2018
-
A047891_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
for w from 1 to n do a[w] := 3*a[w-1]+add(a[j]*a[w-j-1], j=1..w-1) od; convert(a,list)end: A047891_list(20); # Peter Luschny, May 19 2011
-
CoefficientList[Series[(1-2x-Sqrt[1-8x+4x^2])/(2x),{x,0,100}],x] (* Emanuele Munarini, May 18 2011 *)
a[ n_] := SeriesCoefficient[(1 - 2 x - Sqrt[1 - 8 x + 4 x^2]) / 2, {x, 0, n}]; (* Michael Somos, Apr 10 2014 *)
Table[2^(n-1) (LegendreP[n, 2] - LegendreP[n-2, 2])/(2n-1), {n, 1, 20}] (* Vladimir Reshetnikov, Nov 01 2015 *)
Table[3 Hypergeometric2F1[1-n, 2-n, 2, 3] - 2 KroneckerDelta[n-1], {n, 1, 20}] (* Vladimir Reshetnikov, Nov 01 2015 *)
-
makelist(sum(binomial(n,k)*binomial(2*n-k+1,n+1)*(2*n^2-6*(k-1)*n+3*k^2-9*k+4)/((n-k+2)*(n-k+1))*2^k,k,0,n)/2,n,0,24); /* Emanuele Munarini, May 18 2011 */
-
a(n)=if(n<2,n==1,n--;sum(k=0,n,3^k*binomial(n,k)*binomial(n,k-1))/n)
-
x='x+O('x^100); Vec((1-2*x-sqrt(1-8*x+4*x^2))/2) \\ Altug Alkan, Nov 02 2015
A033877
Triangular array read by rows associated with Schroeder numbers: T(1,k) = 1; T(n,k) = 0 if k < n; T(n,k) = T(n,k-1) + T(n-1,k-1) + T(n-1,k).
Original entry on oeis.org
1, 1, 2, 1, 4, 6, 1, 6, 16, 22, 1, 8, 30, 68, 90, 1, 10, 48, 146, 304, 394, 1, 12, 70, 264, 714, 1412, 1806, 1, 14, 96, 430, 1408, 3534, 6752, 8558, 1, 16, 126, 652, 2490, 7432, 17718, 33028, 41586, 1, 18, 160, 938, 4080, 14002, 39152, 89898, 164512, 206098
Offset: 1
Triangle starts:
1;
1, 2;
1, 4, 6;
1, 6, 16, 22;
1, 8, 30, 68, 90;
1, 10, 48, 146, 304, 394;
1, 12, 70, 264, 714, 1412, 1806;
... - _Joerg Arndt_, Sep 29 2013
- T. D. Noe, Rows k = 1..50 of triangle, flattened
- Henry Bottomley, Illustration of initial terms
- Kevin Brown, Hipparchus on Compound Statements, 1994-2010. - _Johannes W. Meijer_, Sep 22 2010
- James East and Nicholas Ham, Lattice paths and submonoids of Z^2, arXiv:1811.05735 [math.CO], 2018.
- G. Kreweras, Sur les hiérarchies de segments, Cahiers Bureau Universitaire Recherche Opérationnelle, Cahier 20, Inst. Statistiques, Univ. Paris, 1973.
- G. Kreweras, Sur les hiérarchies de segments, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, #20 (1973). (Annotated scanned copy)
- G. Kreweras, Aires des chemins surdiagonaux et application à un problème économique, Cahiers du Bureau universitaire de recherche opérationnelle Série Recherche 24 (1976): 1-8. [Annotated scanned copy]
- J. W. Meijer, Famous numbers on a chessboard, Acta Nova, Volume 4, No.4, December 2010. pp. 589-598.
- J. M. Oh, An explicit formula for the number of fuzzy subgroups of a finite abelian p-group of rank two, Iranian Journal of Fuzzy Systems, Dec 2013, Vol. 10 Issue 6, pp. 125-135.
- E. Pergola and R. A. Sulanke, Schroeder Triangles, Paths and Parallelogram Polyominoes, J. Integer Sequences, 1 (1998), #98.1.7.
- S. Samieinia, The number of continuous curves in digital geometry, Port. Math. 67 (1) (2010) 75-89, last table.
- R. A. Sulanke, Objects counted by the central Delannoy numbers, J. Integer Seq. 6 (2003), Article 03.1.5, 19 pp.
- Luis Verde-Star, A Matrix Approach to Generalized Delannoy and Schröder Arrays, J. Int. Seq., Vol. 24 (2021), Article 21.4.1.
Essentially same triangle as
A080247 and
A080245 but with rows read in reversed order. Also essentially the same triangle as
A106579.
Triangle sums (see the comments):
A001003 (Row1, Row2),
A026003 (Kn1p, p >= 1),
A006603 (Kn21),
A227504 (Kn22),
A227505 (Kn23),
A006603(2*n) (Kn3),
A001850 (Kn4),
A227506 (Fi1),
A010683 (Fi2).
-
a033877 n k = a033877_tabl !! n !! k
a033877_row n = a033877_tabl !! n
a033877_tabl = iterate
(\row -> scanl1 (+) $ zipWith (+) ([0] ++ row) (row ++ [0])) [1]
-- Reinhard Zumkeller, Apr 17 2013
-
function t(n,k)
if k le 0 or k gt n then return 0;
elif k eq 1 then return 1;
else return t(n,k-1) + t(n-1,k-1) + t(n-1,k);
end if;
end function;
[t(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 23 2023
-
T := proc(n, k) option remember; if n=1 then return(1) fi; if kJohannes W. Meijer, Sep 22 2010, revised Jul 17 2013
-
T[1, ]:= 1; T[n, k_]/;(k
-
def A033877_row(n):
@cached_function
def prec(n, k):
if k==n: return 1
if k==0: return 0
return prec(n-1,k-1)-2*sum(prec(n,k+i-1) for i in (2..n-k+1))
return [(-1)^k*prec(n, n-k) for k in (0..n-1)]
for n in (1..10): print(A033877_row(n)) # Peter Luschny, Mar 16 2016
-
@CachedFunction
def t(n, k): # t = A033847
if (k<0 or k>n): return 0
elif (k==1): return 1
else: return t(n, k-1) + t(n-1, k-1) + t(n-1, k)
flatten([[t(n,k) for k in range(1,n+1)] for n in range(1, 16)]) # G. C. Greubel, Mar 23 2023
A060693
Triangle (0 <= k <= n) read by rows: T(n, k) is the number of Schröder paths from (0,0) to (2n,0) having k peaks.
Original entry on oeis.org
1, 1, 1, 2, 3, 1, 5, 10, 6, 1, 14, 35, 30, 10, 1, 42, 126, 140, 70, 15, 1, 132, 462, 630, 420, 140, 21, 1, 429, 1716, 2772, 2310, 1050, 252, 28, 1, 1430, 6435, 12012, 12012, 6930, 2310, 420, 36, 1, 4862, 24310, 51480, 60060, 42042, 18018, 4620, 660, 45, 1, 16796
Offset: 0
Triangle begins:
00: [ 1]
01: [ 1, 1]
02: [ 2, 3, 1]
03: [ 5, 10, 6, 1]
04: [ 14, 35, 30, 10, 1]
05: [ 42, 126, 140, 70, 15, 1]
06: [ 132, 462, 630, 420, 140, 21, 1]
07: [ 429, 1716, 2772, 2310, 1050, 252, 28, 1]
08: [ 1430, 6435, 12012, 12012, 6930, 2310, 420, 36, 1]
09: [ 4862, 24310, 51480, 60060, 42042, 18018, 4620, 660, 45, 1]
10: [16796, 92378, 218790, 291720, 240240, 126126, 42042, 8580, 990, 55, 1]
...
- Vincenzo Librandi, Rows n = 0..100, flattened
- J. Agapito, A. Mestre, P. Petrullo, and M. Torres, Counting noncrossing partitions via Catalan triangles, CEAFEL Seminar, June 30, 2015.
- Jean-Christophe Aval and François Bergeron, Rectangular Schröder Parking Functions Combinatorics, arXiv:1603.09487 [math.CO], 2016.
- Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, J. Integer Sequ., Vol. 9 (2006), Article 06.2.4.
- Paul Barry, Three Études on a sequence transformation pipeline, arXiv:1803.06408 [math.CO], 2018.
- Paul Barry, Riordan Pseudo-Involutions, Continued Fractions and Somos 4 Sequences, arXiv:1807.05794 [math.CO], 2018.
- Paul Barry, The Central Coefficients of a Family of Pascal-like Triangles and Colored Lattice Paths, J. Int. Seq., Vol. 22 (2019), Article 19.1.3.
- Paul Barry, Generalized Catalan Numbers Associated with a Family of Pascal-like Triangles, J. Int. Seq., Vol. 22 (2019), Article 19.5.8.
- Paul Barry, On the inversion of Riordan arrays, arXiv:2101.06713 [math.CO], 2021.
- Paul Barry, On Motzkin-Schröder Paths, Riordan Arrays, and Somos-4 Sequences, J. Int. Seq. (2023) Vol. 26, Art. 23.4.7.
- Paul Barry, Notes on Riordan arrays and lattice paths, arXiv:2504.09719 [math.CO], 2025. See p. 25.
- David Callan and Toufik Mansour, Five subsets of permutations enumerated as weak sorting permutations, arXiv:1602.05182 [math.CO], 2016.
- G. E. Cossali, A Common Generating Function of Catalan Numbers and Other Integer Sequences, J. Int. Seqs. 6 (2003).
- Dan Drake, Bijections from Weighted Dyck Paths to Schröder Paths, J. Int. Seq. 13 (2010) # 10.9.2
- Samuele Giraudo, Tree series and pattern avoidance in syntax trees, arXiv:1903.00677 [math.CO], 2019.
- Nate Kube and Frank Ruskey, Sequences That Satisfy a(n-a(n))=0, Journal of Integer Sequences, Vol. 8 (2005), Article 05.5.5.
- Krishna Menon and Anurag Singh, Grassmannian permutations avoiding identity, arXiv:2212.13794 [math.CO], 2022.
- Jean-Christophe Novelli and Jean-Yves Thibon, Duplicial algebras and Lagrange inversion, arXiv preprint arXiv:1209.5959 [math.CO], 2012.
-
A060693 := (n,k) -> binomial(n,k)*binomial(2*n-k,n)/(n-k+1); # Peter Luschny, May 17 2011
-
t[n_, k_] := Binomial[n, k]*Binomial[2 n - k, n]/(n - k + 1); Flatten[Table[t[n, k], {n, 0, 9}, {k, 0, n}]] (* Robert G. Wilson v, May 30 2011 *)
-
T(n, k) = binomial(n, k)*binomial(2*n - k, n)/(n - k + 1);
for(n=0, 10, for(k=0, n, print1(T(n, k),", ")); print); \\ Indranil Ghosh, Jul 28 2017
-
from sympy import binomial
def T(n, k): return binomial(n, k) * binomial(2 * n - k, n) / (n - k + 1)
for n in range(11): print([T(n, k) for k in range(n + 1)]) # Indranil Ghosh, Jul 28 2017
A346626
G.f. A(x) satisfies: A(x) = (1 + x * A(x)^3) / (1 - x).
Original entry on oeis.org
1, 2, 8, 44, 280, 1936, 14128, 107088, 834912, 6652608, 53934080, 443467136, 3689334272, 30997608960, 262651640064, 2241857334528, 19257951946240, 166362924583936, 1444351689281536, 12595885932259328, 110287974501355520, 969178569410404352, 8544982917273509888, 75565732555028701184
Offset: 0
-
nmax = 23; A[] = 0; Do[A[x] = (1 + x A[x]^3)/(1 - x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
nmax = 23; CoefficientList[Series[Sum[(Binomial[3 k, k]/(2 k + 1)) x^k/(1 - x)^(3 k + 1), {k, 0, nmax}], {x, 0, nmax}], x]
a[0] = 1; a[n_] := a[n] = a[n - 1] + Sum[Sum[a[i] a[j] a[n - i - j - 1], {j, 0, n - i - 1}], {i, 0, n - 1}]; Table[a[n], {n, 0, 23}]
A002003
a(n) = 2 * Sum_{k=0..n-1} binomial(n-1, k)*binomial(n+k, k).
Original entry on oeis.org
0, 2, 8, 38, 192, 1002, 5336, 28814, 157184, 864146, 4780008, 26572086, 148321344, 830764794, 4666890936, 26283115038, 148348809216, 838944980514, 4752575891144, 26964373486406, 153196621856192, 871460014012682, 4962895187697048, 28292329581548718
Offset: 0
G.f. = 2*x + 8*x^2 + 38*x^3 + 192*x^4 + 1002*x^5 + 5336*x^6 + 28814*x^7 + ...
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Seiichi Manyama, Table of n, a(n) for n = 0..1000 (terms 0..200 from T. D. Noe)
- Peter Bala, A supercongruence for A002003
- J. Brzozowski, M. Szykula, Large Aperiodic Semigroups, arXiv preprint arXiv:1401.0157 [cs.FL], 2013-2014.
- Milan Janjić, On Restricted Ternary Words and Insets, arXiv:1905.04465 [math.CO], 2019.
- G. Rutledge and R. D. Douglass, Integral functions associated with certain binomial coefficient sums, Amer. Math. Monthly, 43 (1936), 27-32.
-
A064861 := proc(n,k) option remember; if n = 1 then 1; elif k = 0 then 0; else A064861(n,k-1)+(3/2-1/2*(-1)^(n+k))*A064861(n-1,k); fi; end; seq(A064861(i,i-1),i=1..40);
-
Flatten[{0,Table[SeriesCoefficient[((1+x)/Sqrt[1-6*x+x^2]-1)/2,{x,0,n}],{n,1,20}]}] (* Vaclav Kotesovec, Oct 04 2012 *)
a[ n_] := If[ n < 1, 0, Hypergeometric2F1[ n, -n, 1, -1]]; (* Michael Somos, Aug 24 2014 *)
Table[2*Sum[Binomial[n-1,k]Binomial[n+k,k],{k,0,n-1}],{n,0,30}] (* Harvey P. Dale, Sep 18 2024 *)
-
{a(n) = if( n<1, 0, polcoeff( ((1 - x^2) / (1 - x)^2 + x * O(x^n))^n, n))} /* Michael Somos, Sep 24 2003 */
-
from math import comb
def A002003(n): return sum(comb(n,k)**2*k<Chai Wah Wu, Mar 22 2023
More terms from Barbara Haas Margolius (b.margolius(AT)csuohio.edu), Oct 10 2001
A103885
a(n) = [x^(2*n)] ((1 + x)/(1 - x))^n.
Original entry on oeis.org
1, 2, 16, 146, 1408, 14002, 142000, 1459810, 15158272, 158611106, 1669752016, 17664712562, 187641279616, 2000029880786, 21380213588848, 229129634462146, 2460955893981184, 26482855453375042, 285475524009208720, 3082024598888203090, 33319523640218177408
Offset: 0
-
A103885:= func< n | n eq 0 select 1 else (&+[ Binomial(n, k)*Binomial(2*n+k-1, n-1): k in [0..n]]) >;
[A103885(n): n in [0..40]]; // G. C. Greubel, Oct 27 2024
-
a := n -> `if`(n=0, 1, 2*n*hypergeom([1 - 2*n, 1 - n], [2], 2)):
seq(simplify(a(n)), n=0..17); # Peter Luschny, Dec 30 2019
# Alternative (after Peter Bala ):
gf := n -> ( (1 + x)/(1 - x) )^n: ser := n -> series(gf(n), x, 40):
seq(coeff(ser(n), x, 2*n), n=0..17); # Peter Luschny, Mar 20 2020
-
Prepend[Table[Sum[2^i Binomial[n, i] Binomial[2n-1, i-1], {i, 1, 2n}], {n,1,20}], 1] (* Vaclav Kotesovec, Jul 01 2015 *)
-
a(n) = if (n==0, 1, sum(i=0, n, 2^i * binomial(n, i) * binomial(2*n-1, i-1))); \\ Michel Marcus, Mar 21 2020
-
def A103885(n): return 1 if n==0 else sum(binomial(n, k)*binomial(2*n+k-1, n-1) for k in range(n+1))
[A103885(n) for n in range(41)] # G. C. Greubel, Oct 27 2024
a(0) = 1 added and new name by
Peter Bala, Mar 01 2020
A144097
The 4-Schroeder numbers: a(n) = number of lattice paths (Schroeder paths) from (0,0) to (3n,n) with unit steps N=(0,1), E=(1,0) and D=(1,1) staying weakly above the line y = 3x.
Original entry on oeis.org
1, 2, 14, 134, 1482, 17818, 226214, 2984206, 40503890, 561957362, 7934063678, 113622696470, 1646501710362, 24098174350986, 355715715691350, 5289547733908510, 79163575684710818, 1191491384838325474
Offset: 0
Joachim Schroeder (schroderjd(AT)qwa.uovs.ac.za), Sep 10 2008
a(2)=14, because
01: NNNENNNE,
02: NNDNNNE,
03: NNNENND,
04: NNDNND,
05: NNNDNNE,
06: NNNDND,
07: NNNNENNE,
08: NNNNEND,
09: NNNNDNE,
10: NNNNDD,
11: NNNNNENE,
12: NNNNNED,
13: NNNNNDE,
14: NNNNNNEE
are all the paths from (0,0) to (2,6) with steps N,E and D weakly above y=3x.
- Sheng-Liang Yang and Mei-yang Jiang, The m-Schröder paths and m-Schröder numbers, Disc. Math. (2021) Vol. 344, Issue 2, 112209. doi:10.1016/j.disc.2020.112209. See Table 1.
- Alois P. Heinz, Table of n, a(n) for n = 0..800
- D. Bevan, D. Levin, P. Nugent, J. Pantone, and L. Pudwell, Pattern avoidance in forests of binary shrubs, arXiv preprint arXiv:1510.08036 [math.CO], 2015.
- B. Drake, An inversion theorem for labeled trees and some limits of areas under lattice paths (Example 1.6.9), A dissertation presented to the Faculty of the Graduate School of Arts and Sciences of Brandeis University.
- Gi-Sang Cheon, S.-T. Jin, and L. W. Shapiro, A combinatorial equivalence relation for formal power series, Linear Algebra and its Applications, Available online 30 March 2015.
- J. Schroeder, Generalized Schroeder numbers and the rotation principle, Journal of Integer Sequences 10(7).
- R. A. Sulanke, A recurrence restricted by a diagonal condition: generalized Catalan arrays, Fibonacci Q., 27 (1989), 33-46.
- Jun Yan, Lattice paths enumerations weighted by ascent lengths, arXiv:2501.01152 [math.CO], 2025. See p. 11.
- Lin Yang, Yu-Yuan Zhang, and Sheng-Liang Yang, The halves of Delannoy matrix and Chung-Feller properties of the m-Schröder paths, Linear Alg. Appl. (2024).
- Sheng-liang Yang and Mei-yang Jiang, Pattern avoiding problems on the hybrid d-trees, J. Lanzhou Univ. Tech., (China, 2023) Vol. 49, No. 2, 144-150. (in Mandarin; improperly cited as A144079)
-
Schr:=proc(n,m,l)(n-l*m+1)/m*sum(2^v*binomial(m,v)*binomial(n,v-1),v=1..m) end proc; where n=3m and l=3, also
Schr:=proc(n,m,l)(n-l*m+1)/(n+1)*sum(2^v*binomial(m-1,v-1)*binomial(n+1,v),v=0..m) end proc; where n=3m and l=3, also
Schr:=proc(n,m,l)(n-l*m+1)/m*sum(binomial(m,v)*binomial(n+v,m-1),v=0..m) end proc; where n=3m and l=3, also
Schr:=proc(n,m,l)(n-l*m+1)/(n+1)*sum(binomial(n+1,v)*binomial(m-1+v,n),v=0..n+1) end proc; where n=3m and l=3.
# alternative Maple program:
a:= proc(n) option remember; `if`(n<2, n+1,
((15610*n^5 -67123*n^4 +106824*n^3 -77633*n^2
+25514*n-3000)*a(n-1) -(3*(n-2))*(3*n-4)*
(3*n-5)*(35*n^2-28*n+5)*a(n-2)) / ((3*(3*n-1))
*(3*n+1)*n*(35*n^2-98*n+68)))
end:
seq(a(n), n=0..20); # Alois P. Heinz, May 26 2015
-
d[n_, k_] := Binomial[n+k, k] Hypergeometric2F1[-k, -n, -n-k, -1]; a[0] = 1; a[n_] = d[3n, n] - 3d[3n+1, n-1] - 2d[3n, n-1]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 25 2017 *)
-
{a(n) = sum(k=0, n, binomial(n, k) * binomial(3*n+k+1, n)/(3*n+k+1))} \\ Seiichi Manyama, Jul 25 2020
-
{a(n) = if(n==0, 1, sum(k=1, n, 2^k*binomial(n, k) * binomial(3*n, k-1)/n))} \\ Seiichi Manyama, Jul 25 2020
A260332
Labelings of n diamond-shaped posets with 4 vertices per diamond where the labels follow the poset relations whose associated reading permutation avoids 231 in the classical sense.
Original entry on oeis.org
1, 2, 18, 226, 3298, 52450, 881970
Offset: 0
For a single diamond (n=1) poset with 4 vertices, we must label the least element 1 and the greatest element 4, and the two central elements can be labeled either 2, 3 or 3, 2 respectively. Thus the associated permutations are 1234 and 1324.
- Sheng-Liang Yang and Mei-yang Jiang, The m-Schröder paths and m-Schröder numbers, Disc. Math. (2021) Vol. 344, Issue 2, 112209. doi:10.1016/j.disc.2020.112209. See Table 1.
- M. Paukner, L. Pepin, M. Riehl, and J. Wieser, Pattern Avoidance in Task-Precedence Posets, arXiv:1511.00080 [math.CO], 2015.
- Manda Riehl, A 231-avoiding diamond whose associated permutation is 1234.
- Jun Yan, Lattice paths enumerations weighted by ascent lengths, arXiv:2501.01152 [math.CO], 2025. See p. 11.
- Lin Yang, Yu-Yuan Zhang, and Sheng-Liang Yang, The halves of Delannoy matrix and Chung-Feller properties of the m-Schröder paths, Linear Alg. Appl. (2024).
- Sheng-liang Yang and Mei-yang Jiang, Pattern avoiding problems on the hybrid d-trees, J. Lanzhou Univ. Tech., (China, 2023) Vol. 49, No. 2, 144-150. (in Mandarin)
Comments