cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 255 results. Next

A222582 Smallest numbers k such that A006577(n+k) = A006577(n) + A006577(k), or 0 if no such number exists.

Original entry on oeis.org

12, 2, 0, 0, 1152, 24, 26, 22, 16, 12, 0, 10, 10, 0, 10, 9, 0, 0, 0, 0, 0, 8, 0, 6, 8, 7, 6094, 8, 8, 8, 456, 8, 6, 249, 268, 133, 6, 131, 120, 6, 301, 7, 96, 6, 6, 112, 0, 79, 74, 77, 6, 6, 86, 0, 0, 67, 70, 65, 68, 6, 6, 84, 84, 6, 58, 61, 56, 6, 66, 6, 58
Offset: 1

Views

Author

Michel Lagneau, Feb 25 2013

Keywords

Comments

A006577 is the number of halving and tripling steps to reach 1 in '3x+1' problem.
a(n) = 0 for n = 3, 4, 11, 14, 17, 18, 19, 20, 21, 23, 47, 54, 55, 73, ...

Examples

			a(12)=10 because A006577(12+10) = 15, and A006577(12) + A006577(10) = 9 + 6 = 15.
		

Crossrefs

Programs

  • Maple
    lst:={ }:C:= proc(n) a := 0 ; x := n ; while x > 1 do if type(x, 'even') then x := x/2:a:=a+1:  else x := 3*x+1 ; a := a+1 ; end if; end do; a ; end proc:
    for n from 1 to 73 do: ii:=0:for k from 2 to 100000 while(ii=0) do:z:=n+k : if  C(z)=C(n)+C(k) then ii:=1: printf ( "%d %d \n",n,k):else fi:od: if ii=0 then printf ( "%d %d \n",n,0):else fi:od:

A006370 The Collatz or 3x+1 map: a(n) = n/2 if n is even, 3n + 1 if n is odd.

Original entry on oeis.org

0, 4, 1, 10, 2, 16, 3, 22, 4, 28, 5, 34, 6, 40, 7, 46, 8, 52, 9, 58, 10, 64, 11, 70, 12, 76, 13, 82, 14, 88, 15, 94, 16, 100, 17, 106, 18, 112, 19, 118, 20, 124, 21, 130, 22, 136, 23, 142, 24, 148, 25, 154, 26, 160, 27, 166, 28, 172, 29, 178, 30, 184, 31, 190, 32, 196, 33
Offset: 0

Views

Author

Keywords

Comments

The 3x+1 or Collatz problem is as follows: start with any number n. If n is even, divide it by 2, otherwise multiply it by 3 and add 1. Do we always reach 1? This is an unsolved problem. It is conjectured that the answer is yes.
The Krasikov-Lagarias paper shows that at least N^0.84 of the positive numbers < N fall into the 4-2-1 cycle of the 3x+1 problem. This is far short of what we think is true, that all positive numbers fall into this cycle, but it is a step. - Richard C. Schroeppel, May 01 2002
Also A001477 and A016957 interleaved. - Omar E. Pol, Jan 16 2014, updated Nov 07 2017
a(n) is the image of a(2*n) under the 3*x+1 map. - L. Edson Jeffery, Aug 17 2014
The positions of powers of 2 in this sequence are given in A160967. - Federico Provvedi, Oct 06 2021
If displayed as a rectangular array with six columns, the columns are A008585, A350521, A016777, A082286, A016789, A350522 (see example). - Omar E. Pol, Jan 03 2022

Examples

			G.f. = 4*x + x^2 + 10*x^3 + 2*x^4 + 16*x^5 + 3*x^6 + 22*x^7 + 4*x^8 + 28*x^9 + ...
From _Omar E. Pol_, Jan 03 2022: (Start)
Written as a rectangular array with six columns read by rows the sequence begins:
   0,   4,  1,  10,  2,  16;
   3,  22,  4,  28,  5,  34;
   6,  40,  7,  46,  8,  52;
   9,  58, 10,  64, 11,  70;
  12,  76, 13,  82, 14,  88;
  15,  94, 16, 100, 17, 106;
  18, 112, 19, 118, 20, 124;
  21, 130, 22, 136, 23, 142;
  24, 148, 25, 154, 26, 160;
  27, 166, 28, 172, 29, 178;
  30, 184, 31, 190, 32, 196;
...
(End)
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, E16.
  • J. C. Lagarias, ed., The Ultimate Challenge: The 3x+1 Problem, Amer. Math. Soc., 2010.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A006577 gives number of steps to reach 1.
Column k=1 of A347270, n >= 1.

Programs

  • Haskell
    a006370 n | m /= 0    = 3 * n + 1
              | otherwise = n' where (n',m) = divMod n 2
    -- Reinhard Zumkeller, Oct 07 2011
    
  • Magma
    [(1/4)*(7*n+2-(-1)^n*(5*n+2)): n in [1..70]]; // Vincenzo Librandi, Dec 20 2016
  • Maple
    f := n-> if n mod 2 = 0 then n/2 else 3*n+1; fi;
    A006370:=(4+z+2*z**2)/(z-1)**2/(1+z)**2; # Simon Plouffe in his 1992 dissertation; uses offset 0
  • Mathematica
    f[n_]:=If[EvenQ[n],n/2,3n+1];Table[f[n],{n,50}] (* Geoffrey Critzer, Jun 29 2013 *)
    LinearRecurrence[{0,2,0,-1},{4,1,10,2},70] (* Harvey P. Dale, Jul 19 2016 *)
  • PARI
    for(n=1,100,print1((1/4)*(7*n+2-(-1)^n*(5*n+2)),","))
    
  • PARI
    A006370(n)=if(n%2,3*n+1,n/2) \\ Michael B. Porter, May 29 2010
    
  • Python
    def A006370(n):
        q, r = divmod(n, 2)
        return 3*n+1 if r else q # Chai Wah Wu, Jan 04 2015
    

Formula

G.f.: (4*x+x^2+2*x^3) / (1-x^2)^2.
a(n) = (1/4)*(7*n+2-(-1)^n*(5*n+2)). - Benoit Cloitre, May 12 2002
a(n) = ((n mod 2)*2 + 1)*n/(2 - (n mod 2)) + (n mod 2). - Reinhard Zumkeller, Sep 12 2002
a(n) = A014682(n+1) * A000034(n). - R. J. Mathar, Mar 09 2009
a(n) = a(a(2*n)) = -A001281(-n) for all n in Z. - Michael Somos, Nov 10 2016
E.g.f.: (2 + x)*sinh(x)/2 + 3*x*cosh(x). - Ilya Gutkovskiy, Dec 20 2016
From Federico Provvedi, Aug 17 2021: (Start)
Dirichlet g.f.: (1-2^(-s))*zeta(s) + (3-5*2^(-s))*zeta(s-1).
a(n) = ( a(n+2k) + a(n-2k) ) / 2, for every integer k. (End)
a(n) + a(n+1) = A047374(n+1). - Leo Ortega, Aug 22 2025

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Apr 27 2001
Zero prepended and new Name from N. J. A. Sloane at the suggestion of M. F. Hasler, Nov 06 2017

A025586 Largest value in '3x+1' trajectory of n.

Original entry on oeis.org

1, 2, 16, 4, 16, 16, 52, 8, 52, 16, 52, 16, 40, 52, 160, 16, 52, 52, 88, 20, 64, 52, 160, 24, 88, 40, 9232, 52, 88, 160, 9232, 32, 100, 52, 160, 52, 112, 88, 304, 40, 9232, 64, 196, 52, 136, 160, 9232, 48, 148, 88, 232, 52, 160, 9232, 9232, 56, 196, 88, 304, 160, 184, 9232
Offset: 1

Views

Author

Keywords

Comments

Here by definition the trajectory ends when 1 is reached. Therefore this sequence differs for n = 1 and n = 2 from A056959, which considers the orbit ending in the infinite loop 1 -> 4 -> 2 -> 1.
a(n) = A220237(n,A006577(n)). - Reinhard Zumkeller, Jan 03 2013
A006885 and A006884 give record values and where they occur. - Reinhard Zumkeller, May 11 2013
For n > 2, a(n) is divisible by 4. See the explanatory comment in A056959. - Peter Munn, Oct 14 2019
In an email of Aug 06 2023, Guy Chouraqui observes that the digital root of a(n) appears to be either 7 or a multiple of 4 for all n > 2. (See also A006885.) - N. J. A. Sloane, Aug 11 2023

Examples

			The 3x + 1 trajectory of 9 is 9, 28, 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1 (see A033479). Since the largest number in that sequence is 52, a(9) = 52.
		

Crossrefs

Essentially the same as A056959: only a(1) and a(2) differ, see Comments.

Programs

  • Haskell
    a025586 = last . a220237_row
    -- Reinhard Zumkeller, Jan 03 2013, Aug 29 2012
    
  • Maple
    a:= proc(n) option remember; `if`(n=1, 1,
          max(n, a(`if`(n::even, n/2, 3*n+1))))
        end:
    seq(a(n), n=1..87);  # Alois P. Heinz, Oct 16 2021
  • Mathematica
    collatz[a0_Integer, maxits_:1000] := NestWhileList[If[EvenQ[#], #/2, 3# + 1] &, a0, Unequal[#, 1, -1, -10, -34] &, 1, maxits]; (* collatz[n] function definition by Eric Weisstein *) Flatten[Table[Take[Sort[Collatz[n], Greater], 1], {n, 60}]] (* Alonso del Arte, Nov 14 2007 *)
    collatzMax[n_] := Module[{r = m = n}, While[m > 2, If[OddQ[m], m = 3 * m + 1; If[m > r, r = m], m = m/2]]; r]; Table[ collatzMax[n], {n, 100}] (* Jean-François Alcover, Jan 28 2015, after Charles R Greathouse IV *)
    (* Using Weisstein's collatz[n] definition above *) Table[Max[collatz[n]], {n, 100}] (* Alonso del Arte, May 25 2019 *)
  • PARI
    a(n)=my(r=n);while(n>2,if(n%2,n=3*n+1;if(n>r,r=n),n/=2));r \\ Charles R Greathouse IV, Jul 19 2011
    
  • Python
    def a(n):
        if n<2: return 1
        l=[n, ]
        while True:
            if n%2==0: n//=2
            else: n = 3*n + 1
            if not n in l:
                l+=[n, ]
                if n<2: break
            else: break
        return max(l)
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Apr 14 2017
    
  • Scala
    def collatz(n: Int): Int = (n % 2) match {
      case 0 => n / 2
      case 1 => 3 * n + 1
    }
    def collatzTrajectory(start: Int): List[Int] = if (start == 1) List(1)
    else {
      import scala.collection.mutable.ListBuffer
      var curr = start; var trajectory = new ListBuffer[Int]()
      while (curr > 1) { trajectory += curr; curr = collatz(curr) }
      trajectory.toList
    }
    for (n <- 1 to 100) yield collatzTrajectory(n).max // Alonso del Arte, Jun 02 2019

A006667 Number of tripling steps to reach 1 from n in '3x+1' problem, or -1 if 1 is never reached.

Original entry on oeis.org

0, 0, 2, 0, 1, 2, 5, 0, 6, 1, 4, 2, 2, 5, 5, 0, 3, 6, 6, 1, 1, 4, 4, 2, 7, 2, 41, 5, 5, 5, 39, 0, 8, 3, 3, 6, 6, 6, 11, 1, 40, 1, 9, 4, 4, 4, 38, 2, 7, 7, 7, 2, 2, 41, 41, 5, 10, 5, 10, 5, 5, 39, 39, 0, 8, 8, 8, 3, 3, 3, 37, 6, 42, 6, 3, 6, 6, 11, 11, 1, 6, 40, 40, 1, 1, 9, 9, 4, 9, 4, 33, 4, 4, 38
Offset: 1

Views

Author

Keywords

Comments

A075680, which gives the values for odd n, isolates the essential behavior of this sequence. - T. D. Noe, Jun 01 2006
A033959 and A033958 give record values and where they occur. - Reinhard Zumkeller, Jan 08 2014

References

  • J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 204, Problem 22.
  • R. K. Guy, Unsolved Problems in Number Theory, E16.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Equals A078719(n)-1.

Programs

  • Haskell
    a006667 = length . filter odd . takeWhile (> 2) . (iterate a006370)
    a006667_list = map a006667 [1..]
    -- Reinhard Zumkeller, Oct 08 2011
    
  • Maple
    a:= proc(n) option remember; `if`(n<2, 0,
          `if`(n::even, a(n/2), 1+a(3*n+1)))
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Aug 08 2023
  • Mathematica
    Table[Count[Differences[NestWhileList[If[EvenQ[#],#/2,3#+1]&,n,#>1&]], ?Positive], {n,100}] (* _Harvey P. Dale, Nov 14 2011 *)
  • PARI
    for(n=2,100,s=n; t=0; while(s!=1,if(s%2==0,s=s/2,s=(3*s+1)/2; t++); if(s==1,print1(t,","); ); ))
    
  • Python
    def a(n):
        if n==1: return 0
        x=0
        while True:
            if n%2==0: n/=2
            else:
                n = 3*n + 1
                x+=1
            if n<2: break
        return x
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Apr 14 2017

Formula

a(1) = 0, a(n) = a(n/2) if n is even, a(n) = a(3n+1)+1 if n>1 is odd. The Collatz conjecture is that this defines a(n) for all n >= 1.
a(n) = A078719(n) - 1; a(A000079(n))=0; a(A062052(n))=1; a(A062053(n))=2; a(A062054(n))=3; a(A062055(n))=4; a(A062056(n))=5; a(A062057(n))=6; a(A062058(n))=7; a(A062059(n))=8; a(A062060(n))=9. - Reinhard Zumkeller, Oct 08 2011
a(n*2^k) = a(n), for all k >= 0. - L. Edson Jeffery, Aug 11 2014
a(n) = floor(log(2^A006666(n)/n)/log(3)). - Joe Slater, Aug 30 2017
a(n) = a(A085062(n)) + A007814(n+1) for n >= 2. - Alan Michael Gómez Calderón, Feb 07 2025
From Alan Michael Gómez Calderón, Mar 31 2025: (Start)
a(n) = a(A139391(n)) + (n mod 2) for n >= 2;
a(n) = a(A139391(A000265(n))) - A209229(n) + 1 for n >= 2;
a(n) = a(A000265(A139391(n))) + (n mod 2) for n >= 2. (End)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Apr 27 2001
"Escape clause" added to definition by N. J. A. Sloane, Jun 06 2017

A006666 Number of halving steps to reach 1 in '3x+1' problem, or -1 if this never happens.

Original entry on oeis.org

0, 1, 5, 2, 4, 6, 11, 3, 13, 5, 10, 7, 7, 12, 12, 4, 9, 14, 14, 6, 6, 11, 11, 8, 16, 8, 70, 13, 13, 13, 67, 5, 18, 10, 10, 15, 15, 15, 23, 7, 69, 7, 20, 12, 12, 12, 66, 9, 17, 17, 17, 9, 9, 71, 71, 14, 22, 14, 22, 14, 14, 68, 68, 6, 19, 19, 19, 11, 11, 11, 65, 16, 73, 16, 11, 16
Offset: 1

Views

Author

Keywords

Comments

Equals the total number of steps to reach 1 under the modified '3x+1' map: T(n) = n/2 if n is even, (3n+1)/2 if n is odd (see A014682).
Pairs of consecutive integers of the same height occur infinitely often and in infinitely many different patterns (Garner 1985). - Joe Slater, May 24 2018

Examples

			2 -> 1 so a(2) = 1; 3 -> 10 -> 5 -> 16 -> 8 -> 4 -> 2 -> 1, with 5 halving steps, so a(3) = 5; 4 -> 2 -> 1 has two halving steps, so a(4) = 2; etc.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, E16.
  • J. C. Lagarias, ed., The Ultimate Challenge: The 3x+1 Problem, Amer. Math. Soc., 2010.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A006370, A006577, A006667 (tripling steps), A014682, A092892, A127789 (record indices of 2^a(n)/(3^A006667(n)*n)).

Programs

  • Haskell
    a006666 = length . filter even . takeWhile (> 1) . (iterate a006370)
    -- Reinhard Zumkeller, Oct 08 2011
    
  • Maple
    # A014682
    T:=proc(n) if n mod 2 = 0 then n/2 else (3*n+1)/2; fi; end;
    # A006666
    t1:=[0]:
    for n from 2 to 100 do
    L:=1; p := n;
    while T(p) <> 1 do p:=T(p); L:=L+1; od:
    t1:=[op(t1),L];
    od: t1;
  • Mathematica
    Table[Count[NestWhileList[If[OddQ[#],3#+1,#/2]&,n,#>1&],?(EvenQ[#]&)], {n,80}] (* _Harvey P. Dale, Sep 30 2011 *)
  • PARI
    a(n)=my(t); while(n>1, if(n%2, n=3*n+1, n>>=1; t++)); t \\ Charles R Greathouse IV, Jun 21 2017
  • Python
    def a(n):
        if n==1: return 0
        x=0
        while True:
            if not n%2:
                n//=2
                x+=1
            else: n = 3*n + 1
            if n<2: break
        return x
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Apr 14 2017
    

Formula

A092892(a(n)) = n and A092892(m) <> n for m < a(n). - Reinhard Zumkeller, Mar 14 2014
a(2^n) = n. - Bob Selcoe, Apr 16 2015
a(n) = ceiling(log(n*3^A006667(n))/log(2)). - Joe Slater, Aug 30 2017
a(2^k-1) = a(2^(k+1)-1)-1, for odd k>1. - Joe Slater, May 17 2018
a(n) = a(A085062(n)) + A007814(n+1) + 1 for n >= 2. - Alan Michael Gómez Calderón, Feb 01 2025

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Apr 27 2001
Name edited by M. F. Hasler, May 07 2018

A008908 a(n) = (1 + number of halving and tripling steps to reach 1 in the Collatz (3x+1) problem), or -1 if 1 is never reached.

Original entry on oeis.org

1, 2, 8, 3, 6, 9, 17, 4, 20, 7, 15, 10, 10, 18, 18, 5, 13, 21, 21, 8, 8, 16, 16, 11, 24, 11, 112, 19, 19, 19, 107, 6, 27, 14, 14, 22, 22, 22, 35, 9, 110, 9, 30, 17, 17, 17, 105, 12, 25, 25, 25, 12, 12, 113, 113, 20, 33, 20, 33, 20, 20, 108, 108, 7, 28, 28, 28, 15, 15, 15, 103
Offset: 1

Views

Author

Keywords

Comments

The number of steps (iterations of the map A006370) to reach 1 is given by A006577, this sequence counts 1 more. - M. F. Hasler, Nov 05 2017
When Collatz 3N+1 function is seen as an isometry over the dyadics, the halving step necessarily following each tripling is not counted, hence N -> N/2, if even, but N -> (3N+1)/2, if odd. Counting iterations of this map until reaching 1 leads to sequence A064433. - Michael Vielhaber (vielhaber(AT)gmail.com), Nov 18 2009

References

  • R. K. Guy, Unsolved Problems in Number Theory, E16.

Crossrefs

Programs

  • Haskell
    a008908 = length . a070165_row
    -- Reinhard Zumkeller, May 11 2013, Aug 30 2012, Jul 19 2011
    
  • Maple
    a:= proc(n) option remember; 1+`if`(n=1, 0,
          a(`if`(n::even, n/2, 3*n+1)))
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Jan 29 2021
  • Mathematica
    Table[Length[NestWhileList[If[EvenQ[ # ], #/2, 3 # + 1] &, i, # != 1 &]], {i, 75}]
  • PARI
    a(n)=my(c=1); while(n>1, n=if(n%2, 3*n+1, n/2); c++); c \\ Charles R Greathouse IV, May 18 2015
    
  • Python
    def a(n):
        if n==1: return 1
        x=1
        while True:
            if n%2==0: n//=2
            else: n = 3*n + 1
            x+=1
            if n<2: break
        return x
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Apr 15 2017

Formula

a(n) = A006577(n) + 1.
a(n) = f(n,1) with f(n,x) = if n=1 then x else f(A006370(n),x+1).
a(A033496(n)) = A159999(A033496(n)). - Reinhard Zumkeller, May 04 2009
a(n) = A006666(n) + A078719(n).
a(n) = length of n-th row in A070165. - Reinhard Zumkeller, May 11 2013

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Apr 27 2001
"Escape clause" added to definition by N. J. A. Sloane, Jun 06 2017
Edited by M. F. Hasler, Nov 05 2017

A006578 Triangular numbers plus quarter squares: n*(n+1)/2 + floor(n^2/4) (i.e., A000217(n) + A002620(n)).

Original entry on oeis.org

0, 1, 4, 8, 14, 21, 30, 40, 52, 65, 80, 96, 114, 133, 154, 176, 200, 225, 252, 280, 310, 341, 374, 408, 444, 481, 520, 560, 602, 645, 690, 736, 784, 833, 884, 936, 990, 1045, 1102, 1160, 1220, 1281, 1344, 1408, 1474, 1541, 1610, 1680, 1752, 1825, 1900, 1976, 2054
Offset: 0

Views

Author

Keywords

Comments

Equals (1, 2, 3, 4, ...) convolved with (1, 2, 1, 2, ...). a(4) = 14 = (1, 2, 3, 4) dot (2, 1, 2, 1) = (2 + 2 + 6 + 4). - Gary W. Adamson, May 01 2009
We observe that is the transform of A032766 by the following transform T: T(u_0,u_1,u_2,u_3,...) = (u_0, u_0+u_1, u_0+u_1+u_2, u_0+u_1+u_2+u_3+u_4,...). In other words, v_p = Sum_{k=0..p} u_k and the g.f. phi_v of is given by phi_v = phi_u/(1-z). - Richard Choulet, Jan 28 2010
Equals row sums of a triangle with (1, 4, 7, 10, ...) in every column, shifted down twice for columns > 1. - Gary W. Adamson, Mar 03 2010
Number of pairs (x,y) with x in {0,...,n}, y odd in {0,...,2n}, and x < y. - Clark Kimberling, Jul 02 2012
Also A049451 and positives A000567 interleaved. - Omar E. Pol, Aug 03 2012
Similar to A001082. Members of this family are A093005, A210977, this sequence, A210978, A181995, A210981, A210982. - Omar E. Pol, Aug 09 2012

Examples

			G.f. = x + 4*x^2 + 8*x^3 + 14*x^4 + 21*x^5 + 30*x^6 + 40*x^7 + 52*x^8 + 65*x^9 + ...
		

References

  • Marc LeBrun, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of A104567.
Cf. A051125.

Programs

  • Magma
    [(6*n^2+4*n-1+(-1)^n)/8: n in [0..50] ]; // Vincenzo Librandi, Aug 20 2011
  • Maple
    with (combinat): seq(count(Partition((3*n+1)), size=3), n=0..52); # Zerinvary Lajos, Mar 28 2008
    # 2nd program
    A006578 := proc(n)
        (6*n^2 + 4*n - 1 + (-1)^n)/8 ;
    end proc: # R. J. Mathar, Apr 28 2017
  • Mathematica
    Accumulate[LinearRecurrence[{1,1,-1}, {0,1,3}, 100]] (* Harvey P. Dale, Sep 29 2013 *)
    a[ n_] := Quotient[n + 1, 2] (Quotient[n, 2] 3 + 1); (* Michael Somos, Jun 09 2014 *)
    a[ n_] := Quotient[3 (n + 1)^2 + 1, 4] - (n + 1); (* Michael Somos, Jun 10 2015 *)
    LinearRecurrence[{2, 0, -2, 1},{0, 1, 4, 8},53] (* Ray Chandler, Aug 03 2015 *)
  • PARI
    {a(n) = (3*(n+1)^2 + 1)\4 - n - 1}; /* Michael Somos, Mar 10 2006 */
    

Formula

Expansion of x*(1+2*x) / ((1-x)^2*(1-x^2)). - Simon Plouffe in his 1992 dissertation
a(n) + A002620(n) = A002378(n) = n*(n+1).
Partial sums of A032766. - Paul Barry, May 30 2003
a(n) = a(n-1) + a(n-2) - a(n-3) + 3 = A002620(n) + A004526(n) = A001859(n) - A004526(n+1). - Henry Bottomley, Mar 08 2000
a(n) = (6*n^2 + 4*n - 1 + (-1)^n)/8. - Paul Barry, May 30 2003
a(n) = A001859(-1-n) for all n in Z. - Michael Somos, May 10 2006
a(n) = (A002378(n)/2 + A035608(n))/2. - Reinhard Zumkeller, Feb 07 2010
a(n) = (3*n^2 + 2*n - (n mod 2))/4. - Ctibor O. Zizka, Mar 11 2012
a(n) = Sum_{i=1..n} floor(3*i/2) = Sum_{i=0..n} (i + floor(i/2)). - Enrique Pérez Herrero, Apr 21 2012
a(n) = 3*n*(n+1)/2 - A001859(n). - Clark Kimberling, Jul 02 2012
a(n) = Sum_{i=1..n} (n - i + 1) * 2^( (i+1) mod 2 ). - Wesley Ivan Hurt, Mar 30 2014
a(n) = A002717(n) - A002717(n-1). - Michael Somos, Jun 09 2014
a(n) = Sum_{k=1..n} floor((n+k+1)/2). - Wesley Ivan Hurt, Mar 31 2017
a(n) = A002620(n+1)+2*A002620(n). - R. J. Mathar, Apr 28 2017
Sum_{n>=1} 1/a(n) = 3 - Pi/(4*sqrt(3)) - 3*log(3)/4. - Amiram Eldar, May 28 2022
E.g.f.: (x*(5 + 3*x)*cosh(x) - (1 - 5*x - 3*x^2)*sinh(x))/4. - Stefano Spezia, Aug 22 2023

Extensions

Offset and description changed by N. J. A. Sloane, Nov 30 2006

A006877 In the '3x+1' problem, these values for the starting value set new records for number of steps to reach 1.

Original entry on oeis.org

1, 2, 3, 6, 7, 9, 18, 25, 27, 54, 73, 97, 129, 171, 231, 313, 327, 649, 703, 871, 1161, 2223, 2463, 2919, 3711, 6171, 10971, 13255, 17647, 23529, 26623, 34239, 35655, 52527, 77031, 106239, 142587, 156159, 216367, 230631, 410011, 511935, 626331, 837799
Offset: 1

Views

Author

Keywords

Comments

Both the 3x+1 steps and the halving steps are counted.
This sequence without a(2) = 2 specifies where records occur in A208981. - Omar E. Pol, Apr 14 2022

References

  • D. R. Hofstadter, Goedel, Escher, Bach: an Eternal Golden Braid, Random House, 1980, p. 400.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    A006877 := proc(n) local a,L; L := 0; a := n; while a <> 1 do if a mod 2 = 0 then a := a/2; else a := 3*a+1; fi; L := L+1; od: RETURN(L); end;
  • Mathematica
    numberOfSteps[x0_] := Block[{x = x0, nos = 0}, While [x != 1 , If[Mod[x, 2] == 0 , x = x/2, x = 3*x + 1]; nos++]; nos]; a[1] = 1; a[n_] := a[n] = Block[{x = a[n-1] + 1}, record = numberOfSteps[x - 1]; While[ numberOfSteps[x] <= record, x++]; x]; A006877 = Table[ Print[a[n]]; a[n], {n, 1, 44}](* Jean-François Alcover, Feb 14 2012 *)
    DeleteDuplicates[Table[{n,Length[NestWhileList[If[EvenQ[#],#/2,3#+1]&,n,#>1&]]},{n,838000}],GreaterEqual[#1[[2]],#2[[2]]]&][[All,1]] (* Harvey P. Dale, May 13 2022 *)
  • PARI
    A006577(n)=my(s);while(n>1,n=if(n%2,3*n+1,n/2);s++);s
    step(n,r)=my(t);forstep(k=bitor(n,1),2*n,2,t=A006577(k);if(t>r,return([k,t])));[2*n,r+1]
    r=0;print1(n=1);for(i=1,100,[n,r]=step(n,r); print1(", "n)) \\ Charles R Greathouse IV, Apr 01 2013
    
  • Python
    c1 = lambda x: (3*x+1 if (x%2) else x>>1)
    r = -1
    for n in range(1, 10**5):
        a=0 ; n1=n
        while n>1: n=c1(n); a+=1;
        if a > r: print(n1, end = ', '); r=a
    print('...') # Ya-Ping Lu and Robert Munafo, Mar 22 2024

A006590 a(n) = Sum_{k=1..n} ceiling(n/k).

Original entry on oeis.org

1, 3, 6, 9, 13, 16, 21, 24, 29, 33, 38, 41, 48, 51, 56, 61, 67, 70, 77, 80, 87, 92, 97, 100, 109, 113, 118, 123, 130, 133, 142, 145, 152, 157, 162, 167, 177, 180, 185, 190, 199, 202, 211, 214, 221, 228, 233, 236, 247, 251, 258, 263, 270, 273, 282, 287, 296, 301
Offset: 1

Views

Author

Keywords

Comments

The following sequences all have the same parity: A004737, A006590, A027052, A071028, A071797, A078358, A078446. - Jeremy Gardiner, Mar 16 2003
Given the fact that ceiling(x) <= x+1, we can, using well known results for the harmonic series, easily derive that n*log(n) <= a(n) <= n*(1+log(n)) + n = n(log(n)+2). - Stefan Steinerberger, Apr 08 2006

References

  • Marc LeBrun, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a006590 n = sum $ map f [1..n] where
       f x = y + 1 - 0 ^ r where (y, r) = divMod n x
    -- Reinhard Zumkeller, Feb 18 2013
    
  • Magma
    [&+[Ceiling(n/j): j in [1..n]] : n in [1..60]]; // G. C. Greubel, Nov 07 2019
    
  • Maple
    seq(add(ceil(n/j), j = 1..n), n = 1..60); # G. C. Greubel, Nov 07 2019
  • Mathematica
    Table[Sum[Ceiling[n/i], {i, 1, n}], {n, 1, 60}] (* Stefan Steinerberger, Apr 08 2006 *)
    nxt[{n_,a_}]:={n+1,a+DivisorSigma[0,n]+1}; Transpose[NestList[nxt,{1,1},60]][[2]] (* Harvey P. Dale, Aug 23 2013 *)
  • PARI
    first(n)=my(v=vector(n,i,i),s); for(i=1,n-1,v[i+1]+=s+=numdiv(i)); v \\ Charles R Greathouse IV, Feb 07 2017
    
  • PARI
    a(n) = n + sum(k=1, n-1, (n-1)\k); \\ Michel Marcus, Oct 10 2021
    
  • Python
    from math import isqrt
    def A006590(n): return (lambda m: n+2*sum((n-1)//k for k in range(1, m+1))-m*m)(isqrt(n-1)) # Chai Wah Wu, Oct 09 2021
  • Sage
    [sum(ceil(n/j) for j in (1..n)) for n in (1..60)] # G. C. Greubel, Nov 07 2019
    

Formula

a(n) = n+Sum_{k=1..n-1} tau(k). - Vladeta Jovovic, Oct 17 2002
a(n) = 1 + a(n-1) + tau(n-1), a(n) = A006218(n-1) + n. - T. D. Noe, Jan 05 2007
a(n) = a(n-1) + A000005(n) + 1 for n >= 2. a(n) = A161886(n) - A000005(n) + 1 = A161886(n-1) + 2 = A006218(n) + A049820(n) for n >= 1. - Jaroslav Krizek, Nov 14 2009

Extensions

More terms from Stefan Steinerberger, Apr 08 2006

A033493 Sum of the numbers in the trajectory of n for the 3x+1 problem.

Original entry on oeis.org

1, 3, 49, 7, 36, 55, 288, 15, 339, 46, 259, 67, 119, 302, 694, 31, 214, 357, 519, 66, 148, 281, 633, 91, 658, 145, 101440, 330, 442, 724, 101104, 63, 841, 248, 540, 393, 535, 557, 2344, 106, 101331, 190, 1338, 325, 497, 679, 100979, 139, 806, 708, 1130, 197
Offset: 1

Views

Author

Keywords

Comments

Given a power of two, the value in this sequence is the next higher Mersenne number, or a(2^m) = 2^(m + 1) - 1. - Alonso del Arte, Apr 10 2009
Conjecture: a(n) = A006577(n)^2 only at a(3) = 49. Verified for n <= 10^7. - Luca Santarsiero, Jul 13 2025

Examples

			a(5) = 36 because the Ulam's conjecture trajectory sequence starting on 5 runs 5, 16, 8, 4, 2, 1 and therefore 5 + 16 + 8 + 4 + 2 + 1 = 36. - _Alonso del Arte_, Apr 10 2009
		

Crossrefs

Apart from initial term, exactly the same as A049074.

Programs

  • Haskell
    a033493 = sum . a070165_row  -- Reinhard Zumkeller, Oct 08 2011
    
  • Maple
    a:= proc(n) option remember; n+`if`(n=1, 0,
          a(`if`(n::even, n/2, 3*n+1)))
        end:
    seq(a(n), n=1..55);  # Alois P. Heinz, Jan 29 2021
  • Mathematica
    collatz[1] = 1; collatz[n_Integer?OddQ] := 3n + 1; collatz[n_Integer?EvenQ] := n/2; Table[-1 + Plus @@ FixedPointList[collatz, n], {n, 60}] (* Alonso del Arte, Apr 10 2009 *)
  • Python
    def a(n):
        if n==1: return 1
        l=[n, ]
        while True:
            if n%2==0: n//=2
            else: n = 3*n + 1
            l+=[n, ]
            if n<2: break
        return sum(l)
    print([a(n) for n in range(1, 101)])  # Indranil Ghosh, Apr 14 2017

Formula

a(n) = Sum_{k=1..A006577(n)} A070165(k). - Reinhard Zumkeller, Oct 08 2011

Extensions

Corrected a(16) to 31 to match other powers of 2; removed duplicate value of a(48) = 139 because a(49) = 806 and not 139. - Alonso del Arte, Apr 10 2009
Previous Showing 21-30 of 255 results. Next