cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 101-110 of 644 results. Next

A223172 Triangle S(n,k) by rows: coefficients of 6^((n-1)/2)*(x^(1/6)*d/dx)^n when n is odd, and of 6^(n/2)*(x^(5/6)*d/dx)^n when n is even.

Original entry on oeis.org

1, 1, 6, 7, 6, 7, 84, 36, 91, 156, 36, 91, 1638, 1404, 216, 1729, 4446, 2052, 216, 1729, 41496, 53352, 16416, 1296, 43225, 148200, 102600, 21600, 1296, 43225, 1296750, 2223000, 1026000, 162000, 7776, 1339975, 5742750, 5301000, 1674000, 200880, 7776
Offset: 0

Views

Author

Udita Katugampola, Mar 20 2013

Keywords

Examples

			Triangle begins:
        1;
        1,        6;
        7,        6;
        7,       84,        36;
       91,      156,        36;
       91,     1638,      1404,      216;
     1729,     4446,      2052,      216;
     1729,    41496,     53352,    16416,     1296;
    43225,   148200,    102600,    21600,     1296;
    43225,  1296750,   2223000,  1026000,   162000,    7776;
  1339975,  5742750,   5301000,  1674000,   200880,    7776;
  1339975, 48239100, 103369500, 63612000, 15066000, 1446336, 46656;
		

Crossrefs

Programs

  • Maple
    a[0]:= f(x):
    for i from 1 to 13 do
    a[i] := simplify(6^((i+1)mod 2)*x^((4((i+1)mod 2)+1)/6)*(diff(a[i-1],x$1 )));
    end do;

A134278 A certain partition array in Abramowitz-Stegun order (A-St order), called M_3(6).

Original entry on oeis.org

1, 6, 1, 66, 18, 1, 1056, 264, 108, 36, 1, 22176, 5280, 3960, 660, 540, 60, 1, 576576, 133056, 95040, 43560, 15840, 23760, 3240, 1320, 1620, 90, 1, 17873856, 4036032, 2794176, 2439360, 465696, 665280, 304920, 249480, 36960, 83160, 22680, 2310
Offset: 1

Views

Author

Wolfdieter Lang, Nov 13 2007

Keywords

Comments

For the A-St order of partitions see the Abramowitz-Stegun reference given in A117506.
Partition number array M_3(6), the k=6 member in the family of a generalization of the multinomial number arrays M_3 = M_3(1) = A036040.
The sequence of row lengths is A000041 (partition numbers) [1, 2, 3, 5, 7, 11, 15, 22, 30, 42, ...].
The S2(6,n,m):=A049385(n,m) numbers (generalized Stirling2 numbers) are obtained by summing in row n all numbers with the same part number m. In the same manner the S2(n,m) (Stirling2) numbers A008277 are obtained from the partition array M_3= A036040.
a(n,k) enumerates unordered forests of increasing 6-ary trees related to the k-th partition of n in the A-St order. The m-forest is composed of m such trees, with m the number of parts of the partition.

Examples

			[1]; [6,1]; [66,18,1]; [1056,264,108,36,1]; [22176,5280,3960,660,540,60,1]; ...
There are a(4,3) = 108 = 3*6^2 unordered 2-forests with 4 vertices, composed of two 6-ary increasing trees, each with two vertices: there are 3 increasing labelings (1,2)(3,4); (1,3)(2,4); (1,4)(2,3) and each tree comes in six versions from the 6-ary structure.
		

Crossrefs

Cf. A049412 (row sums, also of triangle A049385).
Cf. A134273 (M_3(5) partition array).

Formula

a(n,k) = n!*Product_{j=1..n} (S2(6,j,1)/j!)^e(n,k,j)/e(n,k,j)! with S2(6,n,1) = A049385(n,1) = A008548(n) = (5*n-4)(!^5) (quintuple- or 5-factorials) and the exponent e(n,k,j) of j in the k-th partition of n in the A-St ordering of the partitions of n. Exponents 0 can be omitted due to 0!=1.

A318762 Number of permutations of a multiset whose multiplicities are the prime indices of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 6, 6, 4, 1, 12, 1, 5, 10, 24, 1, 30, 1, 20, 15, 6, 1, 60, 20, 7, 90, 30, 1, 60, 1, 120, 21, 8, 35, 180, 1, 9, 28, 120, 1, 105, 1, 42, 210, 10, 1, 360, 70, 140, 36, 56, 1, 630, 56, 210, 45, 11, 1, 420, 1, 12, 420, 720, 84, 168, 1, 72, 55
Offset: 1

Views

Author

Gus Wiseman, Sep 03 2018

Keywords

Comments

This multiset is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.

Examples

			The a(12) = 12 permutations are (1123), (1132), (1213), (1231), (1312), (1321), (2113), (2131), (2311), (3112), (3121), (3211).
		

Crossrefs

Programs

  • Maple
    a:= n-> (l-> add(i, i=l)!/mul(i!, i=l))(map(i->
           numtheory[pi](i[1])$i[2], ifactors(n)[2])):
    seq(a(n), n=1..100);  # Alois P. Heinz, Sep 03 2018
  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Total[primeMS[n]]!/Times@@Factorial/@primeMS[n],{n,100}]
  • PARI
    sig(n)={my(f=factor(n)); concat(vector(#f~, i, vector(f[i, 2], j, primepi(f[i, 1]))))}
    a(n)={if(n==1, 1, my(s=sig(n)); vecsum(s)!/prod(i=1, #s, s[i]!))}  \\ Andrew Howroyd, Dec 17 2018

Formula

If n = Product prime(x_i)^y_i is the prime factorization of n, then a(n) = (Sum x_i * y_i)! / Product (x_i!)^y_i.
a(n) = A008480(A181821(n)).
a(n) = A112624(n) * A124794(n). - Max Alekseyev, Oct 15 2023
Sum_{m in row n of A215366} a(m) = A005651(n).
Sum_{m in row n of A215366} a(m) * A008480(m) = A000670(n).
Sum_{m in row n of A215366} a(m) * A008480(m) / A001222(m)! = A000110(n).

A132056 Triangle read by rows, the Bell transform of Product_{k=0..n} 7*k+1 without column 0.

Original entry on oeis.org

1, 8, 1, 120, 24, 1, 2640, 672, 48, 1, 76560, 22800, 2160, 80, 1, 2756160, 920160, 104880, 5280, 120, 1, 118514880, 43243200, 5639760, 347760, 10920, 168, 1, 5925744000, 2323918080, 336510720, 24071040, 937440, 20160, 224, 1
Offset: 1

Views

Author

Wolfdieter Lang Sep 14 2007

Keywords

Comments

Previous name was: Triangle of numbers related to triangle A132057; generalization of Stirling numbers of second kind A008277, Lah-numbers A008297, ...
a(n,m) enumerates unordered n-vertex m-forests composed of m plane increasing 8-ary trees. See the F. Bergeron et al. reference, especially Table 1, first row, for the e.g.f. for m=1.
a(n,m) := S2(8; n,m) is the eighth triangle of numbers in the sequence S2(k;n,m), k=1..7: A008277 (unsigned Stirling 2nd kind), A008297 (unsigned Lah), A035342, A035469, A049029, A049385, A092082, respectively. a(n,1)=A045754(n), n>=1.

Examples

			{1}; {8,1}; {120,24,1}; {2640,672,48,1}; ...
		

Crossrefs

Cf. A132060 (row sums), A132061 (alternating row sums).
Cf. A092082 S2(7) triangle.

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    # Adds (1,0,0,0, ..) as column 0.
    BellMatrix(n -> mul(7*k+1, k=0..n), 8); # Peter Luschny, Jan 27 2016
  • Mathematica
    a[n_, m_] := a[n, m] = ((m*a[n-1, m-1]*(m-1)! + (m+7*n-7)*a[n-1, m]*m!)*n!)/(n*m!*(n-1)!);
    a[n_, m_] /; n < m = 0; a[_, 0] = 0; a[1, 1] = 1;
    Flatten[Table[a[n, m], {n, 1, 8}, {m, 1, n}]][[1 ;; 36]]
    (* Jean-François Alcover, Jun 17 2011 *)
    rows = 8;
    a[n_, m_] := BellY[n, m, Table[Product[7k+1, {k, 0, j}], {j, 0, rows}]];
    Table[a[n, m], {n, 1, rows}, {m, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018 *)

Formula

a(n, m) = n!*A132057(n, m)/(m!*7^(n-m)); a(n+1, m) = (7*n+m)*a(n, m)+ a(n, m-1), n >= m >= 1; a(n, m) := 0, n
E.g.f. of m-th column: ((-1+(1-7*x)^(-1/7))^m)/m!.
a(n, m) = sum(|A051186(n, j)|*S2(j, m), j=m..n) (matrix product), with S2(j, m):= (j, m) (Stirling2 triangle). Priv. comm. with W. Lang by E. Neuwirth, Feb 15 2001; see also the 2001 Neuwirth reference. See the general comment on products of Jabotinsky matrices given under A035342.

Extensions

New name from Peter Luschny, Jan 27 2016

A002657 Numerators of Cauchy numbers of second type (= Bernoulli numbers B_n^{(n)}).

Original entry on oeis.org

1, 1, 5, 9, 251, 475, 19087, 36799, 1070017, 2082753, 134211265, 262747265, 703604254357, 1382741929621, 8164168737599, 5362709743125, 8092989203533249, 15980174332775873, 12600467236042756559
Offset: 0

Keywords

Comments

These coefficients (with alternating signs) are also known as the Nørlund [or Norlund, Noerlund or Nörlund] numbers. [After the Danish mathematician Niels Erik Nørlund (1885-1981). - Amiram Eldar, Jun 17 2021]
The denominators are found in A002790. The alternating rational sequence ((-1)^n)*a(n)/A002790(n)is the z-sequence for the Stirling2 triangle A008277(n+1,k+1), n>=k>=0. This is the Sheffer (exp(x),exp(x)-1) triangle. See the W. Lang link under A006232 for Sheffer a- and z-sequences with references, and the conversion to S. Roman's notation. The a-sequence is A006232(n)/A006233(n). - Wolfdieter Lang, Oct 06 2011 [This is the Sheffer triangle A007318*A048993. Added Jun 20 2017]
A simple series with the signless Cauchy numbers of second type C2(n) leads to Euler's constant: gamma = 1 - Sum_{n >=1} C2(n)/(n*(n+1)!) = 1 - 1/4 - 5/72 - 1/32 - 251/14400 - 19/1728 - 19087/2540160 - ..., see references [Blagouchine] below, as well as A075266 and A262235. - Iaroslav V. Blagouchine, Sep 15 2015

Examples

			1, 1/2, 5/6, 9/4, 251/30, 475/12, 19087/84, 36799/24, 1070017/90, ...
		

References

  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 294.
  • P. Curtz, Intégration numérique des systèmes différentiels à conditions initiales, Centre de Calcul Scientifique de l'Armement, Arcueil, 1969.
  • Louis Melville Milne-Thompson, Calculus of Finite Differences, 1951, p. 136.
  • N. E. Nørlund, Vorlesungen über Differenzenrechnung, Springer-Verlag, Berlin, 1924.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(-x/((1-x)*Log(1-x)) )); [Numerator(Factorial(n-1)*b[n]): n in [1..m-1]]; // G. C. Greubel, Oct 29 2018
  • Maple
    seq(numer(add((-1)^(n-k)*Stirling1(n,k)/(k+1),k=0..n)),n=0..10); # Peter Luschny, Apr 28 2009
  • Mathematica
    Table[Abs[Numerator[NorlundB[n,n]]],{n,0,30}](* Vladimir Joseph Stephan Orlovsky, Dec 30 2010 *)
    a[ n_] := If[ n < 0, 0, (-1)^n Numerator @ NorlundB[ n, n]]; (* Michael Somos, Jul 12 2014 *)
    a[ n_] := If[ n < 0, 0, Numerator@Integrate[ Pochhammer[ x, n], {x, 0, 1}]]; (* Michael Somos, Jul 12 2014 *)
    a[ n_] := If[ n < 0, 0, Numerator[ n! SeriesCoefficient[ -x / ((1 - x) Log[ 1 - x]), {x, 0, n}]]]; (* Michael Somos, Jul 12 2014 *)
    a[ n_] := If[ n < 0, 0, (-1)^n Numerator[ n! SeriesCoefficient[ (x / (Exp[x] - 1))^n, {x, 0, n}]]]; (* Michael Somos, Jul 12 2014 *)
  • Maxima
    v(n):=if n=0 then 1 else 1-sum(v(i)/(n-i+1),i,0,n-1);
    makelist(num(n!*v(n)),n,0,10); /* Vladimir Kruchinin, Aug 28 2013 */
    

Formula

Numerator of integral of x(x+1)...(x+n-1) from 0 to 1.
E.g.f.: -x/((1-x)*log(1-x)). (Note: the numerator of the coefficient of x^n/n! is a(n). - Michael Somos, Jul 12 2014). E.g.f. rewritten by Iaroslav V. Blagouchine, May 07 2016
Numerator of Sum_{k=0..n} (-1)^(n-k) A008275(n,k)/(k+1). - Peter Luschny, Apr 28 2009
a(n) = numerator(n!*v(n)), where v(n) = 1 - Sum_{i=0..n-1} v(i)/(n-i+1), v(0)=1. - Vladimir Kruchinin, Aug 28 2013

A001998 Bending a piece of wire of length n+1; walks of length n+1 on a tetrahedron; also non-branched catafusenes with n+2 condensed hexagons.

Original entry on oeis.org

1, 2, 4, 10, 25, 70, 196, 574, 1681, 5002, 14884, 44530, 133225, 399310, 1196836, 3589414, 10764961, 32291602, 96864964, 290585050, 871725625, 2615147350, 7845353476, 23535971854, 70607649841, 211822683802, 635467254244, 1906400965570, 5719200505225, 17157599124190
Offset: 0

Keywords

Comments

The wire stays in the plane, there are n bends, each is R,L or O; turning the wire over does not count as a new figure.
Equivalently, walks of n+1 steps on a tetrahedron, visiting n+2 vertices, with n "corners"; the symmetry group is S4, reversing a walk does not count as different. Simply interpret R,L,O as instructions to turn R, turn L, or retrace the last step. Walks are not self-avoiding.
Also, it appears that a(n) gives the number of equivalence classes of n-tuples of 0, 1 and 2, where two n-tuples are equivalent if one can be obtained from the other by a sequence of operations R and C, where R denotes reversal and C denotes taking the 2's complement (C(x)=2-x). This has been verified up to a(19)=290585050. Example: for n=3 there are ten equivalence classes {000, 222}, {001, 100, 122, 221}, {002, 022, 200, 220}, {010, 212}, {011, 110, 112, 211}, {012, 210}, {020, 202}, {021, 102, 120, 201}, {101, 121}, {111}, so a(3)=10. - John W. Layman, Oct 13 2009
There exists a bijection between chains of n+2 hexagons and the above described equivalence classes of n-tuples of 0,1, and 2. Namely, for a given chain of n+2 hexagons we take the sequence of the numbers of vertices of degree 2 (0, 1, or 2) between the consecutive contact vertices on one side of the chain; switching to the other side we obtain the 2's complement of this sequence; reversing the order of the hexagons, we obtain the reverse sequence. The inverse mapping is straightforward. For example, to a linear chain of 7 hexagons there corresponds the 5-tuple 11111. - Emeric Deutsch, Apr 22 2013
If we treat two wire bends (or walks, or tuples) related by turning over (or reversing) as different in any of the above-given interpretations of this sequence, we get A007051 (or A124302). Also, a(n-1) is the sum of first 3 terms in n-th row of A284949, see crossrefs therein. - Andrey Zabolotskiy, Sep 29 2017
a(n-1) is the number of color patterns (set partitions) in an unoriented row of length n using 3 or fewer colors (subsets). - Robert A. Russell, Oct 28 2018
From Allan Bickle, Jun 02 2022: (Start)
a(n) is the number of (unlabeled) 3-paths with n+6 vertices. (A 3-path with order n at least 5 can be constructed from a 4-clique by iteratively adding a new 3-leaf (vertex of degree 3) adjacent to an existing 3-clique containing an existing 3-leaf.)
Recurrences appear in the papers by Bickle, Eckhoff, and Markenzon et al. (End)
a(n) is also the number of distinct planar embeddings of the (n+1)-alkane graph (up to at least n=9, and likely for all n). - Eric W. Weisstein, May 21 2024

Examples

			There are 2 ways to bend a piece of wire of length 2 (bend it or not).
For n=4 and a(n-1)=10, the 6 achiral patterns are AAAA, AABB, ABAB, ABBA, ABCA, and ABBC.  The 4 chiral pairs are AAAB-ABBB, AABA-ABAA, AABC-ABCC, and ABAC-ABCB. - _Robert A. Russell_, Oct 28 2018
		

References

  • A. T. Balaban, Enumeration of Cyclic Graphs, pp. 63-105 of A. T. Balaban, ed., Chemical Applications of Graph Theory, Ac. Press, 1976; see p. 75.
  • S. J. Cyvin, B. N. Cyvin, and J. Brunvoll, Enumeration of tree-like octagonal systems: catapolyoctagons, ACH Models in Chem. 134 (1997), 55-70.
  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2.]
  • R. C. Read, The Enumeration of Acyclic Chemical Compounds, pp. 25-61 of A. T. Balaban, ed., Chemical Applications of Graph Theory, Ac. Press, 1976. [I think this reference does not mention this sequence. - N. J. A. Sloane, Aug 10 2006]
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 3 of A320750, offset by one. Column k = 0 of A323942, offset by two.
Cf. A124302 (oriented), A107767 (chiral), A182522 (achiral), with varying offsets.
Column 3 of A320750.
The numbers of unlabeled k-paths for k = 2..7 are given in A005418, A001998, A056323, A056324, A056325, and A345207, respectively.
The sequences above converge to A103293(n+1).

Programs

  • GAP
    a:=[];; for n in [2..45] do if n mod 2 =0 then Add(a,((3^((n-2)/2)+1)/2)^2); else Add(a,  3^((n-3)/2)+(1/4)*(3^(n-2)+1)); fi; od; a; # Muniru A Asiru, Oct 28 2018
  • Maple
    A001998 := proc(n) if n = 0 then 1 elif n mod 2 = 1 then (1/4)*(3^n+4*3^((n-1)/2)+1) else (1/4)*(3^n+2*3^(n/2)+1); fi; end;
    A001998:=(-1+3*z+2*z**2-8*z**3+3*z**4)/(z-1)/(3*z-1)/(3*z**2-1); # conjectured by Simon Plouffe in his 1992 dissertation; gives sequence with an extra leading 1
  • Mathematica
    a[n_?OddQ] := (1/4)*(3^n + 4*3^((n - 1)/2) + 1); a[n_?EvenQ] := (1/4)*(3^n + 2*3^(n/2) + 1); Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Jan 25 2013, from formula *)
    LinearRecurrence[{4,0,-12,9},{1,2,4,10},30] (* Harvey P. Dale, Apr 10 2013 *)
    Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2,k] + Ach[n-2,k-1] + Ach[n-2,k-2]] (* A304972 *)
    k=3; Table[Sum[StirlingS2[n,j]+Ach[n,j],{j,k}]/2,{n,40}] (* Robert A. Russell, Oct 28 2018 *)
  • PARI
    Vec((1-2*x-4*x^2+6*x^3)/((1-x)*(1-3*x)*(1-3*x^2)) + O(x^50)) \\ Colin Barker, May 15 2016
    

Formula

a(n) = if n mod 2 = 0 then ((3^((n-2)/2)+1)/2)^2 else 3^((n-3)/2)+(1/4)*(3^(n-2)+1).
G.f.: (1-2*x-4*x^2+6*x^3) / ((1-x)*(1-3*x)*(1-3*x^2)). - Corrected by Colin Barker, May 15 2016
a(n) = 4*a(n-1)-12*a(n-3)+9*a(n-4), with a(0)=1, a(1)=2, a(2)=4, a(3)=10. - Harvey P. Dale, Apr 10 2013
a(n) = (1+3^n+3^(1/2*(-1+n))*(2-2*(-1)^n+sqrt(3)+(-1)^n*sqrt(3)))/4. - Colin Barker, May 15 2016
E.g.f.: (2*sqrt(3)*sinh(sqrt(3)*x) + 3*exp(2*x)*cosh(x) + 3*cosh(sqrt(3)*x))/6. - Ilya Gutkovskiy, May 15 2016
From Robert A. Russell, Oct 28 2018: (Start)
a(n-1) = (A124302(n) + A182522(n)) / 2 = A124302(n) - A107767(n-1) = A107767(n-1) + A182522(n).
a(n-1) = Sum_{j=1..k} (S2(n,j) + Ach(n,j)) / 2, where k=3 is the maximum number of colors, S2 is the Stirling subset number A008277, and Ach(n,k) = [n>=0 & n<2 & n==k] + [n>1]*(k*Ach(n-2,k) + Ach(n-2,k-1) + Ach(n-2,k-2)).
a(n-1) = A057427(n) + A056326(n) + A056327(n). (End)
a(2*n) = A007051(n)^2; a(2*n+1) = A007051(n)*A007051(n+1). - Todd Simpson, Mar 25 2024

Extensions

Offset and Maple code corrected by Colin Mallows, Nov 12 1999
Term added by Robert A. Russell, Oct 30 2018

A223532 Triangle S(n,k) by rows: coefficients of 6^(n/2)*(x^(5/6)*d/dx)^n when n=0,2,4,6,...

Original entry on oeis.org

1, 1, 6, 7, 84, 36, 91, 1638, 1404, 216, 1729, 41496, 53352, 16416, 1296, 43225, 1296750, 2223000, 1026000, 162000, 7776, 1339975, 48239100, 103369500, 63612000, 15066000, 1446336, 46656, 49579075, 2082321150, 5354540100, 4118877000, 1300698000, 187300512
Offset: 1

Author

Udita Katugampola, Mar 23 2013

Keywords

Examples

			Triangle begins:
1;
1, 6;
7, 84, 36;
91, 1638, 1404, 216;
1729, 41496, 53352, 16416, 1296;
43225, 1296750, 2223000, 1026000, 162000, 7776;
1339975, 48239100, 103369500, 63612000, 15066000, 1446336, 46656;
49579075, 2082321150, 5354540100, 4118877000, 1300698000, 187300512, 12083904, 279936;
		

Programs

  • Maple
    a[0]:= f(x):
    for i from 1 to 20 do
    a[i] := simplify(6^((i+1)mod 2)*x^((4((i+1)mod 2)+1)/6)*(diff(a[i-1],x$1 )));
    end do:
    for j from 1 to 10 do
    b[j]:=a[2j];
    end do;

A052551 Expansion of 1/((1 - x)*(1 - 2*x^2)).

Original entry on oeis.org

1, 1, 3, 3, 7, 7, 15, 15, 31, 31, 63, 63, 127, 127, 255, 255, 511, 511, 1023, 1023, 2047, 2047, 4095, 4095, 8191, 8191, 16383, 16383, 32767, 32767, 65535, 65535, 131071, 131071, 262143, 262143, 524287, 524287, 1048575, 1048575, 2097151, 2097151
Offset: 0

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Equals row sums of triangle A137865. - Gary W. Adamson, Feb 18 2008
Also, the decimal representation of the diagonal from the corner to the origin of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 566", based on the 5-celled von Neumann neighborhood, initialized with a single black (ON) cell at stage zero. - Robert Price, Jul 05 2017
Number of nonempty subsets of {1,2,...,n+1} that contain only odd numbers. a(0) = a(1) = 1: {1}; a(6) = a(7) = 15: {1}, {3}, {5}, {7}, {1,3}, {1,5}, {1,7}, {3,5}, {3,7}, {5,7}, {1,3,5}, {1,3,7}, {1,5,7}, {3,5,7}, {1,3,5,7}. - Enrique Navarrete, Mar 16 2018
Number of nonempty subsets of {1,2,...,n+2} that contain only even numbers. a(0) = a(1) = 1: {2}; a(4) = a(5) = 7: {2}, {4}, {6}, {2,4}, {2,6}, {4,6}, {2,4,6}. - Enrique Navarrete, Mar 26 2018
Doubling of A000225(n+1), n >= 0 entries. First differences give A077957. - Wolfdieter Lang, Apr 08 2018
a(n-2) is the number of achiral rows or cycles of length n partitioned into two sets or the number of color patterns using exactly 2 colors. An achiral row or cycle is equivalent to its reverse. Two color patterns are equivalent if the colors are permuted. For n = 4, the a(n-2) = 3 row patterns are AABB, ABAB, and ABBA; the cycle patterns are AAAB, AABB, and ABAB. For n = 5, the a(n-2) = 3 patterns for both rows and cycles are AABAA, ABABA, and ABBBA. For n = 6, the a(n-2) = 7 patterns for rows are AAABBB, AABABB, AABBAA, ABAABA, ABABAB, ABBAAB, and ABBBBA; the cycle patterns are AAAAAB, AAAABB, AAABAB, AAABBB, AABAAB, AABABB, and ABABAB. - Robert A. Russell, Oct 15 2018
For integers m > 1, the expansion of 1/((1 - x)*(1 - m*x^2)) generates a(n) = (sqrt(m)^(n + 1)*((-1)^n*(sqrt(m) - 1) + sqrt(m) + 1) - 2)/(2*(m - 1)). It appears, for integer values of n >= 0 and m > 1, that it could be simplified in the integral domain a(n) = (m^(1 + floor(n/2)) - 1)/(m - 1). - Federico Provvedi, Nov 23 2018
From Werner Schulte, Mar 04 2019: (Start)
More generally: For some fixed integers q and r > 0 the expansion of A(q,r; x) = 1/((1-x)*(1-q*x^r)) generates coefficients a(q,r; n) = (q^(1+floor(n/r))-1)/(q-1) for n >= 0; the special case q = 1 leads to a(1,r; n) = 1 + floor(n/r).
The a(q,r; n) satisfy for n > r a linear recurrence equation with constant coefficients. The signature vector is given by the sum of two vectors v and w where v has terms 1 followed by r zeros, i.e., (1,0,0,...,0), and w has r-1 leading zeros followed by q and -q, i.e., (0,0,...,0,q,-q).
Let a_i(q,r; n) be the convolution inverse of a(q,r; n). The terms are given by the sum a_i(q,r; n) = b(n) + c(n) for n >= 0 where b(n) has terms 1 and -1 followed by infinitely zeros, i.e., (1,-1,0,0,0,...), and c(n) has r leading zeros followed by -q, q and infinitely zeros, i.e., (0,0,...,0,-q,q,0,0,0,...).
Here is an example for q = 3 and r = 5: The expansion of A(3,5; x) = 1/((1-x)*(1-3*x^5)) = Sum_{n>=0} a(3,5; n)*x^n generates the sequence of coefficients (a(3,5; n)) = (1,1,1,1,1,4,4,4,4,4,13,13,13,13,13,40,...) where r = 5 controls the repetition and q = 3 the different values.
The a(3,5; n) satisfy for n > 5 the linear recurrence equation with constant coefficients and signature (1,0,0,0,0,0) + (0,0,0,0,3,-3) = (1,0,0,0,3,-3).
The convolution inverse a_i(3,5; n) has terms (1,-1,0,0,0,0,0,0,0,...) + (0,0,0,0,0,-3,3,0,0,...) = (1,-1,0,0,0,-3,3,0,0,...).
For further examples and informations see A014983 (q,r = -3,1), A077925 (q,r = -2,1), A000035 (q,r = -1,1), A000012 (q,r = 0,1), A000027 (q,r = 1,1), A000225 (q,r = 2,1), A003462 (q,r = 3,1), A077953 (q,r = -2,2), A133872 (q,r = -1,2), A004526 (q,r = 1,2), A052551 (this sequence with q,r = 2,2), A077886 (q,r = -2,3), A088911 (q,r = -1,3), A002264 (q,r = 1,3) and A077885 (q,r = 2,3). The offsets might be different.
(End)
a(n) is the number of palindromes of length n over the alphabet {1,2} containing the letter 1. More generally, the number of palindromes of length n over the alphabet {1,2,...,k} containing the letter 1 is given by k^ceiling(n/2)-(k-1)^ceiling(n/2). - Sela Fried, Dec 10 2024

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Crossrefs

Column 2 (offset by two) of A304972.
Cf. A000225 (oriented), A056326 (unoriented), and A122746(n-2) (chiral) for rows.
Cf. A056295 (oriented), A056357 (unoriented), and A059053 (chiral) for cycles.

Programs

  • GAP
    Flat(List([1..21],n->[2^n-1,2^n-1])); # Muniru A Asiru, Oct 16 2018
    
  • Magma
    [2^Floor(n/2)-1: n in [2..50]]; // Vincenzo Librandi, Aug 16 2011
    
  • Maple
    spec := [S,{S=Prod(Sequence(Prod(Z,Union(Z,Z))),Sequence(Z))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    Table[StirlingS2[Floor[n/2] + 2, 2], {n, 0, 50}] (* Robert A. Russell, Dec 20 2017 *)
    Drop[LinearRecurrence[{1, 2, -2}, {0, 1, 1}, 50], 1] (* Robert A. Russell, Oct 14 2018 *)
    CoefficientList[Series[1/((1-x)*(1-2*x^2)), {x, 0, 50}], x] (* Stefano Spezia, Oct 16 2018 *)
    2^(1+Floor[(Range[0,50])/2])-1 (* Federico Provvedi, Nov 22 2018 *)
    ((-1)^#(Sqrt[2]-1)+Sqrt[2]+1)2^((#-1)/2)-1&@Range[0, 50] (* Federico Provvedi, Nov 23 2018 *)
  • PARI
    x='x+O('x^50); Vec(1/((1-x)*(1-2*x^2))) \\ Altug Alkan, Mar 19 2018
    
  • Sage
    [2^(floor(n/2)) -1 for n in (2..50)] # G. C. Greubel, Mar 04 2019

Formula

G.f.: 1/((1 - x)*(1 - 2*x^2)).
Recurrence: a(1) = 1, a(0) = 1, -2*a(n) - 1 + a(n+2) = 0.
a(n) = -1 + Sum((1/2)*(1 + 2*alpha)*alpha^(-1 - n)) where the sum is over alpha = the two roots of -1 + 2*x^2.
a(n) = A016116(n+2) - 1. - R. J. Mathar, Jun 15 2009
a(n) = A060546(n+1) - 1. - Filip Zaludek, Dec 10 2016
From Robert A. Russell, Oct 15 2018: (Start)
a(n-2) = S2(floor(n/2)+1,2), where S2 is the Stirling subset number A008277.
a(n-2) = 2*A056326(n) - A000225(n) = A000225(n) - 2*A122746(n-2) = A056326(n) - A122746(n-2).
a(n-2) = 2*A056357(n) - A056295(n) = A056295(n) - 2*A059053(n) = A056357(n) - A059053(n). (End)
From Federico Provvedi, Nov 22 2018: (Start)
a(n) = 2^( 1 + floor(n/2) ) - 1.
a(n) = ( (-1)^n*(sqrt(2)-1) + sqrt(2) + 1 ) * 2^( (n - 1)/2 ) - 1. (End)
E.g.f.: 2*cosh(sqrt(2)*x) + sqrt(2)*sinh(sqrt(2)*x) - cosh(x) - sinh(x). - Franck Maminirina Ramaharo, Nov 23 2018

Extensions

More terms from James Sellers, Jun 06 2000

A124302 Number of set partitions with at most 3 blocks; number of Dyck paths of height at most 4; dimension of space of symmetric polynomials in 3 noncommuting variables.

Original entry on oeis.org

1, 1, 2, 5, 14, 41, 122, 365, 1094, 3281, 9842, 29525, 88574, 265721, 797162, 2391485, 7174454, 21523361, 64570082, 193710245, 581130734, 1743392201, 5230176602, 15690529805, 47071589414, 141214768241, 423644304722, 1270932914165, 3812798742494, 11438396227481
Offset: 0

Author

Mike Zabrocki, Oct 25 2006

Keywords

Comments

Row sums of triangle in A056241. - Philippe Deléham, Oct 30 2006
Row sums of triangle in A147746. - Philippe Deléham, Dec 04 2008
Hankel transform is := [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, ...]. - Philippe Deléham, Dec 04 2008
Number of nonisomorphic graded posets with 0 and 1 and uniform Hasse graph of rank n with no 3-element antichain. (Uniform used in the sense of Retakh, Serconek and Wilson. Graded used in Stanley's sense that every maximal chain has the same length n.) - David Nacin, Feb 26 2012
Number of Dyck paths of length 2n and height at most 4. - Ira M. Gessel, Aug 06 2012

Examples

			There are 15 set partitions of {1,2,3,4}, only {{1},{2},{3},{4}} has more than 3 blocks, so a(4) = 14.
G.f. = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 41*x^5 + 122*x^6 + 365*x^7 + ...
		

References

  • R. Stanley, Enumerative combinatorics, Vol. 1, Cambridge University Press, Cambridge, 1997, pp. 96-100.

Crossrefs

Essentially the same as A007051.

Programs

  • Magma
    I:=[1, 1, 2]; [n le 3 select I[n] else  4*Self(n-1) - 3*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Dec 25 2012
    
  • Maple
    a:= proc(n); if n<3 then [1,1,2][n+1]; else 4*a(n-1)-3*a(n-2); fi; end:
    # Mike Zabrocki, Oct 25 2006
    with(GraphTheory): G:=PathGraph(5): A:= AdjacencyMatrix(G): nmax:=27; for n from 0 to 2*nmax do B(n):=A^n; b(n):=B(n)[1,1]; od: for n from 0 to nmax do a(n):=b(2*n) od: seq(a(n),n=0..nmax);
    # Johannes W. Meijer, May 29 2010
  • Mathematica
    a=Exp[x]-1; Range[0, 20]! CoefficientList[Series[1+a+a^2/2+a^3/6, {x,0,20}],x]
    Join[{1}, LinearRecurrence[{4, -3}, {1, 2}, 20]] (* David Nacin, Feb 26 2012 *)
    CoefficientList[Series[1 / (1 - x / (1 - x / (1 - x / (1 - x)))), {x, 0, 30}], x] (* Vincenzo Librandi, Dec 25 2012 *)
    Table[Sum[StirlingS2[n,k],{k,0,3}],{n,0,30}] (* Robert A. Russell, Mar 29 2018 *)
  • PARI
    {a(n) = if( n<1, n==0, (3^(n-1) + 1) / 2)}; /* Michael Somos, Apr 03 2014 */
  • Python
    def a(n, adict={0:1, 1:1, 2:2}):
        if n in adict:
            return adict[n]
        adict[n]=4*a(n-1) - 3*a(n-2)
        return adict[n] # David Nacin, Mar 04 2012
    

Formula

O.g.f.: (q^2 - 3*q + 1)/(3*q^2 - 4*q + 1) = Sum_{k=0..3} (q^k/Product_{i=1..k} (1-i*q)).
a(n) = 4*a(n-1) - 3*a(n-2); a(0) = 1, a(1) = 1, a(2) = 2, a(n) = Sum_{k=1..3} A008277(n,k).
Inverse binomial transform of A007581. - Philippe Deléham, Oct 30 2006
a(n) = Sum_{k=0..n} A056241(n,k), n >= 1. - Philippe Deléham, Oct 30 2006
a(0) = 1, a(n) = (3^(n-1) + 1)/2 for n >= 1, see A007051. - Philippe Deléham, Oct 30 2006
E.g.f.: (2 + 3*exp(x) + exp(3x))/6.
G.f.: 1 / (1 - x / (1 - x / (1 - x / (1 - x)))). - Michael Somos, May 03 2012
G.f.: 1 + x + 3*x^2*U(0)/2 where U(k) = 1 + 2/(3*3^k + 3*3^k/(1 - 18*x*3^k/ (9*x*3^k - 1/U(k+1)))); (continued fraction, 4-step). - Sergei N. Gladkovskii, Nov 01 2012
G.f.: 1+x*G(0) where G(k) = 1 + 2*x/( 1-2*x - x*(1-2*x)/(x + (1-2*x)*2/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Dec 10 2012
a(n) = Sum_{k=0..3} Stirling2(n,k). - Robert A. Russell, Mar 29 2018
G.f.: Sum_{j=0..k} A248925(k,j)*x^j / Product_{j=1..k} 1-j*x with k=3. - Robert A. Russell, Apr 25 2018

A346426 Number A(n,k) of partitions of the (n+k)-multiset {0,...,0,1,2,...,k} with n 0's; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 5, 5, 4, 3, 15, 15, 11, 7, 5, 52, 52, 36, 21, 12, 7, 203, 203, 135, 74, 38, 19, 11, 877, 877, 566, 296, 141, 64, 30, 15, 4140, 4140, 2610, 1315, 592, 250, 105, 45, 22, 21147, 21147, 13082, 6393, 2752, 1098, 426, 165, 67, 30, 115975, 115975, 70631, 33645, 13960, 5317, 1940, 696, 254, 97, 42
Offset: 0

Author

Alois P. Heinz, Jul 16 2021

Keywords

Comments

Also number A(n,k) of factorizations of 2^n * Product_{i=1..k} prime(i+1); A(3,1) = 7: 2*2*2*3, 2*3*4, 4*6, 2*2*6, 3*8, 2*12, 24; A(1,2) = 5: 2*3*5, 5*6, 3*10, 2*15, 30.

Examples

			A(2,2) = 11: 00|1|2, 001|2, 1|002, 0|0|1|2, 0|01|2, 0|1|02, 01|02, 00|12, 0|0|12, 0|012, 0012.
Square array A(n,k) begins:
   1,  1,   2,    5,   15,    52,    203,     877,    4140, ...
   1,  2,   5,   15,   52,   203,    877,    4140,   21147, ...
   2,  4,  11,   36,  135,   566,   2610,   13082,   70631, ...
   3,  7,  21,   74,  296,  1315,   6393,   33645,  190085, ...
   5, 12,  38,  141,  592,  2752,  13960,   76464,  448603, ...
   7, 19,  64,  250, 1098,  5317,  28009,  158926,  963913, ...
  11, 30, 105,  426, 1940,  9722,  52902,  309546, 1933171, ...
  15, 45, 165,  696, 3281, 16972,  95129,  572402, 3670878, ...
  22, 67, 254, 1106, 5372, 28582, 164528, 1015356, 6670707, ...
  ...
		

Crossrefs

Programs

  • Maple
    s:= proc(n) option remember; expand(`if`(n=0, 1,
          x*add(s(n-j)*binomial(n-1, j-1), j=1..n)))
        end:
    S:= proc(n, k) option remember; coeff(s(n), x, k) end:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i=0,
          combinat[numbpart](n), add(b(n-j, i-1), j=0..n)))
        end:
    A:= (n, k)-> add(S(k, j)*b(n, j), j=0..k):
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    s[n_] := s[n] = Expand[If[n == 0, 1, x Sum[s[n - j] Binomial[n - 1, j - 1], {j, 1, n}]]];
    S[n_, k_] := S[n, k] = Coefficient[s[n], x, k];
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i == 0, PartitionsP[n], Sum[b[n - j, i - 1], {j, 0, n}]]];
    A[n_, k_] := Sum[S[k, j] b[n, j], {j, 0, k}];
    Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Aug 18 2021, after Alois P. Heinz *)

Formula

A(n,k) = A001055(A000079(n)*A070826(k+1)).
A(n,k) = Sum_{j=0..k} A048993(k,j)*A292508(n,j+1).
A(n,k) = Sum_{j=0..k} Stirling2(k,j)*Sum_{i=0..n} binomial(j+i-1,i)*A000041(n-i).
Previous Showing 101-110 of 644 results. Next