cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 313 results. Next

A007674 Numbers m such that m and m+1 are squarefree.

Original entry on oeis.org

1, 2, 5, 6, 10, 13, 14, 21, 22, 29, 30, 33, 34, 37, 38, 41, 42, 46, 57, 58, 61, 65, 66, 69, 70, 73, 77, 78, 82, 85, 86, 93, 94, 101, 102, 105, 106, 109, 110, 113, 114, 118, 122, 129, 130, 133, 137, 138, 141, 142, 145
Offset: 1

Views

Author

Keywords

Comments

m and m+1 squarefree implies that m*(m+1) is a squarefree oblong number and that m*(m+1)/2 is a squarefree triangular number. - Daniel Forgues, Aug 18 2012
Numbers m such that A002378(m) is squarefree. - Thomas Ordowski, Sep 01 2015

References

  • P. R. Halmos, Problems for Mathematicians Young and Old. Math. Assoc. America, 1991, p. 28.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    ff = {}; gg = {}; Do[kk = FactorInteger[n]; tak = False; Do[If[kk[[m]][[2]] > 1, tak = True], {m, 1, Length[kk]}]; If[tak == False, jj = FactorInteger[n + 1]; tak1 = False; Do[If[jj[[m]][[2]] > 1, tak1 = True], {m, 1, Length[jj]}]; If[tak1 == False, AppendTo[ff, n]]], {n, 1, 500}]; ff (* Artur Jasinski, Jan 28 2010 *)
    Select[Range[400],SquareFreeQ[#(#+1)]&] (* Vladimir Joseph Stephan Orlovsky, Mar 30 2011 *)
  • PARI
    list(lim)=my(v=vectorsmall(lim\1,i,1),u=List()); for(n=2, sqrt(lim), forstep(i=n^2,lim,n^2, v[i]=v[i-1]=0)); for(i=1,lim, if(v[i], listput(u,i))); v=0; Vec(u) \\ Charles R Greathouse IV, Aug 10 2011

Formula

A008966(a(n))*A008966(a(n)+1) = 1. - Reinhard Zumkeller, Dec 03 2009
a(n) ~ k*n, where k = 1/A065474. This result is originally due to Carlitz; for the (current) best error term, see Reuss. - Charles R Greathouse IV, Aug 10 2011, expanded Sep 18 2019

Extensions

Initial 1 added at the suggestion of Zak Seidov, Sep 19 2007

A013928 Number of (positive) squarefree numbers < n.

Original entry on oeis.org

0, 1, 2, 3, 3, 4, 5, 6, 6, 6, 7, 8, 8, 9, 10, 11, 11, 12, 12, 13, 13, 14, 15, 16, 16, 16, 17, 17, 17, 18, 19, 20, 20, 21, 22, 23, 23, 24, 25, 26, 26, 27, 28, 29, 29, 29, 30, 31, 31, 31, 31, 32, 32, 33, 33, 34, 34, 35, 36, 37, 37, 38, 39, 39, 39, 40, 41, 42, 42, 43, 44, 45, 45, 46, 47, 47, 47, 48, 49, 50, 50, 50, 51
Offset: 1

Views

Author

Keywords

Comments

For n >= 1 define an n X n (0, 1) matrix A by A[i, j] = 1 if gcd(i, j) = 1, A[i, j] = 0 if gcd(i, j) > 1 for 1 <= i,j <= n . The rank of A is a(n + 1). Asymptotic expression for a(n) is a(n) ~ n * 6 / Pi^2. - Sharon Sela (sharonsela(AT)hotmail.com), May 06 2002
a(n) = Sum_{k=1..n-1} A008966(k). - Reinhard Zumkeller, Jul 05 2010
For all n >= 1, a(n)/n >= a(176)/176 = 53/88, and the equality occurs only for n=176 (see K. Rogers link). - Michel Marcus, Dec 16 2012 [Thus the Schnirelmann density of the squarefree numbers is 53/88. - Charles R Greathouse IV, Feb 02 2016]
Cohen, Dress, & El Marraki prove that |a(n) - 6n/Pi^2| < 0.02767*sqrt(n) for n >= 438653. - Charles R Greathouse IV, Feb 02 2016

Examples

			a(10) = 6 because there are 6 squarefree numbers up to 10: 1, 2, 3, 5, 6, 7.
a(11) = 7 because there are 7 squarefree numbers up to 11: the numbers listed above for 10, plus 10 itself.
a(13) = 8 because the 12 X 12 matrix described in the first comment by Sharon Sela has rank 8. Rows 2,4,8 (the powers of two) are identical, rows 3,9 (the powers of three) are identical, and rows 6 and 12 (same prime factors) are identical. - _Geoffrey Critzer_, Dec 07 2014
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 0, 1, 0, 1, 0, 1, 0, 1, 0  1, 0, ...
1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, ...
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...
1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, ...
1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, ...
1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, ...
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...
1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, ...
1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, ...
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, ...
1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, ...
.                                   .
.                                    .
.                                     .
		

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth edition (1979), Clarendon Press, pp. 269-270.
  • E. Landau, Über den Zusammenhang einiger neuer Sätze der analytischen Zahlentheorie, Wiener Sitzungberichte, Math. Klasse 115 (1906), pp. 589-632. Cited in Sándor, Mitrinović, & Crstici.
  • József Sándor, Dragoslav S. Mitrinovic, and Borislav Crstici, Handbook of Number Theory I. Springer, 2005. Section VI.18.

Crossrefs

One less than A107079.
Cf. A158819 Number of squarefree numbers <= n minus round(n/zeta(2)).

Programs

  • Haskell
    a013928 n = a013928_list !! (n-1)
    a013928_list = scanl (+) 0 $ map a008966 [1..]
    -- Reinhard Zumkeller, Aug 03 2012
    
  • Maple
    ListTools:-PartialSums([0,seq(numtheory:-mobius(i)^2,i=1..100)]); # Robert Israel, Dec 11 2014
  • Mathematica
    Accumulate[Table[Abs[MoebiusMu[n]], {n, 0, 79}]] (* Alonso del Arte, Oct 07 2012 *)
    Accumulate[Table[If[SquareFreeQ[n],1,0],{n,0,80}]] (* Harvey P. Dale, Mar 06 2019 *)
  • PARI
    a(n)=sum(i=1,n-1,if(issquarefree(i),1,0)) \\ Lifchitz
    
  • PARI
    a(n)=n--;sum(k=1,sqrtint(n),moebius(k)*(n\k^2)) \\ Benoit Cloitre, Oct 25 2009
    
  • PARI
    a(n)=n--; my(s); forfactored(k=1,sqrtint(n), s += n\k[1]^2*moebius(k)); s \\ Charles R Greathouse IV, Nov 05 2017
    
  • PARI
    a(n)=n--; my(s); forsquarefree(k=1, sqrtint(n), s += n\k[1]^2*moebius(k)); s \\ Charles R Greathouse IV, Jan 08 2018
    
  • Python
    from sympy.ntheory.factor_  import core
    def a(n): return sum ([1 for i in range(1, n) if core(i) == i]) # Indranil Ghosh, Apr 16 2017
    
  • Python
    from math import isqrt
    from sympy import mobius
    def A013928(n): return sum(mobius(k)*((n-1)//k**2) for k in range(1,isqrt(n-1)+1)) # Chai Wah Wu, Jan 03 2024

Formula

a(n) = Sum_{k = 1..n-1} mu(k)^2. - Vladeta Jovovic, May 18 2001
a(n) = Sum_{d = 1..floor(sqrt(n - 1))} mu(d)*floor((n - 1)/d^2) where mu(d) is the Moebius function (A008683). - Vladeta Jovovic, Apr 06 2001
Asymptotic formula (with error term): a(n) = Sum_{k = 1..n-1} mu(k)^2 = Sum_{k = 1..n-1} |mu(k)| = 6*n/Pi^2 + O(sqrt(n)). - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Jul 20 2002
a(n) = Sum_{k = 0..n} if(k <= n-1, mu(n - k) mod 2, else 0; a(n + 1) = Sum_{k = 0..n} mu(n - k + 1) mod 2. - Paul Barry, May 10 2005
a(n + 1) = Sum_{k = 0..n} abs(mu(n - k + 1)). - Paul Barry, Jul 20 2005
a(n) = Sum_{k = 1..floor(sqrt(n))} mu(k)*floor(n/k^2). - Benoit Cloitre, Oct 25 2009
Landau proved that a(n) = 6*n/Pi^2 + o(sqrt(n)). - Charles R Greathouse IV, Feb 02 2016
Vaidya proved that a(n) = 6*n/Pi^2 + O(n^k) for any k > 2/5 on the Riemann hypothesis. - Charles R Greathouse IV, Feb 02 2016
a(n) = A107079(n)-1. - Antti Karttunen, Oct 07 2016
G.f.: Sum_{k>=1} mu(k)^2*x^(k+1)/(1 - x). - Ilya Gutkovskiy, Feb 06 2017
a(n+1) = n - A057627(n) - Antti Karttunen, Apr 17 2017

A225546 Tek's flip: Write n as the product of distinct factors of the form prime(i)^(2^(j-1)) with i and j integers, and replace each such factor with prime(j)^(2^(i-1)).

Original entry on oeis.org

1, 2, 4, 3, 16, 8, 256, 6, 9, 32, 65536, 12, 4294967296, 512, 64, 5, 18446744073709551616, 18, 340282366920938463463374607431768211456, 48, 1024, 131072, 115792089237316195423570985008687907853269984665640564039457584007913129639936, 24, 81, 8589934592, 36, 768
Offset: 1

Views

Author

Paul Tek, May 10 2013

Keywords

Comments

This is a multiplicative self-inverse permutation of the integers.
A225547 gives the fixed points.
From Antti Karttunen and Peter Munn, Feb 02 2020: (Start)
This sequence operates on the Fermi-Dirac factors of a number. As arranged in array form, in A329050, this sequence reflects these factors about the main diagonal of the array, substituting A329050[j,i] for A329050[i,j], and this results in many relationships including significant homomorphisms.
This sequence provides a relationship between the operations of squaring and prime shift (A003961) because each successive column of the A329050 array is the square of the previous column, and each successive row is the prime shift of the previous row.
A329050 gives examples of how significant sets of numbers can be formed by choosing their factors in relation to rows and/or columns. This sequence therefore maps equivalent derived sets by exchanging rows and columns. Thus odd numbers are exchanged for squares, squarefree numbers for powers of 2 etc.
Alternative construction: For n > 1, form a vector v of length A299090(n), where each element v[i] for i=1..A299090(n) is a product of those distinct prime factors p(i) of n whose exponent e(i) has the bit (i-1) "on", or 1 (as an empty product) if no such exponents are present. a(n) is then Product_{i=1..A299090(n)} A000040(i)^A048675(v[i]). Note that because each element of vector v is squarefree, it means that each exponent A048675(v[i]) present in the product is a "submask" (not all necessarily proper) of the binary string A087207(n).
This permutation effects the following mappings:
A000035(a(n)) = A010052(n), A010052(a(n)) = A000035(n). [Odd numbers <-> Squares]
A008966(a(n)) = A209229(n), A209229(a(n)) = A008966(n). [Squarefree numbers <-> Powers of 2]
(End)
From Antti Karttunen, Jul 08 2020: (Start)
Moreover, we see also that this sequence maps between A016825 (Numbers of the form 4k+2) and A001105 (2*squares) as well as between A008586 (Multiples of 4) and A028983 (Numbers with even sum of the divisors).
(End)

Examples

			  7744  = prime(1)^2^(2-1)*prime(1)^2^(3-1)*prime(5)^2^(2-1).
a(7744) = prime(2)^2^(1-1)*prime(3)^2^(1-1)*prime(2)^2^(5-1) = 645700815.
		

Crossrefs

Cf. A225547 (fixed points) and the subsequences listed there.
Transposes A329050, A329332.
An automorphism of positive integers under the binary operations A059895, A059896, A059897, A306697, A329329.
An automorphism of A059897 subgroups: A000379, A003159, A016754, A122132.
Permutes lists where membership is determined by number of Fermi-Dirac factors: A000028, A050376, A176525, A268388.
Sequences f that satisfy f(a(n)) = f(n): A048675, A064179, A064547, A097248, A302777, A331592.
Pairs of sequences (f,g) that satisfy a(f(n)) = g(a(n)): (A000265,A008833), (A000290,A003961), (A005843,A334747), (A006519,A007913), (A008586,A334748).
Pairs of sequences (f,g) that satisfy a(f(n)) = g(n), possibly with offset change: (A000040,A001146), (A000079,A019565).
Pairs of sequences (f,g) that satisfy f(a(n)) = g(n), possibly with offset change: (A000035, A010052), (A008966, A209229), (A007814, A248663), (A061395, A299090), (A087207, A267116), (A225569, A227291).
Cf. A331287 [= gcd(a(n),n)].
Cf. A331288 [= min(a(n),n)], see also A331301.
Cf. A331309 [= A000005(a(n)), number of divisors].
Cf. A331590 [= a(a(n)*a(n))].
Cf. A331591 [= A001221(a(n)), number of distinct prime factors], see also A331593.
Cf. A331740 [= A001222(a(n)), number of prime factors with multiplicity].
Cf. A331733 [= A000203(a(n)), sum of divisors].
Cf. A331734 [= A033879(a(n)), deficiency].
Cf. A331735 [= A009194(a(n))].
Cf. A331736 [= A000265(a(n)) = a(A008833(n)), largest odd divisor].
Cf. A335914 [= A038040(a(n))].
A self-inverse isomorphism between pairs of A059897 subgroups: (A000079,A005117), (A000244,A062503), (A000290\{0},A005408), (A000302,A056911), (A000351,A113849 U {1}), (A000400,A062838), (A001651,A252895), (A003586,A046100), (A007310,A000583), (A011557,A113850 U {1}), (A028982,A042968), (A053165,A065331), (A262675,A268390).
A bijection between pairs of sets: (A001248,A011764), (A007283,A133466), (A016825, A001105), (A008586, A028983).
Cf. also A336321, A336322 (compositions with another involution, A122111).

Programs

  • Mathematica
    Array[If[# == 1, 1, Times @@ Flatten@ Map[Function[{p, e}, Map[Prime[Log2@ # + 1]^(2^(PrimePi@ p - 1)) &, DeleteCases[NumberExpand[e, 2], 0]]] @@ # &, FactorInteger[#]]] &, 28] (* Michael De Vlieger, Jan 21 2020 *)
  • PARI
    A019565(n) = factorback(vecextract(primes(logint(n+!n, 2)+1), n));
    a(n) = {my(f=factor(n)); for (i=1, #f~, my(p=f[i,1]); f[i,1] = A019565(f[i,2]); f[i,2] = 2^(primepi(p)-1);); factorback(f);} \\ Michel Marcus, Nov 29 2019
    
  • PARI
    A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; };
    A225546(n) = if(1==n,1,my(f=factor(n),u=#binary(vecmax(f[, 2])),prods=vector(u,x,1),m=1,e); for(i=1,u,for(k=1,#f~, if(bitand(f[k,2],m),prods[i] *= f[k,1])); m<<=1); prod(i=1,u,prime(i)^A048675(prods[i]))); \\ Antti Karttunen, Feb 02 2020
    
  • Python
    from math import prod
    from sympy import prime, primepi, factorint
    def A225546(n): return prod(prod(prime(i) for i, v in enumerate(bin(e)[:1:-1],1) if v == '1')**(1<Chai Wah Wu, Mar 17 2023

Formula

Multiplicative, with a(prime(i)^j) = A019565(j)^A000079(i-1).
a(prime(i)) = 2^(2^(i-1)).
From Antti Karttunen and Peter Munn, Feb 06 2020: (Start)
a(A329050(n,k)) = A329050(k,n).
a(A329332(n,k)) = A329332(k,n).
Equivalently, a(A019565(n)^k) = A019565(k)^n. If n = 1, this gives a(2^k) = A019565(k).
a(A059897(n,k)) = A059897(a(n), a(k)).
The previous formula implies a(n*k) = a(n) * a(k) if A059895(n,k) = 1.
a(A000040(n)) = A001146(n-1); a(A001146(n)) = A000040(n+1).
a(A000290(a(n))) = A003961(n); a(A003961(a(n))) = A000290(n) = n^2.
a(A000265(a(n))) = A008833(n); a(A008833(a(n))) = A000265(n).
a(A006519(a(n))) = A007913(n); a(A007913(a(n))) = A006519(n).
A007814(a(n)) = A248663(n); A248663(a(n)) = A007814(n).
A048675(a(n)) = A048675(n) and A048675(a(2^k * n)) = A048675(2^k * a(n)) = k + A048675(a(n)).
(End)
From Antti Karttunen and Peter Munn, Jul 08 2020: (Start)
For all n >= 1, a(2n) = A334747(a(n)).
In particular, for n = A003159(m), m >= 1, a(2n) = 2*a(n). [Note that A003159 includes all odd numbers]
(End)

Extensions

Name edited by Peter Munn, Feb 14 2020
"Tek's flip" prepended to the name by Antti Karttunen, Jul 08 2020

A003277 Cyclic numbers: k such that k and phi(k) are relatively prime; also k such that there is just one group of order k, i.e., A000001(k) = 1.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 13, 15, 17, 19, 23, 29, 31, 33, 35, 37, 41, 43, 47, 51, 53, 59, 61, 65, 67, 69, 71, 73, 77, 79, 83, 85, 87, 89, 91, 95, 97, 101, 103, 107, 109, 113, 115, 119, 123, 127, 131, 133, 137, 139, 141, 143, 145, 149, 151, 157, 159, 161, 163, 167, 173
Offset: 1

Views

Author

Keywords

Comments

Except for a(2)=2, all the terms in the sequence are odd. This is because of the existence of a non-cyclic dihedral group of order 2n for each n>1. - Ahmed Fares (ahmedfares(AT)my-deja.com), May 09 2001
Also gcd(n, A051953(n)) = 1. - Labos Elemer
n such that x^n == 1 (mod n) has no solution 2 <= x <= n. - Benoit Cloitre, May 10 2002
There is only one group (the cyclic group of order n) whose order is n. - Gerard P. Michon, Jan 08 2008 [This is a 1947 result of Tibor Szele. - Charles R Greathouse IV, Nov 23 2011]
Any divisor of a Carmichael number (A002997) must be odd and cyclic. Conversely, G. P. Michon conjectured (c. 1980) that any odd cyclic number has at least one Carmichael multiple (if the conjecture is true, each of them has infinitely many such multiples). In 2007, Michon & Crump produced explicit Carmichael multiples of all odd cyclic numbers below 10000 (see link, cf. A253595). - Gerard P. Michon, Jan 08 2008
Numbers n such that phi(n)^phi(n) == 1 (mod n). - Michel Lagneau, Nov 18 2012
Contains A000040, and all members of A006094 except 6. - Robert Israel, Jul 08 2015
Number m such that n^n == r (mod m) is solvable for any r. - David W. Wilson, Oct 01 2015
Numbers m such that A074792(m) = m + 1. - Thomas Ordowski, Jul 16 2017
Squarefree terms of A056867 (see McCarthy link p. 592 and similar comment with "cubefree" in A051532). - Bernard Schott, Mar 24 2022

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • J. S. Rose, A Course on Group Theory, Camb. Univ. Press, 1978, see p. 7.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Subsequence of A051532. Intersection of A056867 and A005117.
Cf. A000010, A008966, A009195, A050384 (the same sequence but with the primes removed). Also A000001(a(n)) = 1.

Programs

  • Haskell
    import Data.List (elemIndices)
    a003277 n = a003277_list !! (n-1)
    a003277_list = map (+ 1) $ elemIndices 1 a009195_list
    -- Reinhard Zumkeller, Feb 27 2012
    
  • Magma
    [n: n in [1..200] | Gcd(n, EulerPhi(n)) eq 1]; // Vincenzo Librandi, Jul 09 2015
    
  • Maple
    select(t -> igcd(t, numtheory:-phi(t))=1, [$1..1000]); # Robert Israel, Jul 08 2015
  • Mathematica
    Select[Range[175], GCD[#, EulerPhi[#]] == 1 &] (* Jean-François Alcover, Apr 04 2011 *)
    Select[Range@175, FiniteGroupCount@# == 1 &] (* Robert G. Wilson v, Feb 16 2017 *)
    Select[Range[200],CoprimeQ[#,EulerPhi[#]]&] (* Harvey P. Dale, Apr 10 2022 *)
  • PARI
    isA003277(n) = gcd(n,eulerphi(n))==1 \\ Michael B. Porter, Feb 21 2010
    
  • Sage
    # Compare A050384.
    def isPrimeTo(n, m): return gcd(n, m) == 1
    def isCyclic(n): return isPrimeTo(n, euler_phi(n))
    [n for n in (1..173) if isCyclic(n)] # Peter Luschny, Nov 14 2018

Formula

n = p_1*p_2*...*p_k (for some k >= 0), where the p_i are distinct primes and no p_j-1 is divisible by any p_i.
A000001(a(n)) = 1.
Erdős proved that a(n) ~ e^gamma n log log log n, where e^gamma is A073004. - Charles R Greathouse IV, Nov 23 2011
A000005(a(n)) = 2^k. - Carlos Eduardo Olivieri, Jul 07 2015
A008966(a(n)) = 1. - Bernard Schott, Mar 24 2022

Extensions

More terms from Christian G. Bower

A056911 Odd squarefree numbers.

Original entry on oeis.org

1, 3, 5, 7, 11, 13, 15, 17, 19, 21, 23, 29, 31, 33, 35, 37, 39, 41, 43, 47, 51, 53, 55, 57, 59, 61, 65, 67, 69, 71, 73, 77, 79, 83, 85, 87, 89, 91, 93, 95, 97, 101, 103, 105, 107, 109, 111, 113, 115, 119, 123, 127, 129, 131, 133, 137, 139, 141, 143, 145, 149, 151
Offset: 1

Views

Author

James Sellers, Jul 07 2000

Keywords

Comments

From Daniel Forgues, May 27 2009: (Start)
For any prime p, there are as many squarefree numbers having p as a factor as squarefree numbers not having p as a factor amongst all the squarefree numbers (one-to-one correspondence, both cardinality aleph_0).
E.g. there are as many even squarefree numbers as there are odd squarefree numbers.
For any prime p, the density of squarefree numbers having p as a factor is 1/p of the density of squarefree numbers not having p as a factor.
E.g. the density of even squarefree numbers is 1/p = 1/2 of the density of odd squarefree numbers (which means that 1/(p + 1) = 1/3 of the squarefree numbers are even and p/(p + 1) = 2/3 are odd). As a consequence the n-th even squarefree number is very nearly p = 2 times the n-th odd squarefree number (which means that the n-th even squarefree number is very nearly (p + 1) = 3 times the n-th squarefree number while the n-th odd squarefree number is very nearly (p + 1)/p = 3/2 the n-th squarefree number).
For any prime p, the n-th squarefree number not divisible by p is: n * (1 + 1/p) * zeta(2) + O(n^(1/2)) = n * (1 + 1/p) * (Pi^2 / 6) + O(n^(1/2)) (End)

Examples

			The exponents in the prime factorization of 15 are all equal to 1, so 15 appears here. The number 75 does not appear in this sequence, as it is divisible by the square number 25.
		

Crossrefs

Subsequence of A005117 and A036537.
Equals A039956/2.
Cf. A238711 (subsequence).

Programs

  • Haskell
    a056911 n = a056911_list !! (n-1)
    a056911_list = filter ((== 1) . a008966) [1,3..]
    -- Reinhard Zumkeller, Aug 27 2011
    
  • Magma
    [n: n in [1..151 by 2] | IsSquarefree(n)]; // Bruno Berselli, Mar 03 2011
    
  • Mathematica
    Select[Range[1,151,2],SquareFreeQ] (* Ant King, Mar 17 2013 *)
  • PARI
    is(n)=n%2 && issquarefree(n) \\ Charles R Greathouse IV, Mar 26 2013
    
  • PARI
    list(lim)=my(v=List()); forsquarefree(k=1,lim\1, if(k[1]%2, listput(v,k[1]))); Vec(v) \\ Charles R Greathouse IV, Jan 14 2025

Formula

A123314(A100112(a(n))) > 0. - Reinhard Zumkeller, Sep 25 2006
a(n) = n * (3/2) * zeta(2) + O(n^(1/2)) = n * (Pi^2 / 4) + O(n^(1/2)). - Daniel Forgues, May 27 2009
A008474(a(n)) * A000035(a(n)) = 1. - Reinhard Zumkeller, Aug 27 2011
Sum_{n>=1} 1/a(n)^s = ((2^s)* zeta(s))/((1+2^s)*zeta(2*s)). - Enrique Pérez Herrero, Sep 15 2012 [corrected by Amiram Eldar, Sep 26 2023]

A056170 Number of non-unitary prime divisors of n.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 2, 0, 0, 0, 1, 0
Offset: 1

Views

Author

Labos Elemer, Jul 27 2000

Keywords

Comments

A prime factor of n is unitary iff its exponent is 1 in the prime factorization of n. (Of course for any prime p, GCD(p, n/p) is either 1 or p. For a unitary prime factor it must be 1.)
Number of squared primes dividing n. - Reinhard Zumkeller, May 18 2002
a(A005117(n)) = 0; a(A013929(n)) > 0; a(A190641(n)) = 1. - Reinhard Zumkeller, Dec 29 2012
First differences of A013940. - Jason Kimberley, Feb 01 2017
Number of exponents larger than 1 in the prime factorization of n. - Antti Karttunen, Nov 28 2017

Crossrefs

Programs

Formula

Additive with a(p^e) = 0 if e = 1, 1 otherwise.
G.f.: Sum_{k>=1} x^(prime(k)^2)/(1 - x^(prime(k)^2)). - Ilya Gutkovskiy, Jan 01 2017
a(n) = log_2(A000005(A071773(n))). - observed by Velin Yanev, Aug 20 2017, confirmed by Antti Karttunen, Nov 28 2017
From Antti Karttunen, Nov 28 2017: (Start)
a(n) = A001221(n) - A056169(n).
a(n) = omega(A000188(n)) = omega(A003557(n)) = omega(A057521(n)) = omega(A295666(n)), where omega = A001221.
For all n >= 1 it holds that:
a(A003557(n)) = A295659(n).
a(n) >= A162641(n).
(End)
Dirichlet g.f.: primezeta(2s)*zeta(s). - Benedict W. J. Irwin, Jul 11 2018
Asymptotic mean: lim_{n->oo} (1/n) * Sum_{k=1..n} a(k) = Sum_{p prime} 1/p^2 = 0.452247... (A085548). - Amiram Eldar, Nov 01 2020
a(n) = A275812(n) - A046660(n). - Amiram Eldar, Jan 09 2024

Extensions

Minor edits by Franklin T. Adams-Watters, Mar 23 2011

A073576 Number of partitions of n into squarefree parts.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 9, 12, 16, 21, 28, 36, 47, 60, 76, 96, 120, 150, 185, 228, 280, 342, 416, 504, 608, 731, 877, 1048, 1249, 1484, 1759, 2079, 2452, 2885, 3387, 3968, 4640, 5413, 6304, 7328, 8504, 9852, 11395, 13159, 15172, 17468, 20082, 23056, 26434, 30267
Offset: 0

Views

Author

Vladeta Jovovic, Aug 27 2002

Keywords

Comments

Euler transform of the absolute values of A008683. - Tilman Neumann, Dec 13 2008
Euler transform of A008966. - Vaclav Kotesovec, Mar 31 2018

Crossrefs

Cf. A058647.
Cf. A087188.
Cf. A225244.
Cf. A114374.

Programs

  • Haskell
    a073576 = p a005117_list where
       p _          0 = 1
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Jun 01 2015
    
  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
          abs(mobius(d)), d=divisors(j)) *a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..60);  # Alois P. Heinz, Mar 05 2015
  • Mathematica
    Table[Length[Select[Boole /@ Thread /@ SquareFreeQ /@ IntegerPartitions[n], FreeQ[#, 0] &]], {n, 48}] (* Jayanta Basu, Jul 02 2013 *)
    a[n_] := a[n] = If[n==0, 1, Sum[Sum[d*Abs[MoebiusMu[d]], {d, Divisors[j]}] * a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Oct 10 2015, after Alois P. Heinz *)
    nmax = 60; CoefficientList[Series[Exp[Sum[Sum[Abs[MoebiusMu[k]] * x^(j*k) / j, {k, 1, Floor[nmax/j] + 1}], {j, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 31 2018 *)
  • Python
    from functools import lru_cache
    from sympy import mobius, divisors
    @lru_cache(maxsize=None)
    def A073576(n): return sum(sum(d*abs(mobius(d)) for d in divisors(i, generator=True))*A073576(n-i) for i in range(1,n+1))//n if n else 1 # Chai Wah Wu, Aug 23 2024

Formula

G.f.: 1/Product_{k>0} (1-x^A005117(k)).
a(n) = 1/n*Sum_{k=1..n} A048250(k)*a(n-k).
a(n) = A000041(n) - A114374(n) - A117395(n), n>0. - Reinhard Zumkeller, Mar 11 2006
G.f.: 1 + Sum_{i>=1} mu(i)^2*x^i / Product_{j=1..i} (1 - mu(j)^2*x^j). - Ilya Gutkovskiy, Jun 05 2017
a(n) ~ exp(2*sqrt(n)) / (4*Pi^(3/2)*n^(1/4)). - Vaclav Kotesovec, Mar 24 2018

A050361 Number of factorizations into distinct prime powers greater than 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1
Offset: 1

Views

Author

Christian G. Bower, Oct 15 1999

Keywords

Comments

a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3*3 and 375 = 3*5^3 both have prime signature (3,1).
The number of unordered factorizations of n into 1 and exponentially odd prime powers, i.e., p^e where p is a prime and e is odd (A246551). - Amiram Eldar, Jun 12 2025

Examples

			From _Gus Wiseman_, Jul 30 2022: (Start)
The A000688(216) = 9 factorizations of 216 into prime powers are:
  (2*2*2*3*3*3)
  (2*2*2*3*9)
  (2*2*2*27)
  (2*3*3*3*4)
  (2*3*4*9)
  (2*4*27)
  (3*3*3*8)
  (3*8*9)
  (8*27)
Of these, the a(216) = 4 strict cases are:
  (2*3*4*9)
  (2*4*27)
  (3*8*9)
  (8*27)
(End)
		

Crossrefs

Cf. A124010.
This is the strict case of A000688.
Positions of 1's are A004709, complement A046099.
The case of primes (instead of prime-powers) is A008966, non-strict A000012.
The non-strict additive version allowing 1's A023893, ranked by A302492.
The non-strict additive version is A023894, ranked by A355743.
The additive version (partitions) is A054685, ranked by A356065.
The additive version allowing 1's is A106244, ranked by A302496.
A001222 counts prime-power divisors.
A005117 lists all squarefree numbers.
A034699 gives maximal prime-power divisor.
A246655 lists all prime-powers (A000961 includes 1), towers A164336.
A296131 counts twice-factorizations of type PQR, non-strict A295935.

Programs

  • Haskell
    a050361 = product . map a000009 . a124010_row
    -- Reinhard Zumkeller, Aug 28 2014
    
  • Maple
    A050361 := proc(n)
        local a,f;
        if n = 1 then
            1;
        else
            a := 1 ;
            for f in ifactors(n)[2] do
                a := a*A000009(op(2,f)) ;
            end do:
        end if;
    end proc: # R. J. Mathar, May 25 2017
  • Mathematica
    Table[Times @@ PartitionsQ[Last /@ FactorInteger[n]], {n, 99}] (* Arkadiusz Wesolowski, Feb 27 2017 *)
  • PARI
    A000009(n,k=(n-!(n%2))) = if(!n,1,my(s=0); while(k >= 1, if(k<=n, s += A000009(n-k,k)); k -= 2); (s));
    A050361(n) = factorback(apply(A000009,factor(n)[,2])); \\ Antti Karttunen, Nov 17 2019

Formula

Dirichlet g.f.: Product_{n is a prime power >1}(1 + 1/n^s).
Multiplicative with a(p^e) = A000009(e).
a(A002110(k))=1.
a(n) = A050362(A101296(n)). - R. J. Mathar, May 26 2017
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} f(1/p) = 1.26020571070524171076..., where f(x) = (1-x) * Product_{k>=1} (1 + x^k). - Amiram Eldar, Oct 03 2023

A000469 1 together with products of 2 or more distinct primes.

Original entry on oeis.org

1, 6, 10, 14, 15, 21, 22, 26, 30, 33, 34, 35, 38, 39, 42, 46, 51, 55, 57, 58, 62, 65, 66, 69, 70, 74, 77, 78, 82, 85, 86, 87, 91, 93, 94, 95, 102, 105, 106, 110, 111, 114, 115, 118, 119, 122, 123, 129, 130, 133, 134, 138, 141, 142, 143, 145, 146, 154, 155, 158
Offset: 1

Views

Author

Dan Bentley (dtb(AT)research.att.com)

Keywords

Comments

Nonprime squarefree numbers.
Except for 1, composite n such that the squarefree part of n is greater than phi(n). - Benoit Cloitre, Apr 06 2002

Crossrefs

Cf. A005117, A007913, A000010, A010051, A239508, A239509, A120944 (composite squarefree numbers, same sequence apart from the first term).

Programs

  • Haskell
    a000469 n = a000469_list !! (n-1)
    a000469_list = filter ((== 0) . a010051) a005117_list
    -- Reinhard Zumkeller, Mar 21 2014
    
  • Maple
    select(numtheory:-issqrfree and not isprime, [$1..1000]); # Robert Israel, Aug 06 2015
  • Mathematica
    lst={}; Do[If[SquareFreeQ[n], If[ !PrimeQ[n], AppendTo[lst,n]]], {n,200}]; lst (* Vladimir Joseph Stephan Orlovsky, Jan 20 2009 *)
    With[{upto=200},Complement[Select[Range[upto],SquareFreeQ],Prime[ Range[ PrimePi[ upto]]]]] (* Harvey P. Dale, Oct 01 2011 *)
    Select[Range[200], !PrimeQ[#] && PrimeOmega[#] == PrimeNu[#] &] (* Carlos Eduardo Olivieri, Aug 06 2015 *)
  • PARI
    for(n=0,64, if(isprime(n), n+1, if(issquarefree(n),print(n))))
    
  • PARI
    for(n=1,160,if(core(n)*(1-isprime(n))>eulerphi(n),print1(n,",")))
    
  • Python
    from math import isqrt
    from sympy import primepi, mobius
    def A000469(n):
        def f(x): return n+primepi(x)+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return m # Chai Wah Wu, Aug 02 2024

Formula

n such that A007913(n)>A000010(n). - Benoit Cloitre, Apr 06 2002
N-floor(N/p1) - floor(N/(p2) - ... - floor(N/p(i) + floor(N/(c2) + floor(N/(c3)+ ... + floor(N/c(j)-1 where N is any number; p1,p2 are the primes with p(i) being the first prime > square root of N and c2, c3 are the numbers other than 1 in this sequence with c(j) <= N will yield the number of primes less than or equal to N other than p1, p2, ..., p(i). - Ben Paul Thurston, Aug 15 2007
A005171(a(n))*A008966(a(n)) = 1. - Reinhard Zumkeller, Nov 01 2009
Sum(n=1, Infinity, 1/a(n)^s) = Zeta(s)/Zeta(2s) - PrimeZeta(s). - Enrique Pérez Herrero, Mar 31 2012
n such that A001221(n) = A001222(n), n nonprime. - Carlos Eduardo Olivieri, Aug 06 2015
a(n) = kn + O(n/log n) where k = Pi^2/6. - Charles R Greathouse IV, Aug 02 2024

A209061 Exponentially squarefree numbers.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 13 2012

Keywords

Comments

Numbers having only squarefree exponents in their canonical prime factorization.
According to the formula of Theorem 3 [Toth], the density of the exponentially squarefree numbers is 0.9559230158619... (A262276). - Peter J. C. Moses and Vladimir Shevelev, Sep 10 2015
From Vladimir Shevelev, Sep 24 2015: (Start)
A generalization. Let S be a finite or infinite increasing integer sequence s=s(n), s(0)=0.
Let us call a positive number N an exponentially S-number, if all exponents in its prime power factorization are in the sequence S.
Let {u(n)} be the characteristic function of S. Then, for the density h=h(S) of the exponentially S-numbers, we have the representations
h(S) = Product_{prime p} Sum_{j in S} (p-1)/p^(j+1) = Product_{p} (1 + Sum_{j>=1} (u(j) - u(j-1))/p^j). In particular, if S = {0,1}, then the exponentially S-numbers are squarefree numbers; if S consists of 0 and {2^k}A138302%20(see%20%5BShevelev%5D,%202007);%20if%20S%20consists%20of%200%20and%20squarefree%20numbers,%20then%20u(n)=%7Cmu(n)%7C,%20where%20mu(n)%20is%20the%20M%C3%B6bius%20function%20(A008683),%20we%20obtain%20the%20density%20h%20of%20the%20exponentially%20squarefree%20numbers%20(cf.%20Toth's%20link,%20Theorem%203);%20the%20calculation%20of%20h%20with%20a%20very%20high%20degree%20of%20accuracy%20belongs%20to%20_Juan%20Arias-de-Reyna">{k>=0}, then the exponentially S-numbers form A138302 (see [Shevelev], 2007); if S consists of 0 and squarefree numbers, then u(n)=|mu(n)|, where mu(n) is the Möbius function (A008683), we obtain the density h of the exponentially squarefree numbers (cf. Toth's link, Theorem 3); the calculation of h with a very high degree of accuracy belongs to _Juan Arias-de-Reyna (A262276). Note that if S contains 1, then h(S) >= 1/zeta(2) = 6/Pi^2; otherwise h(S) = 0. Indeed, in the latter case, the density of the sequence of exponentially S-numbers does not exceed the density of A001694, which equals 0. (End)
The term "exponentially squarefree number" was apparently coined by Subbarao (1972). - Amiram Eldar, May 28 2025

Crossrefs

Programs

  • Haskell
    a209061 n = a209061_list !! (n-1)
    a209061_list = filter
       (all (== 1) . map (a008966 . fromIntegral) . a124010_row) [1..]
    
  • Mathematica
    Select[Range@ 69, Times @@ Boole@ Map[SquareFreeQ, Last /@ FactorInteger@ #] > 0 &] (* Michael De Vlieger, Sep 07 2015 *)
  • PARI
    is(n)=my(f=factor(n)[,2]); for(i=1,#f,if(!issquarefree(f[i]), return(0))); 1 \\ Charles R Greathouse IV, Sep 02 2015

Formula

A166234(a(n)) <> 0.
Product_{k=1..A001221(n)} A008966(A124010(n,k)) = 1.
One can prove that the principal term of Toth's asymptotics for the density of this sequence (cf. Toth's link, Theorem 3) equals also Product_{prime p}(Sum_{j in S}(p-1)/p^{j+1})*x, where S is the set of 0 and squarefree numbers. The remainder term O(x^(0.2+t)), where t>0 is arbitrarily small, was obtained by L. Toth while assuming the Riemann Hypothesis. - Vladimir Shevelev, Sep 12 2015
Previous Showing 21-30 of 313 results. Next