cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 185 results. Next

A378534 Dirichlet convolution of A033879 and A378525.

Original entry on oeis.org

1, -1, -1, -2, -1, -2, -1, 0, -2, -2, -1, 1, -1, -2, -2, 0, -1, 1, -1, 1, -2, -2, -1, 2, -2, -2, 0, 1, -1, 2, -1, 0, -2, -2, -2, 4, -1, -2, -2, 2, -1, 2, -1, 1, 1, -2, -1, 0, -2, 1, -2, 1, -1, 2, -2, 2, -2, -2, -1, 6, -1, -2, 1, 0, -2, 2, -1, 1, -2, 2, -1, -1, -1, -2, 1, 1, -2, 2, -1, 0, 0, -2, -1, 6, -2, -2, -2, 2, -1, 6
Offset: 1

Views

Author

Antti Karttunen, Dec 01 2024

Keywords

Comments

Möbius transform of A378532.

Crossrefs

Cf. A008683, A033879, A323910, A378532 (inverse Möbius transform), A378533 (Dirichlet inverse), A378542.
Cf. also A378224.

Programs

Formula

a(n) = Sum_{d|n} A033879(d)*A378525(n/d).
a(n) = Sum_{d|n} A008683(d)*A378532(n/d).

A378755 Dirichlet convolution of A033879 and A346248.

Original entry on oeis.org

1, 0, 1, 2, 1, 2, 3, 10, 11, 2, 1, 14, 3, 6, 7, 42, 1, 26, 3, 14, 17, 2, 5, 70, 15, 6, 81, 34, 1, 22, 5, 170, 7, 2, 17, 146, 3, 6, 17, 70, 1, 54, 3, 14, 69, 10, 5, 326, 55, 34, 7, 34, 5, 234, 7, 162, 17, 2, 1, 138, 5, 10, 155, 682, 17, 22, 3, 14, 27, 54, 1, 730, 5, 6, 89, 34, 17, 54, 3, 326, 571, 2, 5, 318, 7, 6, 7
Offset: 1

Views

Author

Antti Karttunen, Dec 11 2024

Keywords

Crossrefs

Cf. A033879, A346248, A378754 (Dirichlet inverse).

Programs

Formula

a(n) = Sum_{d|n} A033879(d)*A346248(n/d).

A323904 Lexicographically earliest sequence such that a(i) = a(j) => A033879(i) = A033879(j) and A083254(i) = A083254(j), for all i, j >= 1.

Original entry on oeis.org

1, 2, 3, 2, 4, 5, 6, 2, 7, 8, 9, 10, 11, 12, 13, 2, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 2, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 38, 50, 51, 52, 53, 54, 55, 56, 57, 35, 2, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80
Offset: 1

Views

Author

Antti Karttunen, Feb 10 2019

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A033879(n), A083254(n)], the deficiency of n, and its Möbius transform.
For all i, j: a(i) = a(j) => A297159(i) = A297159(j).

Examples

			For n=39, we have A033879(39) = 2*39 - A000203(39) = 22, and A083254(39) = 2*A000010(39)-39 = 9. For n=63 the results are same, with A033879(63) = 22 and A083254(63) = 9, thus a(39) and a(63) are allotted the same number by the restricted growth sequence transform, which in this case is 35, thus a(39) = a(63) = 35.
For n=42 and 54, we have A033879(42) = -12, A083254(42) = -18 and A033879(54) = -12, A083254(54) = -18, thus a(42) = a(54) (= 38).
		

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A033879(n) = (2*n-sigma(n));
    A083254(n) = (2*eulerphi(n)-n);
    A323904aux(n) = [A033879(n), A083254(n)];
    v323904 = rgs_transform(vector(up_to,n,A323904aux(n)));
    A323904(n) = v323904[n];

Formula

a(2^n) = 2 for all n >= 1.

A324044 a(n) = A003958(n) - A033879(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 0, 0, -1, 2, 0, 6, 0, 2, 2, 0, 0, 7, 0, 6, 2, 2, 0, 14, -3, 2, -6, 6, 0, 20, 0, 0, 2, 2, 2, 23, 0, 2, 2, 14, 0, 24, 0, 6, 4, 2, 0, 30, -5, 9, 2, 6, 0, 20, 2, 14, 2, 2, 0, 56, 0, 2, 2, 0, 2, 32, 0, 6, 2, 28, 0, 55, 0, 2, 6, 6, 2, 36, 0, 30, -25, 2, 0, 68, 2, 2, 2, 14, 0, 70, 2, 6, 2, 2, 2, 62, 0, 11, -2, 33, 0, 44, 0, 14, 30
Offset: 1

Views

Author

Antti Karttunen, Feb 13 2019

Keywords

Crossrefs

Cf. also A319687, A323911.

Programs

Formula

a(n) = A003958(n) - A033879(n).

A379107 Dirichlet convolution of A033879 and A378990, where A033879 is the deficiency of n, and A378990 is the Dirichlet inverse of the binary weight of n.

Original entry on oeis.org

1, 0, 0, 0, 2, -2, 3, 0, 3, -2, 7, -4, 9, -2, -2, 0, 14, -4, 15, -4, 1, -2, 18, -8, 12, -2, 4, -4, 24, -10, 25, 0, 2, -2, 7, -8, 33, -2, 0, -8, 37, -12, 38, -4, 2, -2, 41, -16, 29, -8, -2, -4, 48, -14, 13, -8, 0, -2, 53, -20, 55, -2, -1, 0, 20, -20, 63, -4, 3, -16, 66, -16, 69, -2, -6, -4, 24, -24, 73, -16, 24, -2, 78
Offset: 1

Views

Author

Antti Karttunen, Dec 16 2024

Keywords

Crossrefs

Cf. A000120, A033879, A378990, A379106 (Dirichlet inverse).
Cf. also A294898, A378755, A378757.

Programs

Formula

a(n) = Sum_{d|n} A033879(d)*A378990(n/d).

A124109 Numbers whose abundance (A033880) or deficiency (A033879) is a semiprime number.

Original entry on oeis.org

5, 7, 11, 12, 14, 15, 21, 23, 26, 27, 34, 35, 39, 40, 44, 47, 52, 55, 57, 58, 59, 63, 65, 68, 70, 72, 74, 75, 77, 80, 82, 83, 85, 88, 93, 98, 107, 110, 115, 116, 119, 122, 125, 129, 133, 143, 144, 152, 155, 160, 162, 164, 167, 169, 171, 178, 179, 183, 185, 187, 189
Offset: 1

Views

Author

Jonathan Vos Post, Nov 26 2006

Keywords

Comments

If p is prime, then the only divisors of p are 1 and p, so sigma(p) = p + 1 and abundance(p) = abs(sigma(p) - 2*p) = abs((p+1) - 2*p) = abs(1-p) = p-1. Hence this sequence includes all values of the sequence of the primes which are one more than semiprimes. This is identical to A005385 Safe primes p: (p-1)/2 is also prime [then (p-1)/2 is called a Sophie Germain prime: see A005384] since as Zak Seidov commented, this is identical to primes p such that p-1 is a semiprime]. But the current sequence also contains composites, such as a(4) = 12, a(5) = 14, a(6) = 15 and a(7) = 21. If k = p*q is a semiprime (with p and q distinct primes) then the only divisors of k are 1, p, q and p*q, so sigma(k) = 1 + p + q + p*q and abs(abundance(k)) = abs(1 + p + q + p*q - p*q) = abs(1 + p + q) and these are in the sequence if 1 + p + q is semiprime. Note that numbers can be in the sequence which are neither prime nor semiprime, starting with a(4) = 12 and a(10) = 27.

Examples

			a(1) = 5 because abs(sigma(5) - 2*5) = abs(6-10) = abs(-4) = 4 = 2^2 is semiprime.
a(2) = 7 because abs(sigma(7) - 2*7) = abs(8-14) = abs(-6) = 6 = 2 * 3 is semiprime.
a(3) = 11 because abs(sigma(11) - 2*11) = abs(12-22) = abs(-10) = 10 = 2 * 5 is semiprime.
a(4) = 12 because abs(sigma(12) - 2*12) = abs(28-24) = abs(-4) = 4 = 2^2 is semiprime.
a(5) = 14 because abs(sigma(14) - 2*14) = abs(24-28) = abs(+4) = 4 = 2^2 is semiprime.
a(6) = 15 because abs(sigma(15) - 2*15) = abs(24-30) = abs(-6) = 6 = 2 * 3 is semiprime.
a(7) = 21 because abs(sigma(21) - 2*21) = abs(32-42) = abs(-10) = 10 = 2 * 5 is semiprime.
a(8) = 23 because abs(sigma(23) - 2*23) = abs(24-46) = abs(-22) = 22 = 2 * 11 is semiprime.
		

Crossrefs

Programs

  • Mathematica
    semiPrimeQ[n_] := Plus @@ Last /@ FactorInteger@n == 2; Select[ Range@ 193, semiPrimeQ@Abs[DivisorSigma[1, # ] - 2# ] &] (* Robert G. Wilson v *)

Formula

Abs[sigma(a(n)) - 2*a(n)] is a semiprime, where sigma(k) = sum of divisors of k. {Abs[sigma(a(n)) - 2*a(n)]} is in A001358.

Extensions

More terms from Robert G. Wilson v, Nov 29 2006

A335253 Numbers k such that the abundance (A033880) of k is equal to the deficiency (A033879) of k+2.

Original entry on oeis.org

12, 76, 488, 556, 1100, 1430, 2408, 8896, 538208, 13685780, 962402768
Offset: 1

Views

Author

Amiram Eldar, May 28 2020

Keywords

Comments

Equivalently, k and k+2 have the same absolute value of abundance (or deficiency) with opposite signs.
Equivalently, s(k) + s(k+2) = k + (k+2), where s(k) is the sum of proper divisors of k (A001065).
a(12) > 10^11, if it exists.
a(12) > 10^13, if it exists. - Giovanni Resta, May 30 2020

Examples

			12 is a term since A033880(12) = sigma(12) - 2*12 = 28 - 24 = 4, and A033879(14) = 2*14 - sigma(14) = 28 - 24 = 4.
		

Crossrefs

Programs

  • Mathematica
    ab[n_] := DivisorSigma[1, n] - 2*n; Select[Range[10^5], ab[#] == -ab[# + 2] &]
  • PARI
    isok(k) = sigma(k) + sigma(k+2) == 4*k+4; \\ Michel Marcus, May 29 2020

A000396 Perfect numbers k: k is equal to the sum of the proper divisors of k.

Original entry on oeis.org

6, 28, 496, 8128, 33550336, 8589869056, 137438691328, 2305843008139952128, 2658455991569831744654692615953842176, 191561942608236107294793378084303638130997321548169216
Offset: 1

Views

Author

Keywords

Comments

A number k is abundant if sigma(k) > 2k (cf. A005101), perfect if sigma(k) = 2k (this sequence), or deficient if sigma(k) < 2k (cf. A005100), where sigma(k) is the sum of the divisors of k (A000203).
The numbers 2^(p-1)*(2^p - 1) are perfect, where p is a prime such that 2^p - 1 is also prime (for the list of p's see A000043). There are no other even perfect numbers and it is believed that there are no odd perfect numbers.
Numbers k such that Sum_{d|k} 1/d = 2. - Benoit Cloitre, Apr 07 2002
For number of divisors of a(n) see A061645(n). Number of digits in a(n) is A061193(n). - Lekraj Beedassy, Jun 04 2004
All terms other than the first have digital root 1 (since 4^2 == 4 (mod 6), we have, by induction, 4^k == 4 (mod 6), or 2*2^(2*k) = 8 == 2 (mod 6), implying that Mersenne primes M = 2^p - 1, for odd p, are of the form 6*t+1). Thus perfect numbers N, being M-th triangular, have the form (6*t+1)*(3*t+1), whence the property N mod 9 = 1 for all N after the first. - Lekraj Beedassy, Aug 21 2004
The earliest recorded mention of this sequence is in Euclid's Elements, IX 36, about 300 BC. - Artur Jasinski, Jan 25 2006
Theorem (Euclid, Euler). An even number m is a perfect number if and only if m = 2^(k-1)*(2^k-1), where 2^k-1 is prime. Euler's idea came from Euclid's Proposition 36 of Book IX (see Weil). It follows that every even perfect number is also a triangular number. - Mohammad K. Azarian, Apr 16 2008
Triangular numbers (also generalized hexagonal numbers) A000217 whose indices are Mersenne primes A000668, assuming there are no odd perfect numbers. - Omar E. Pol, May 09 2008, Sep 15 2013
If a(n) is even, then 2*a(n) is in A181595. - Vladimir Shevelev, Nov 07 2010
Except for a(1) = 6, all even terms are of the form 30*k - 2 or 45*k + 1. - Arkadiusz Wesolowski, Mar 11 2012
a(4) = A229381(1) = 8128 is the "Simpsons's perfect number". - Jonathan Sondow, Jan 02 2015
Theorem (Farideh Firoozbakht): If m is an integer and both p and p^k-m-1 are prime numbers then x = p^(k-1)*(p^k-m-1) is a solution to the equation sigma(x) = (p*x+m)/(p-1). For example, if we take m=0 and p=2 we get Euclid's result about perfect numbers. - Farideh Firoozbakht, Mar 01 2015
The cototient of the even perfect numbers is a square; in particular, if 2^p - 1 is a Mersenne prime, cototient(2^(p-1) * (2^p - 1)) = (2^(p-1))^2 (see A152921). So, this sequence is a subsequence of A063752. - Bernard Schott, Jan 11 2019
Euler's (1747) proof that all the even perfect number are of the form 2^(p-1)*(2^p-1) implies that their asymptotic density is 0. Kanold (1954) proved that the asymptotic density of odd perfect numbers is 0. - Amiram Eldar, Feb 13 2021
If k is perfect and semiprime, then k = 6. - Alexandra Hercilia Pereira Silva, Aug 30 2021
This sequence lists the fixed points of A001065. - Alois P. Heinz, Mar 10 2024

Examples

			6 is perfect because 6 = 1+2+3, the sum of all divisors of 6 less than 6; 28 is perfect because 28 = 1+2+4+7+14.
		

References

  • Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 4.
  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 2d ed. 1966, pp. 11-23.
  • Stanley J. Bezuszka, Perfect Numbers (Booklet 3, Motivated Math. Project Activities), Boston College Press, Chestnut Hill MA, 1980.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 136-137.
  • Euclid, Elements, Book IX, Section 36, about 300 BC.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §3.3 Perfect and Amicable Numbers, pp. 82-83.
  • R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section B1.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 239.
  • T. Koshy, "The Ends Of A Mersenne Prime And An Even Perfect Number", Journal of Recreational Mathematics, Baywood, NY, 1998, pp. 196-202.
  • Joseph S. Madachy, Madachy's Mathematical Recreations, New York: Dover Publications, Inc., 1979, p. 149 (First publ. by Charles Scribner's Sons, New York, 1966, under the title: Mathematics on Vacation).
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 46-48, 244-245.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 83-87.
  • József Sándor and Borislav Crstici, Handbook of Number Theory, II, Springer Verlag, 2004.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Ian Stewart, L'univers des nombres, "Diviser Pour Régner", Chapter 14, pp. 74-81, Belin-Pour La Science, Paris, 2000.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, chapter 4, pages 127-149.
  • Horace S. Uhler, On the 16th and 17th perfect numbers, Scripta Math., Vol. 19 (1953), pp. 128-131.
  • André Weil, Number Theory, An approach through history, From Hammurapi to Legendre, Birkhäuser, 1984, p. 6.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, pp. 107-110, Penguin Books, 1987.

Crossrefs

See A000043 for the current state of knowledge about Mersenne primes.
Cf. A228058 for Euler's criterion for odd terms.
Positions of 0's in A033879 and in A033880.
Cf. A001065.

Programs

  • Haskell
    a000396 n = a000396_list !! (n-1)
    a000396_list = [x | x <- [1..], a000203 x == 2 * x]
    -- Reinhard Zumkeller, Jan 20 2012
    
  • Mathematica
    Select[Range[9000], DivisorSigma[1,#]== 2*# &] (* G. C. Greubel, Oct 03 2017 *)
    PerfectNumber[Range[15]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 10 2018 *)
  • PARI
    isA000396(n) = (sigma(n) == 2*n);
    
  • Python
    from sympy import divisor_sigma
    def ok(n): return n > 0 and divisor_sigma(n) == 2*n
    print([k for k in range(9999) if ok(k)]) # Michael S. Branicky, Mar 12 2022

Formula

The perfect number N = 2^(p-1)*(2^p - 1) is also multiplicatively p-perfect (i.e., A007955(N) = N^p), since tau(N) = 2*p. - Lekraj Beedassy, Sep 21 2004
a(n) = 2^A133033(n) - 2^A090748(n), assuming there are no odd perfect numbers. - Omar E. Pol, Feb 28 2008
a(n) = A000668(n)*(A000668(n)+1)/2, assuming there are no odd perfect numbers. - Omar E. Pol, Apr 23 2008
a(n) = A000217(A000668(n)), assuming there are no odd perfect numbers. - Omar E. Pol, May 09 2008
a(n) = Sum of the first A000668(n) positive integers, assuming there are no odd perfect numbers. - Omar E. Pol, May 09 2008
a(n) = A000384(A019279(n)), assuming there are no odd perfect numbers and no odd superperfect numbers. a(n) = A000384(A061652(n)), assuming there are no odd perfect numbers. - Omar E. Pol, Aug 17 2008
a(n) = A006516(A000043(n)), assuming there are no odd perfect numbers. - Omar E. Pol, Aug 30 2008
From Reikku Kulon, Oct 14 2008: (Start)
A144912(2, a(n)) = 1;
A144912(4, a(n)) = -1 for n > 1;
A144912(8, a(n)) = 5 or -5 for all n except 2;
A144912(16, a(n)) = -4 or -13 for n > 1. (End)
a(n) = A019279(n)*A000668(n), assuming there are no odd perfect numbers and odd superperfect numbers. a(n) = A061652(n)*A000668(n), assuming there are no odd perfect numbers. - Omar E. Pol, Jan 09 2009
a(n) = A007691(A153800(n)), assuming there are no odd perfect numbers. - Omar E. Pol, Jan 14 2009
Even perfect numbers N = K*A000203(K), where K = A019279(n) = 2^(p-1), A000203(A019279(n)) = A000668(n) = 2^p - 1 = M(p), p = A000043(n). - Lekraj Beedassy, May 02 2009
a(n) = A060286(A016027(n)), assuming there are no odd perfect numbers. - Omar E. Pol, Dec 13 2012
For n >= 2, a(n) = Sum_{k=1..A065549(n)} (2*k-1)^3, assuming there are no odd perfect numbers. - Derek Orr, Sep 28 2013
a(n) = A275496(2^((A000043(n) - 1)/2)) - 2^A000043(n), assuming there are no odd perfect numbers. - Daniel Poveda Parrilla, Aug 16 2016
a(n) = A156552(A324201(n)), assuming there are no odd perfect numbers. - Antti Karttunen, Mar 28 2019
a(n) = ((2^(A000043(n)))^3 - (2^(A000043(n)) - 1)^3 - 1)/6, assuming there are no odd perfect numbers. - Jules Beauchamp, Jun 06 2025

Extensions

I removed a large number of comments that assumed there are no odd perfect numbers. There were so many it was getting hard to tell which comments were true and which were conjectures. - N. J. A. Sloane, Apr 16 2023
Reference to Albert H. Beiler's book updated by Harvey P. Dale, Jan 13 2025

A001065 Sum of proper divisors (or aliquot parts) of n: sum of divisors of n that are less than n.

Original entry on oeis.org

0, 1, 1, 3, 1, 6, 1, 7, 4, 8, 1, 16, 1, 10, 9, 15, 1, 21, 1, 22, 11, 14, 1, 36, 6, 16, 13, 28, 1, 42, 1, 31, 15, 20, 13, 55, 1, 22, 17, 50, 1, 54, 1, 40, 33, 26, 1, 76, 8, 43, 21, 46, 1, 66, 17, 64, 23, 32, 1, 108, 1, 34, 41, 63, 19, 78, 1, 58, 27, 74, 1, 123, 1, 40, 49, 64, 19, 90, 1, 106
Offset: 1

Views

Author

Keywords

Comments

Also total number of parts in all partitions of n into equal parts that do not contain 1 as a part. - Omar E. Pol, Jan 16 2013
Related concepts: If a(n) < n, n is said to be deficient, if a(n) > n, n is abundant, and if a(n) = n, n is perfect. If there is a cycle of length 2, so that a(n) = b and a(b) = n, b and n are said to be amicable. If there is a longer cycle, the numbers in the cycle are said to be sociable. See examples. - Juhani Heino, Jul 17 2017
Sum of the smallest parts in the partitions of n into two parts such that the smallest part divides the largest. - Wesley Ivan Hurt, Dec 22 2017
a(n) is also the total number of parts congruent to 0 mod k in the partitions of k*n into equal parts that do not contain k as a part (the comment dated Jan 16 2013 is the case for k = 1). - Omar E. Pol, Nov 23 2019
Fixed points are in A000396. - Alois P. Heinz, Mar 10 2024

Examples

			x^2 + x^3 + 3*x^4 + x^5 + 6*x^6 + x^7 + 7*x^8 + 4*x^9 + 8*x^10 + x^11 + ...
For n = 44, sum of divisors of n = sigma(n) = 84; so a(44) = 84-44 = 40.
Related concepts: (Start)
From 1 to 17, all n are deficient, except 6 and 12 seen below. See A005100.
Abundant numbers: a(12) = 16, a(18) = 21. See A005101.
Perfect numbers: a(6) = 6, a(28) = 28. See A000396.
Amicable numbers: a(220) = 284, a(284) = 220. See A259180.
Sociable numbers: 12496 -> 14288 -> 15472 -> 14536 -> 14264 -> 12496. See A122726. (End)
For n = 10 the sum of the divisors of 10 that are less than 10 is 1 + 2 + 5 = 8. On the other hand, the partitions of 10 into equal parts that do not contain 1 as a part are [10], [5,5], [2,2,2,2,2], there are 8 parts, so a(10) = 8. - _Omar E. Pol_, Nov 24 2019
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • George E. Andrews, Number Theory. New York: Dover, 1994; Pages 1, 75-92; p. 92 #15: Sigma(n) / d(n) >= n^(1/2).
  • Carl Pomerance, The first function and its iterates, pp. 125-138 in Connections in Discrete Mathematics, ed. S. Butler et al., Cambridge, 2018.
  • H. J. J. te Riele, Perfect numbers and aliquot sequences, pp. 77-94 in J. van de Lune, ed., Studieweek "Getaltheorie en Computers", published by Math. Centrum, Amsterdam, Sept. 1980.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 91.

Crossrefs

Least inverse: A070015, A359132.
Values taken: A078923, values not taken: A005114.
Records: A034090, A034091.
First differences: A053246, partial sums: A153485.
a(n) = n - A033879(n) = n + A033880(n). - Omar E. Pol, Dec 30 2013
Row sums of A141846 and of A176891. - Gary W. Adamson, May 02 2010
Row sums of A176079. - Mats Granvik, May 20 2012
Alternating row sums of A231347. - Omar E. Pol, Jan 02 2014
a(n) = sum (A027751(n,k): k = 1..A000005(n)-1). - Reinhard Zumkeller, Apr 05 2013
For n > 1: a(n) = A240698(n,A000005(n)-1). - Reinhard Zumkeller, Apr 10 2014
A134675(n) = A007434(n) + a(n). - Conjectured by John Mason and proved by Max Alekseyev, Jan 07 2015
Cf. A037020 (primes), A053868, A053869 (odd and even terms).
Cf. A048138 (number of occurrences), A238895, A238896 (record values thereof).
Cf. A007956 (products of proper divisors).
Cf. A005100, A005101, A000396, A259180, A122726 (related concepts).

Programs

  • Haskell
    a001065 n = a000203 n - n  -- Reinhard Zumkeller, Sep 15 2011
    
  • Magma
    [SumOfDivisors(n)-n: n in [1..100]]; // Vincenzo Librandi, May 06 2015
    
  • Maple
    A001065 := proc(n)
        numtheory[sigma](n)-n ;
    end proc:
    seq( A001065(n),n=1..100) ;
  • Mathematica
    Table[ Plus @@ Select[ Divisors[ n ], #Zak Seidov, Sep 10 2009 *)
    Table[DivisorSigma[1, n] - n, {n, 1, 80}] (* Jean-François Alcover, Apr 25 2013 *)
    Array[Plus @@ Most@ Divisors@# &, 80] (* Robert G. Wilson v, Dec 24 2017 *)
  • MuPAD
    numlib::sigma(n)-n$ n=1..81 // Zerinvary Lajos, May 13 2008
    
  • PARI
    {a(n) = if( n==0, 0, sigma(n) - n)} /* Michael Somos, Sep 20 2011 */
    
  • Python
    from sympy import divisor_sigma
    def A001065(n): return divisor_sigma(n)-n # Chai Wah Wu, Nov 04 2022
    
  • Sage
    [sigma(n, 1)-n for n in range(1, 81)] # Stefano Spezia, Jul 14 2025

Formula

G.f.: Sum_{k>0} k * x^(2*k)/(1 - x^k). - Michael Somos, Jul 05 2006
a(n) = sigma(n) - n = A000203(n) - n. - Lekraj Beedassy, Jun 02 2005
a(n) = A155085(-n). - Michael Somos, Sep 20 2011
Equals inverse Mobius transform of A051953 = A051731 * A051953. Example: a(6) = 6 = (1, 1, 1, 0, 0, 1) dot (0, 1, 1, 2, 1, 4) = (0 + 1 + 1 + 0 + 0 + 4), where A051953 = (0, 1, 1, 2, 1, 4, 1, 4, 3, 6, 1, 8, ...) and (1, 1, 1, 0, 0, 1) = row 6 of A051731 where the 1's positions indicate the factors of 6. - Gary W. Adamson, Jul 11 2008
a(n) = A006128(n) - A220477(n) - n. - Omar E. Pol Jan 17 2013
a(n) = Sum_{i=1..floor(n/2)} i*(1-ceiling(frac(n/i))). - Wesley Ivan Hurt, Oct 25 2013
Dirichlet g.f.: zeta(s-1)*(zeta(s) - 1). - Ilya Gutkovskiy, Aug 07 2016
a(n) = 1 + A048050(n), n > 1. - R. J. Mathar, Mar 13 2018
Erdős (Elem. Math. 28 (1973), 83-86) shows that the density of even integers in the range of a(n) is strictly less than 1/2. The argument of Coppersmith (1987) shows that the range of a(n) has density at most 47/48 < 1. - N. J. A. Sloane, Dec 21 2019
G.f.: Sum_{k >= 2} x^k/(1 - x^k)^2. Cf. A296955. (This follows from the fact that if g(z) = Sum_{n >= 1} a(n)*z^n and f(z) = Sum_{n >= 1} a(n)*z^(N*n)/(1 - z^n) then f(z) = Sum_{k >= N} g(z^k), taking a(n) = n and N = 2.) - Peter Bala, Jan 13 2021
Faster converging g.f.: Sum_{n >= 1} q^(n*(n+1))*(n*q^(3*n+2) - (n + 1)*q^(2*n+1) - (n - 1)*q^(n+1) + n)/((1 - q^n)*(1 - q^(n+1))^2). (In equation 1 in Arndt, after combining the two n = 0 summands to get -t/(1 - t), apply the operator t*d/dt to the resulting equation and then set t = q and x = 1.) - Peter Bala, Jan 22 2021
a(n) = Sum_{d|n} d * (1 - [n = d]), where [ ] is the Iverson bracket. - Wesley Ivan Hurt, Jan 28 2021
a(n) = Sum_{i=1..n} ((n-1) mod i) - (n mod i). [See also A176079.] - José de Jesús Camacho Medina, Feb 23 2021

A156552 Unary-encoded compressed factorization of natural numbers.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 8, 7, 6, 9, 16, 11, 32, 17, 10, 15, 64, 13, 128, 19, 18, 33, 256, 23, 12, 65, 14, 35, 512, 21, 1024, 31, 34, 129, 20, 27, 2048, 257, 66, 39, 4096, 37, 8192, 67, 22, 513, 16384, 47, 24, 25, 130, 131, 32768, 29, 36, 71, 258, 1025, 65536, 43, 131072, 2049, 38, 63, 68, 69, 262144
Offset: 1

Views

Author

Leonid Broukhis, Feb 09 2009

Keywords

Comments

The primes become the powers of 2 (2 -> 1, 3 -> 2, 5 -> 4, 7 -> 8); the composite numbers are formed by taking the values for the factors in the increasing order, multiplying them by the consecutive powers of 2, and summing. See the Example section.
From Antti Karttunen, Jun 27 2014: (Start)
The odd bisection (containing even terms) halved gives A244153.
The even bisection (containing odd terms), when one is subtracted from each and halved, gives this sequence back.
(End)
Question: Are there any other solutions that would satisfy the recurrence r(1) = 0; and for n > 1, r(n) = Sum_{d|n, d>1} 2^A033265(r(d)), apart from simple variants 2^k * A156552(n)? See also A297112, A297113. - Antti Karttunen, Dec 30 2017

Examples

			For 84 = 2*2*3*7 -> 1*1 + 1*2 + 2*4 + 8*8 =  75.
For 105 = 3*5*7 -> 2*1 + 4*2 + 8*4 = 42.
For 137 = p_33 -> 2^32 = 4294967296.
For 420 = 2*2*3*5*7 -> 1*1 + 1*2 + 2*4 + 4*8 + 8*16 = 171.
For 147 = 3*7*7 = p_2 * p_4 * p_4 -> 2*1 + 8*2 + 8*4 = 50.
		

Crossrefs

One less than A005941.
Inverse permutation: A005940 with starting offset 0 instead of 1.
Cf. also A297106, A297112 (Möbius transform), A297113, A153013, A290308, A300827, A323243, A323244, A323247, A324201, A324812 (n for which a(n) is a square), A324813, A324822, A324823, A324398, A324713, A324815, A324819, A324865, A324866, A324867.

Programs

  • Mathematica
    Table[Floor@ Total@ Flatten@ MapIndexed[#1 2^(#2 - 1) &, Flatten[ Table[2^(PrimePi@ #1 - 1), {#2}] & @@@ FactorInteger@ n]], {n, 67}] (* Michael De Vlieger, Sep 08 2016 *)
  • PARI
    a(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ David A. Corneth, Mar 08 2019
    
  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A156552(n) = if(1==n, 0, if(!(n%2), 1+(2*A156552(n/2)), 2*A156552(A064989(n)))); \\ (based on the given recurrence) - Antti Karttunen, Mar 08 2019
    
  • Perl
    # Program corrected per instructions from Leonid Broukhis. - Antti Karttunen, Jun 26 2014
    # However, it gives correct answers only up to n=136, before corruption by a wrap-around effect.
    # Note that the correct answer for n=137 is A156552(137) = 4294967296.
    $max = $ARGV[0];
    $pow = 0;
    foreach $i (2..$max) {
    @a = split(/ /, `factor $i`);
    shift @a;
    $shift = 0;
    $cur = 0;
    while ($n = int shift @a) {
    $prime{$n} = 1 << $pow++ if !defined($prime{$n});
    $cur |= $prime{$n} << $shift++;
    }
    print "$cur, ";
    }
    print "\n";
    (Scheme, with memoization-macro definec from Antti Karttunen's IntSeq-library, two different implementations)
    (definec (A156552 n) (cond ((= n 1) 0) (else (+ (A000079 (+ -2 (A001222 n) (A061395 n))) (A156552 (A052126 n))))))
    (definec (A156552 n) (cond ((= 1 n) (- n 1)) ((even? n) (+ 1 (* 2 (A156552 (/ n 2))))) (else (* 2 (A156552 (A064989 n))))))
    ;; Antti Karttunen, Jun 26 2014
    
  • Python
    from sympy import primepi, factorint
    def A156552(n): return sum((1<Chai Wah Wu, Mar 10 2023

Formula

From Antti Karttunen, Jun 26 2014: (Start)
a(1) = 0, a(n) = A000079(A001222(n)+A061395(n)-2) + a(A052126(n)).
a(1) = 0, a(2n) = 1+2*a(n), a(2n+1) = 2*a(A064989(2n+1)). [Compare to the entanglement recurrence A243071].
For n >= 0, a(2n+1) = 2*A244153(n+1). [Follows from the latter clause of the above formula.]
a(n) = A005941(n) - 1.
As a composition of related permutations:
a(n) = A003188(A243354(n)).
a(n) = A054429(A243071(n)).
For all n >= 1, A005940(1+a(n)) = n and for all n >= 0, a(A005940(n+1)) = n. [The offset-0 version of A005940 works as an inverse for this permutation.]
This permutations also maps between the partition-lists A112798 and A125106:
A056239(n) = A161511(a(n)). [The sums of parts of each partition (the total sizes).]
A003963(n) = A243499(a(n)). [And also the products of those parts.]
(End)
From Antti Karttunen, Oct 09 2016: (Start)
A161511(a(n)) = A056239(n).
A029837(1+a(n)) = A252464(n). [Binary width of terms.]
A080791(a(n)) = A252735(n). [Number of nonleading 0-bits.]
A000120(a(n)) = A001222(n). [Binary weight.]
For all n >= 2, A001511(a(n)) = A055396(n).
For all n >= 2, A000120(a(n))-1 = A252736(n). [Binary weight minus one.]
A252750(a(n)) = A252748(n).
a(A250246(n)) = A252754(n).
a(A005117(n)) = A277010(n). [Maps squarefree numbers to a permutation of A003714, fibbinary numbers.]
A085357(a(n)) = A008966(n). [Ditto for their characteristic functions.]
For all n >= 0:
a(A276076(n)) = A277012(n).
a(A276086(n)) = A277022(n).
a(A260443(n)) = A277020(n).
(End)
From Antti Karttunen, Dec 30 2017: (Start)
For n > 1, a(n) = Sum_{d|n, d>1} 2^A033265(a(d)). [See comments.]
More linking formulas:
A106737(a(n)) = A000005(n).
A290077(a(n)) = A000010(n).
A069010(a(n)) = A001221(n).
A136277(a(n)) = A181591(n).
A132971(a(n)) = A008683(n).
A106400(a(n)) = A008836(n).
A268411(a(n)) = A092248(n).
A037011(a(n)) = A010052(n) [conjectured, depends on the exact definition of A037011].
A278161(a(n)) = A046951(n).
A001316(a(n)) = A061142(n).
A277561(a(n)) = A034444(n).
A286575(a(n)) = A037445(n).
A246029(a(n)) = A181819(n).
A278159(a(n)) = A124859(n).
A246660(a(n)) = A112624(n).
A246596(a(n)) = A069739(n).
A295896(a(n)) = A053866(n).
A295875(a(n)) = A295297(n).
A284569(a(n)) = A072411(n).
A286574(a(n)) = A064547(n).
A048735(a(n)) = A292380(n).
A292272(a(n)) = A292382(n).
A244154(a(n)) = A048673(n), a(A064216(n)) = A244153(n).
A279344(a(n)) = A279339(n), a(A279338(n)) = A279343(n).
a(A277324(n)) = A277189(n).
A037800(a(n)) = A297155(n).
For n > 1, A033265(a(n)) = 1+A297113(n).
(End)
From Antti Karttunen, Mar 08 2019: (Start)
a(n) = A048675(n) + A323905(n).
a(A324201(n)) = A000396(n), provided there are no odd perfect numbers.
The following sequences are derived from or related to the base-2 expansion of a(n):
A000265(a(n)) = A322993(n).
A002487(a(n)) = A323902(n).
A005187(a(n)) = A323247(n).
A324288(a(n)) = A324116(n).
A323505(a(n)) = A323508(n).
A079559(a(n)) = A323512(n).
A085405(a(n)) = A323239(n).
The following sequences are obtained by applying to a(n) a function that depends on the prime factorization of its argument, which goes "against the grain" because a(n) is the binary code of the factorization of n, which in these cases is then factored again:
A000203(a(n)) = A323243(n).
A033879(a(n)) = A323244(n) = 2*a(n) - A323243(n),
A294898(a(n)) = A323248(n).
A000005(a(n)) = A324105(n).
A000010(a(n)) = A324104(n).
A083254(a(n)) = A324103(n).
A001227(a(n)) = A324117(n).
A000593(a(n)) = A324118(n).
A001221(a(n)) = A324119(n).
A009194(a(n)) = A324396(n).
A318458(a(n)) = A324398(n).
A192895(a(n)) = A324100(n).
A106315(a(n)) = A324051(n).
A010052(a(n)) = A324822(n).
A053866(a(n)) = A324823(n).
A001065(a(n)) = A324865(n) = A323243(n) - a(n),
A318456(a(n)) = A324866(n) = A324865(n) OR a(n),
A318457(a(n)) = A324867(n) = A324865(n) XOR a(n),
A318458(a(n)) = A324398(n) = A324865(n) AND a(n),
A318466(a(n)) = A324819(n) = A323243(n) OR 2*a(n),
A318467(a(n)) = A324713(n) = A323243(n) XOR 2*a(n),
A318468(a(n)) = A324815(n) = A323243(n) AND 2*a(n).
(End)

Extensions

More terms from Antti Karttunen, Jun 28 2014
Previous Showing 31-40 of 185 results. Next