cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A015577 a(n+1) = 8*a(n) + 9*a(n-1), a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 8, 73, 656, 5905, 53144, 478297, 4304672, 38742049, 348678440, 3138105961, 28242953648, 254186582833, 2287679245496, 20589113209465, 185302018885184, 1667718169966657, 15009463529699912, 135085171767299209, 1215766545905692880, 10941898913151235921
Offset: 0

Views

Author

Keywords

Comments

Binomial transform is A011557, with a leading zero. - Paul Barry, Jul 09 2003
Number of walks of length n between any two distinct nodes of the complete graph K_10. Example: a(2) = 8 because the walks of length 2 between the nodes A and B of the complete graph ABCDEFGHIJ are: ACB, ADB, AEB, AFB, AGB, AHB, AIB and AJB. - Emeric Deutsch, Apr 01 2004
The ratio a(n+1)/a(n) converges to 9 as n approaches infinity. - Felix P. Muga II, Mar 09 2014

Crossrefs

Programs

Formula

From Paul Barry, Jul 09 2003: (Start)
G.f.: x/((1+x)*(1-9*x)).
E.g.f. exp(4*x)*sinh(5*x)/5.
a(n) = (9^n - (-1)^n)/10. (End)
a(n) = 9^(n-1)-a(n-1). - Emeric Deutsch, Apr 01 2004
a(n) = round(9^n/10). - Mircea Merca, Dec 28 2010

Extensions

Extended by T. D. Noe, May 23 2011

A093134 A Jacobsthal trisection.

Original entry on oeis.org

1, 0, 8, 56, 456, 3640, 29128, 233016, 1864136, 14913080, 119304648, 954437176, 7635497416, 61083979320, 488671834568, 3909374676536, 31274997412296, 250199979298360, 2001599834386888, 16012798675095096, 128102389400760776, 1024819115206086200, 8198552921648689608
Offset: 0

Views

Author

Paul Barry, Mar 23 2004

Keywords

Comments

Counts closed walks at a vertex of the complete graph on 9 nodes K_9.
Second binomial transform is A047855.

Crossrefs

Other sequences with a(n+1) = 8^n - a(n) are A001045, A078008, A097073, A115341, A015518, A054878, A015521, A109499, A015531, A109500, A109501, A015552, A015565. - Vladimir Joseph Stephan Orlovsky, Dec 11 2008
Cf. A047855.

Programs

  • Magma
    [(8^n/9+8*(-1)^n/9): n in [0..20]]; // Vincenzo Librandi, Oct 11 2011
    
  • Mathematica
    k=0;lst={1, k};Do[k=8^n-k;AppendTo[lst, k], {n, 1, 5!}];lst (* Vladimir Joseph Stephan Orlovsky, Dec 11 2008 *)
    Table[(8^n + 8*(-1)^n)/9, {n,0,30}] (* or *) LinearRecurrence[{7,8}, {1,0}, 30] (* G. C. Greubel, Jan 06 2018 *)
  • PARI
    for(n=0,30, print1((8^n + 8*(-1)^n)/9, ", ")) \\ G. C. Greubel, Jan 06 2018

Formula

G.f.: (1-7*x)/(1 - 7*x - 8*x^2).
a(n) = (8^n + 8*(-1)^n)/9.
a(n) = 8*A001045(3*n-3)/3.
From Elmo R. Oliveira, Aug 17 2024: (Start)
E.g.f.: exp(-x)*(exp(9*x) + 8)/9.
a(n) = 7*a(n-1) + 8*a(n-2) for n > 1. (End)

A218034 Number of ways to seat 4 types of people in n labeled seats around a circle such that no two adjacent people are of the same type.

Original entry on oeis.org

1, 4, 12, 24, 84, 240, 732, 2184, 6564, 19680, 59052, 177144, 531444, 1594320, 4782972, 14348904, 43046724, 129140160, 387420492, 1162261464, 3486784404, 10460353200, 31381059612, 94143178824, 282429536484, 847288609440, 2541865828332, 7625597484984, 22876792454964
Offset: 0

Views

Author

Amritpal Singh, Oct 19 2012

Keywords

Comments

Number of length-n words with 4 letters and no two adjacent identical letters (including, for n >= 2, the first and last letter). - Joerg Arndt, Oct 21 2012
a(n), for n > 1, apparently is the trace of the n-th power of the adjacency matrix of the complete 4-graph, a 4 X 4 matrix with diagonal elements all zeros and off-diagonal all ones (cf. A054878). - Tom Copeland, Nov 06 2012
The corrected formula by Geoffrey Critzer below (for a general k) is a special case of Theorem 2 in Burstein and Wilf (1997). See also Edlin and Zeilberger (2000), Corollary 5.5 in Taylor (2014), and Section 5 in Hadjicostas and Zhang (2018). - Petros Hadjicostas, Jul 09 2018

Crossrefs

Cf. A092297.

Programs

  • Mathematica
    nn=28; CoefficientList[Series[1+4x +12x^2/(1+x)^2/(1-4x/(1+x)),{x,0,nn}],x] (* Geoffrey Critzer, Apr 05 2014 *)
  • Maxima
    a[0]:1$ a[1]:4$ a[n]:=3^n + 3*(-1)^n$ makelist(a[n],n,0,40); /* Martin Ettl, Oct 21 2012 */
    
  • PARI
    a(n) = if( n<2, [1,4][n+1], 3^n + 3*(-1)^n ); /* Joerg Arndt, Oct 21 2012 */

Formula

a(0) = 1, a(1) = 4, a(n) = 3^n + 3*(-1)^n for n >= 2.
a(n) = 4 * A054878(n) for n >= 2. - Joerg Arndt, Oct 21 2012
G.f.: (1 + 2*x + x^2 - 12*x^3)/((1 + x)*(1 - 3*x)). - Colin Barker, Oct 22 2012
Generally for such words on k letters, g.f.: 1 + k*x + (k^2-k)*x^2/(1 + x)^2/(1 - k*x/(1 + x)). - Geoffrey Critzer, Apr 05 2014 [Corrected by Petros Hadjicostas, Jul 08 2018]
a(n+m) = a(n)*a(m)/4 + a(n+1)*a(m+1)/12. - Yuchun Ji, Sep 12 2017

Extensions

a(0) = 1 prepended and more terms added by Joerg Arndt, Oct 21 2012

A006342 Coloring a circuit with 4 colors.

Original entry on oeis.org

1, 1, 4, 10, 31, 91, 274, 820, 2461, 7381, 22144, 66430, 199291, 597871, 1793614, 5380840, 16142521, 48427561, 145282684, 435848050, 1307544151, 3922632451, 11767897354, 35303692060, 105911076181, 317733228541, 953199685624, 2859599056870, 8578797170611
Offset: 0

Views

Author

Keywords

Comments

Also equal to the number of set partitions of {1,2,...,n+2} with at most 4 parts such that each part does not contain both i,i+1 for 1<=iMike Zabrocki, Sep 08 2020
Also a(n) equals the number of color-complete multipoles with n terminals (that is, having all the states allowed by the Parity Lemma). - Miquel A. Fiol, May 27 2024

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [3*3^n/8+1/4+3*(-1)^n/8: n in [0..30]]; // Vincenzo Librandi, Aug 20 2011
    
  • Maple
    A006342:=-(-1+2*z)/(z-1)/(3*z-1)/(z+1); # conjectured by Simon Plouffe in his 1992 dissertation
    a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=2*a[n-1]+3*a[n-2]-1 od: seq(a[n], n=1..26); # Zerinvary Lajos, Apr 28 2008
  • Mathematica
    CoefficientList[Series[(1-2 x)/((1-x^2) (1-3 x)),{x,0,30}],x] (* or *) LinearRecurrence[{3,1,-3},{1,1,4},30] (* Harvey P. Dale, Aug 16 2016 *)
  • PARI
    Vec((1 - 2*x) / ((1 - x)*(1 + x)*(1 - 3*x)) + O(x^30)) \\ Colin Barker, Nov 07 2017

Formula

G.f.: (1 - 2 x ) / (( 1 - x^2 ) ( 1 - 3 x )).
Binomial transform of A002001 (with interpolated zeros). Partial sums of A054878. E.g.f.: exp(x)(3*cosh(2*x) + 1)/4; a(n) = 3*3^n/8 + 1/4 + 3(-1)^n/8 = Sum_{k=0..n} (3^k + 3(-1)^k)/4. - Paul Barry, Sep 03 2003
a(n) = 2*a(n-1) + 3*a(n-2) - 1, n > 1. - Gary Detlefs, Jun 21 2010
a(n) = a(n-1) + A054878(n-2). - Yuchun Ji, Sep 12 2017
From Colin Barker, Nov 07 2017: (Start)
a(n) = (3^(n+1) + 5) / 8 for n even.
a(n) = (3^(n+1) - 1) / 8 for n odd.
a(n) = 3*a(n-1) + a(n-2) - 3*a(n-3) for n > 2.
(End)
a(n) = 3*a(n-1) + (3*(-1)^n - 1)/2 for n > 0. - Yuchun Ji, Dec 05 2019

A084567 Binomial transform of (1,-1,4,-16,64,-256,1024,...) = (3*0^n-(-4)^n)/4.

Original entry on oeis.org

1, 0, 3, -6, 21, -60, 183, -546, 1641, -4920, 14763, -44286, 132861, -398580, 1195743, -3587226, 10761681, -32285040, 96855123, -290565366, 871696101, -2615088300, 7845264903, -23535794706, 70607384121, -211822152360, 635466457083, -1906399371246
Offset: 0

Views

Author

Paul Barry, May 30 2003

Keywords

Comments

Partial sums of (1,-1,3,-9,27,-81,....) (with g.f. (1+2x)/(1+3x) ).

Crossrefs

Cf. A054878 (absolute values).

Programs

  • Magma
    I:=[1,0]; [n le 2 select I[n] else -2*Self(n-1)+3*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Oct 07 2013
  • Mathematica
    CoefficientList[Series[(1 + 2 x)/((1 - x) (1 + 3 x)), {x, 0, 50}], x] (* Vincenzo Librandi, Oct 07 2013 *)
    LinearRecurrence[{-2,3},{1,0},30] (* Harvey P. Dale, Aug 26 2024 *)
  • PARI
    Vec((1+2*x)/((1-x)*(1+3*x))+O(x^66)) \\ Joerg Arndt, Jul 14 2013
    

Formula

G.f.: (1+2*x)/((1-x)*(1+3*x)).
G.f.: 1+ x -x/Q(0), where Q(k) = 1 + 3*x^2 + (3*k+4)*x - x*(3*k+1 + 3*x)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 07 2013

Extensions

Removed incorrect g.f. and e.g.f., Joerg Arndt, Jul 14 2013

A091562 Triangle read by rows, related to Pascal's triangle, starting with 1, 0, 0.

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 1, 2, 2, 1, 2, 5, 7, 5, 2, 3, 10, 17, 17, 10, 3, 5, 20, 41, 51, 41, 20, 5, 8, 38, 91, 136, 136, 91, 38, 8, 13, 71, 195, 339, 405, 339, 195, 71, 13, 21, 130, 403, 799, 1107, 1107, 799, 403, 130, 21, 34, 235, 812, 1807, 2845, 3297, 2845, 1807, 812, 235, 34
Offset: 0

Views

Author

Christian G. Bower, Jan 20 2004

Keywords

Examples

			Triangle begins:
  1;
  0,0;
  1,1,1;
  1,2,2,1;
  2,5,7,5,2;
  ...
		

Crossrefs

Row sums: A054878, column 0: A000045(n-1), column 1: A001629.
Cf. A090171, A090172, A090173, A090174, A091533, A205575 (same recurrence).
Cf. A090172.

Formula

T(n, k) = T(n-1, k) + T(n-1, k-1) + T(n-2, k) + T(n-2, k-1) + T(n-2, k-2) for n >= 2, k >= 0, with initial conditions specified by first two rows.
G.f.: A(x, y) = (1-x-x*y)/(1-x-x*y-x^2-x^2*y-x^2*y^2).

A109502 Array read by antidiagonals: T(m,n) is the number of closed walks of length n on the complete graph on m nodes, m >= 1, n >= 0.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 2, 0, 0, 1, 0, 3, 2, 1, 0, 1, 0, 4, 6, 6, 0, 0, 1, 0, 5, 12, 21, 10, 1, 0, 1, 0, 6, 20, 52, 60, 22, 0, 0, 1, 0, 7, 30, 105, 204, 183, 42, 1, 0, 1, 0, 8, 42, 186, 520, 820, 546, 86, 0, 0, 1, 0, 9, 56, 301, 1110, 2605, 3276, 1641, 170, 1, 0
Offset: 1

Views

Author

Mitch Harris, Jun 30 2005

Keywords

Examples

			Array begins:
  m\n| 0  1  2  3   4    5     6      7       8        9        10
  ---+------------------------------------------------------------
   1 | 1  0  0  0   0    0     0      0       0        0         0
   2 | 1  0  1  0   1    0     1      0       1        0         1
   3 | 1  0  2  2   6   10    22     42      86      170       342
   4 | 1  0  3  6  21   60   183    546    1641     4920     14763
   5 | 1  0  4 12  52  204   820   3276   13108    52428    209716
   6 | 1  0  5 20 105  520  2605  13020   65105   325520   1627605
   7 | 1  0  6 30 186 1110  6666  39990  239946  1439670   8638026
   8 | 1  0  7 42 301 2100 14707 102942  720601  5044200  35309407
   9 | 1  0  8 56 456 3640 29128 233016 1864136 14913080 119304648
  10 | 1  0  9 72 657 5904 53145 478296 4304673 38742048 348678441
		

Crossrefs

Programs

  • Maple
    T := proc(m, n); ((m-1)^n + (m-1)*(-1)^n)/m end:
    seq(print(seq(T(m, n), n = 0..10)), m = 1..10); # Peter Bala, May 30 2024

Formula

T(m,n) = ((m-1)^n + (m-1)(-1)^n)/m.
G.f.: T(m, n) = [z^n](1 - (m-2)z)/(1 - (m-2)z - (m-1)z^2).
From Peter Bala, May 29 2024: (Start)
Binomial transform of the m-th row: Sum_{k = 0..n} binomial(n, k)*T(m, k) = m^(n-1) for n >= 1.
Let R(m, x) denote the g.f. of the m-th row of the square array. Then R(m_1, x) o R(m_2, x) = R(m_1*m_2, x), where o denotes the black diamond product of power series as defined by Dukes and White. Cf. A062160.
T(m_1*m_2, n) = Sum_{k = 0..n} Sum_{i = k..n} binomial(n, k)*binomial(n-k, i-k)*T(m_1, i)*T(m_2, n-k). (End)

Extensions

Corrected by Franklin T. Adams-Watters, Sep 18 2006

A015592 a(n) = 10*a(n-1) + 11*a(n-2).

Original entry on oeis.org

0, 1, 10, 111, 1220, 13421, 147630, 1623931, 17863240, 196495641, 2161452050, 23775972551, 261535698060, 2876892678661, 31645819465270, 348104014117971, 3829144155297680, 42120585708274481, 463326442791019290, 5096590870701212191, 56062499577713334100
Offset: 0

Views

Author

Keywords

Comments

Number of walks of length n between any two distinct nodes of the complete graph K_12. Example: a(2)=10 because the walks of length 2 between the nodes A and B of the complete graph ABCDEFGHIJKL are ACB, ADB, AEB, AFB, AGB, AHB, AIB, AJB, AKB and ALB. - Emeric Deutsch, Apr 01 2004

Crossrefs

Programs

Formula

a(n) = 11^(n-1) - a(n-1). G.f.: x/(1 - 10x - 11x^2). - Emeric Deutsch, Apr 01 2004
From Elmo R. Oliveira, Aug 17 2024: (Start)
E.g.f.: exp(5*x)*sinh(6*x)/6.
a(n) = (11^n - (-1)^n)/12. (End)

A092810 Binomial transform of a Jacobsthal trisection.

Original entry on oeis.org

1, 6, 54, 486, 4374, 39366, 354294, 3188646, 28697814, 258280326, 2324522934, 20920706406, 188286357654, 1694577218886, 15251194969974, 137260754729766, 1235346792567894, 11118121133111046, 100063090197999414, 900567811781994726, 8105110306037952534
Offset: 0

Views

Author

Paul Barry, Mar 10 2004

Keywords

Comments

Binomial transform of A082311.

Crossrefs

Cf. A001045.

Programs

Formula

G.f.: (1-3*x)/(1-9*x).
E.g.f.: 2*exp(9*x)/3 + 1/3.
a(n) = 2*9^n/3 + 0^n/3.
a(n) = A054878(2n+1) - A054878(2n-1) + 0^n/3 = A015518(2n+1) - A015518(2n-1) + 0^n/3.
a(n) = 2*3^(2*n-1), for n>0. - Gionata Neri, Jun 18 2015

A015609 a(n) = 11*a(n-1) + 12*a(n-2).

Original entry on oeis.org

0, 1, 11, 133, 1595, 19141, 229691, 2756293, 33075515, 396906181, 4762874171, 57154490053, 685853880635, 8230246567621, 98762958811451, 1185155505737413, 14221866068848955, 170662392826187461
Offset: 0

Views

Author

Keywords

Comments

Number of walks of length n between any two distinct nodes of the complete graph K_13. Example: a(2)=11 because the walks of length 2 between the nodes A and B of the complete graph ABCDEFGHIJKLM are ACB, ADB, AEB, AFB, AGB, AHB, AIB, AJB, AKB, ALB and AMB. - Emeric Deutsch, Apr 01 2004

Crossrefs

Programs

  • Magma
    [(1/13)*(12^n-(-1)^n): n in [0..20]]; // Vincenzo Librandi, Oct 11 2011
    
  • Mathematica
    CoefficientList[Series[x/(1-11*x-12*x^2), {x, 0, 50}], x] (* or *) LinearRecurrence[{11,12}, {0,1}, 30] (* G. C. Greubel, Dec 30 2017 *)
  • PARI
    x='x+O('x^30); concat([0], Vec(x/(1-11*x-12*x^2))) \\ G. C. Greubel, Dec 30 2017
  • Sage
    [lucas_number1(n,11,-12) for n in range(0, 18)] # Zerinvary Lajos, Apr 27 2009
    
  • Sage
    [abs(gaussian_binomial(n,1,-12)) for n in range(0,18)] # Zerinvary Lajos, May 28 2009
    

Formula

From Emeric Deutsch, Apr 01 2004: (Start)
a(n) = 12^(n-1) - a(n-1).
G.f.: x/(1 - 11*x - 12*x^2). (End)
E.g.f.: exp(-x)*(exp(13*x) - 1)/13. - Stefano Spezia, Mar 11 2020
Previous Showing 11-20 of 22 results. Next