cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 55 results. Next

A004189 a(n) = 10*a(n-1) - a(n-2); a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 10, 99, 980, 9701, 96030, 950599, 9409960, 93149001, 922080050, 9127651499, 90354434940, 894416697901, 8853812544070, 87643708742799, 867583274883920, 8588189040096401, 85014307126080090, 841554882220704499, 8330534515080964900, 82463790268588944501, 816307368170808480110
Offset: 0

Views

Author

Keywords

Comments

Indices of square numbers which are also generalized pentagonal numbers.
If t(n) denotes the n-th triangular number, t(A105038(n))=a(n)*a(n+1). - Robert Phillips (bobanne(AT)bellsouth.net), May 25 2008
The n-th term is a(n) = ((5+sqrt(24))^n - (5-sqrt(24))^n)/(2*sqrt(24)). - Sture Sjöstedt, May 31 2009
For n >= 2, a(n) equals the permanent of the (n-1) X (n-1) tridiagonal matrix with 10's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011
a(n) and b(n) (A001079) are the nonnegative proper solutions of the Pell equation b(n)^2 - 6*(2*a(n))^2 = +1. See the cross reference to A001079 below. - Wolfdieter Lang, Jun 26 2013
For n >= 1, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,9}. - Milan Janjic, Jan 25 2015
For n > 1, this also gives the number of (n-1)-decimal-digit numbers which avoid a particular two-digit number with distinct digits. For example, there are a(5) = 9701 4-digit numbers which do not include "39" as a substring; see Wikipedia link. - Charles R Greathouse IV, Jan 14 2016
All possible solutions for y in Pell equation x^2 - 24*y^2 = 1. The values for x are given in A001079. - Herbert Kociemba, Jun 05 2022
Dickson on page 384 gives the Diophantine equation "(20) 24x^2 + 1 = y^2" and later states "... three consecutive sets (x_i, y_i) of solutions of (20) or 2x^2 + 1 = 3y^2 satisfy x_{n+1} = 10x_n - x_{n-1}, y_{n+1} = 10y_n - y_{n-1} with (x_1, y_1) = (0, 1) or (1, 1), (x_2, y_2) = (1, 5) or (11, 9), respectively." The first set of values (x_n, y_n) = (A001079(n-1), a(n-1)). - Michael Somos, Jun 19 2023

Examples

			a(2)=10 and (3(-8)^2-(-8))/2=10^2, a(3)=99 and (3(81)^2-(81))/2=99^2. - _Michael Somos_, Sep 05 2006
G.f. = x + 10*x^2 + 99*x^3 + 980*x^4 + 9701*x^5 + 96030*x^6 + ...
		

References

  • L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. AMS Chelsea Publishing, Providence, Rhode Island, 1999, p. 384.

Crossrefs

Chebyshev sequence U(n, m): A000027 (m=1), A001353 (m=2), A001109 (m=3), A001090 (m=4), this sequence (m=5), A004191 (m=6), A007655 (m=7), A077412 (m=8), A049660 (m=9), A075843 (m=10), A077421 (m=11), A077423 (m=12), A097309 (m=13), A097311 (m=14), A097313 (m=15), A029548 (m=16), A029547 (m=17), A144128 (m=18), A078987 (m=19), A097316 (m=33).
Cf. A323182.

Programs

  • GAP
    m:=5;; a:=[0,1];; for n in [3..20] do a[n]:=2*m*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 23 2019
  • Magma
    [ n eq 1 select 0 else n eq 2 select 1 else 10*Self(n-1)-Self(n-2): n in [1..20] ]; // Vincenzo Librandi, Aug 19 2011
    
  • Maple
    A004189 := proc(n)
        option remember;
        if n <= 1 then
            n ;
        else
            10*procname(n-1)-procname(n-2) ;
        end if;
    end proc:
    seq(A004189(n),n=0..20) ; # R. J. Mathar, Apr 30 2017
    seq( simplify(ChebyshevU(n-1, 5)), n=0..20); # G. C. Greubel, Dec 23 2019
  • Mathematica
    Table[GegenbauerC[n-1,1,5], {n,0,30}] (* Vladimir Joseph Stephan Orlovsky, Sep 11 2008; modified by G. C. Greubel, Jun 06 2019 *)
    LinearRecurrence[{10, -1}, {0, 1}, 20] (* Jean-François Alcover, Nov 15 2017 *)
    ChebyshevU[Range[21] -2, 5] (* G. C. Greubel, Dec 23 2019 *)
  • PARI
    {a(n) = subst(poltchebi(n+1) - 5*poltchebi(n), 'x, 5) / 24}; /* Michael Somos, Sep 05 2006 */
    
  • PARI
    a(n)=([9,1;8,1]^(n-1)*[1;1])[1,1] \\ Charles R Greathouse IV, Jan 14 2016
    
  • PARI
    vector(21, n, n--; polchebyshev(n-1, 2, 5) ) \\ G. C. Greubel, Dec 23 2019
    
  • Sage
    [lucas_number1(n,10,1) for n in range(22)] # Zerinvary Lajos, Jun 25 2008
    
  • Sage
    [chebyshev_U(n-1,5) for n in (0..20)] # G. C. Greubel, Dec 23 2019
    

Formula

a(n) = S(2*n-1, sqrt(12))/sqrt(12) = S(n-1, 10); S(n, x) := U(n, x/2), Chebyshev polynomials of 2nd kind, A049310. S(-1, x) := 0.
A001079(n) = sqrt(24*(a(n)^2)+1), that is a(n) = sqrt((A001079(n)^2-1)/24).
From Barry E. Williams, Aug 18 2000: (Start)
a(n) = ( (5+2*sqrt(6))^n - (5-2*sqrt(6))^n )/(4*sqrt(6)).
G.f.: x/(1-10*x+x^2). (End)
a(-n) = -a(n). - Michael Somos, Sep 05 2006
From Mohamed Bouhamida, May 26 2007: (Start)
a(n) = 9*(a(n-1) + a(n-2)) - a(n-3).
a(n) = 11*(a(n-1) - a(n-2)) + a(n-3).
a(n) = 10*a(n-1) - a(n-2). (End)
a(n+1) = Sum_{k=0..n} A101950(n,k)*9^k. - Philippe Deléham, Feb 10 2012
From Peter Bala, Dec 23 2012: (Start)
Product {n >= 1} (1 + 1/a(n)) = 1/2*(2 + sqrt(6)).
Product {n >= 2} (1 - 1/a(n)) = 1/5*(2 + sqrt(6)). (End)
a(n) = (A054320(n-1) + A072256(n))/2. - Richard R. Forberg, Nov 21 2013
a(2*n - 1) = A046173(n).
E.g.f.: exp(5*x)*sinh(2*sqrt(6)*x)/(2*sqrt(6)). - Stefano Spezia, Dec 12 2022
a(n) = Sum_{k = 0..n-1} binomial(n+k, 2*k+1)*8^k = Sum_{k = 0..n-1} (-1)^(n+k+1)* binomial(n+k, 2*k+1)*12^k. - Peter Bala, Jul 18 2023

A049660 a(n) = Fibonacci(6*n)/8.

Original entry on oeis.org

0, 1, 18, 323, 5796, 104005, 1866294, 33489287, 600940872, 10783446409, 193501094490, 3472236254411, 62306751484908, 1118049290473933, 20062580477045886, 360008399296352015, 6460088606857290384, 115921586524134874897, 2080128468827570457762
Offset: 0

Views

Author

Keywords

Comments

For n >= 2, a(n) equals the permanent of the (n-1) X (n-1) tridiagonal matrix with 18's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011
For n >= 2, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,17}. - Milan Janjic, Jan 25 2015
10*a(n)^2 = Tri(4)*S(n-1, 18)^2 is the triangular number Tri((T(n, 9) - 1)/2), with Tri, S and T given in A000217, A049310 and A053120. This is instance k = 4 of the k-family of identities given in a comment on A001109. - Wolfdieter Lang, Feb 01 2016
Possible solutions for y in Pell equation x^2 - 80*y^2 = 1. The values for x are given in A023039. - Herbert Kociemba, Jun 05 2022

Examples

			a(3) = F(6 * 3) / 8 = F(18) / 8 = 2584 / 8 = 323. - _Indranil Ghosh_, Feb 06 2017
		

Crossrefs

Column m=6 of array A028412.
Partial sums of A007805.

Programs

Formula

G.f.: x/(1 - 18*x + x^2).
a(n) = A134492(n)/8.
a(n) ~ (1/40)*sqrt(5)*(sqrt(5) + 2)^(2*n). - Joe Keane (jgk(AT)jgk.org), May 15 2002
For all terms k of the sequence, 80*k^2 + 1 is a square. Limit_{n->oo} a(n)/a(n-1) = 8*phi + 5 = 9 + 4*sqrt(5). - Gregory V. Richardson, Oct 14 2002
a(n) = S(n-1, 18) with S(n, x) := U(n, x/2), Chebyshev's polynomials of the second kind. S(-1, x) := 0. See A049310.
a(n) = (((9 + 4*sqrt(5))^n - (9 - 4*sqrt(5))^n))/(8*sqrt(5)).
a(n) = sqrt((A023039(n)^2 - 1)/80) (cf. Richardson comment).
a(n) = 18*a(n-1) - a(n-2). - Gregory V. Richardson, Oct 14 2002
a(n) = A001076(2n)/4.
a(n) = 17*(a(n-1) + a(n-2)) - a(n-3) = 19*(a(n-1) - a(n-2)) + a(n-3). - Mohamed Bouhamida, May 26 2007
a(n+1) = Sum_{k=0..n} A101950(n,k)*17^k. - Philippe Deléham, Feb 10 2012
Product_{n>=1} (1 + 1/a(n)) = (1/2)*(2 + sqrt(5)). - Peter Bala, Dec 23 2012
Product_{n>=2} (1 - 1/a(n)) = (2/9)*(2 + sqrt(5)). - Peter Bala, Dec 23 2012
a(n) = (1/32)*(F(6*n + 3) - F(6*n - 3)).
Sum_{n>=1} 1/(4*a(n) + 1/(4*a(n))) = 1/4. Compare with A001906 and A049670. - Peter Bala, Nov 29 2013
From Peter Bala, Apr 02 2015: (Start)
Sum_{n >= 1} a(n)*x^(2*n) = -G(x)*G(-x), where G(x) = Sum_{n >= 1} A001076(n)*x^n.
1 + 4*Sum_{n >= 1} a(n)*x^(2*n) = (1 + F(x))*(1 + F(-x)) = (1 + 2*x*G(x))*(1 - 2*x*G(-x)), where F(x) = Sum_{n >= 1} Fibonacci(3*n + 3)*x^n.
1 + 7*Sum_{n >= 1} a(n)*x^(2*n) = (1 + G(x))*(1 + G(-x)) = (1 + 7*G(x))*(1 + 7*G(-x)).
1 + 12*Sum_{n >= 1} a(n)*x^(2*n) = (1 + 2*G(x))*(1 + 2*G(-x)) = (1 + 6*G(x))*(1 + 6*G(-x)) = (1 + A(x))*(1 + A(-x)), where A(x) = Sum_{n >= 1} Fibonacci(3*n)*x^n is the o.g.f for A014445.
1 + 15*Sum_{n >= 1} a(n)*x^(2*n) = (1 + 5*G(x))*(1 + 5*G(-x)) = (1 + 3*G(x))*(1 + 3*G(-x)) = H(x)*H(-x), where H(x) = Sum_{n >= 0} A155179(n)*x^n.
1 + 16*Sum_{n >= 1} a(n)*x^(2*n) = (1 + 4*G(x))*(1 + 4*G(-x)) = (1 + 2* Sum_{n >= 1} Fibonacci(3*n - 1)*x^n)*(1 + 2* Sum_{n >= 1} Fibonacci(3*n - 1)*(-x)^n) = (1 + 2* Sum_{n >= 1} Fibonacci(3*n + 1)*x^n)*(1 + 2* Sum_{n >= 1} Fibonacci(3*n + 1)*(-x)^n).
1 + 20*Sum_{n >= 1} a(n)*x^(2*n) = (1 + Sum_{n >= 1} Lucas(3*n)*x^n)*(1 + Sum_{n >= 1} Lucas(3*n)*(-x)^n).
1 - 5*Sum_{n >= 1} a(n)*x^(2*n) = (1 + Sum_{n >= 1} A001077(n+1)*x^n)*(1 + Sum_{n >= 1} A001077(n+1)*(-x)^n).
1 - 9*Sum_{n >= 1} a(n)*x^(2*n) = (1 - G(x))*(1 - G(-x)) = (1 + 9*G(x))*(1 + 9*G(-x)).
1 - 16*Sum_{n >= 1} a(n)*x^(2*n) = (1 + 2*Sum_{n >= 1} A099843(n)*x^n)*(1 + 2*Sum_{n >= 1} A099843(n)*(-x)^n).
1 - 20*Sum_{n >= 1} a(n)*x^(2*n) = (1 - 2*G(x))*(1 - 2*G(-x)) = (1 + 10*G(x))*(1 + 10*G(-x)).
(End)

Extensions

Chebyshev and other comments from Wolfdieter Lang, Nov 08 2002

A001090 a(n) = 8*a(n-1) - a(n-2); a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 8, 63, 496, 3905, 30744, 242047, 1905632, 15003009, 118118440, 929944511, 7321437648, 57641556673, 453811015736, 3572846569215, 28128961537984, 221458845734657, 1743541804339272, 13726875588979519, 108071462907496880, 850844827670995521, 6698687158460467288
Offset: 0

Views

Author

Keywords

Comments

This sequence gives the values of y in solutions of the Diophantine equation x^2 - 15*y^2 = 1; the corresponding values of x are in A001091. - Vincenzo Librandi, Nov 12 2010 [edited by Jon E. Schoenfield, May 02 2014]
For n >= 2, a(n) equals the permanent of the (n-1) X (n-1) tridiagonal matrix with 8's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011
For n >= 1, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,7}. - Milan Janjic, Jan 25 2015
From Klaus Purath, Jul 25 2024: (Start)
For any three consecutive terms (x, y, z) y^2 - x*z = 1 always applies.
a(n) = (t(i+2n) - t(i))/(t(i+n+1) - t(i+n-1)) where (t) is any recurrence t(k) = 9t(k-1) - 9t(k-2) + t(k-3) or t(k) = 8t(k-1) - t(k-2) without regard to initial values.
In particular, if the recurrence (t) of the form (9,-9,1) has the initial values t(0) = 1, t(1) = 2, t(2) = 9, a(n) = t(n) - 1 applies. (End)

Examples

			G.f. = x + 8*x^2 + 63*x^3 + 496*x^4 + 3905*x^5 + 30744*x^6 + 242047*x^7 + ...
		

References

  • Julio R. Bastida, Quadratic properties of a linearly recurrent sequence. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 163--166, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561042 (81e:10009) - From N. J. A. Sloane, May 30 2012
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Equals one-third A136325.
Chebyshev sequence U(n, m): A000027 (m=1), A001353 (m=2), A001109 (m=3), this sequence (m=4), A004189 (m=5), A004191 (m=6), A007655 (m=7), A077412 (m=8), A049660 (m=9), A075843 (m=10), A077421 (m=11), A077423 (m=12), A097309 (m=13), A097311 (m=14), A097313 (m=15), A029548 (m=16), A029547 (m=17), A144128 (m=18), A078987 (m=19), A097316 (m=33).
Cf. A323182.

Programs

  • GAP
    m:=4;; a:=[0,1];; for n in [3..20] do a[n]:=2*m*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 23 2019
  • Magma
    I:=[0,1]; [n le 2 select I[n] else 8*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 20 2017
    
  • Maple
    A001090:=1/(1-8*z+z**2); # Simon Plouffe in his 1992 dissertation
    seq( simplify(ChebyshevU(n-1, 4)), n=0..20); # G. C. Greubel, Dec 23 2019
  • Mathematica
    Table[GegenbauerC[n-1, 1, 4], {n,0,20}] (* Vladimir Joseph Stephan Orlovsky, Sep 11 2008 *)
    LinearRecurrence[{8,-1},{0,1},30] (* Harvey P. Dale, Aug 29 2012 *)
    a[n_]:= ChebyshevU[n-1, 4]; (* Michael Somos, May 28 2014 *)
    CoefficientList[Series[x/(1-8*x+x^2), {x,0,20}], x] (* G. C. Greubel, Dec 20 2017 *)
  • PARI
    {a(n) = subst(poltchebi(n+1) - 4 * poltchebi(n), x, 4) / 15}; /* Michael Somos, Apr 05 2008 */
    
  • PARI
    {a(n) = polchebyshev(n-1, 2, 4)}; /* Michael Somos, May 28 2014 */
    
  • PARI
    my(x='x+O('x^30)); concat([0], Vec(x/(1-8*x-x^2))) \\ G. C. Greubel, Dec 20 2017
    
  • SageMath
    [lucas_number1(n,8,1) for n in range(22)] # Zerinvary Lajos, Jun 25 2008
    
  • SageMath
    [chebyshev_U(n-1,4) for n in (0..20)] # G. C. Greubel, Dec 23 2019
    

Formula

15*a(n)^2 - A001091(n)^2 = -1.
a(n) = sqrt((A001091(n)^2 - 1)/15).
a(n) = S(2*n-1, sqrt(10))/sqrt(10) = S(n-1, 8); S(n, x) := U(n, x/2), Chebyshev polynomials of 2nd kind, A049310, with S(-1, x) := 0.
From Barry E. Williams, Aug 18 2000: (Start)
a(n) = ((4+sqrt(15))^n - (4-sqrt(15))^n)/(2*sqrt(15)).
G.f.: x/(1-8*x+x^2). (End)
Limit_{n->infinity} a(n)/a(n-1) = 4 + sqrt(15). - Gregory V. Richardson, Oct 13 2002
[A070997(n-1), a(n)] = [1,6; 1,7]^n * [1,0]. - Gary W. Adamson, Mar 21 2008
a(-n) = -a(n). - Michael Somos, Apr 05 2008
a(n+1) = Sum_{k=0..n} A101950(n,k)*7^k. - Philippe Deléham, Feb 10 2012
From Peter Bala, Dec 23 2012: (Start)
Product_{n >= 1} (1 + 1/a(n)) = (1/3)*(3 + sqrt(15)).
Product_{n >= 2} (1 - 1/a(n)) = (1/8)*(3 + sqrt(15)).
(End)
a(n) = A136325(n)/3. - Greg Dresden, Sep 12 2019
E.g.f.: exp(4*x)*sinh(sqrt(15)*x)/sqrt(15). - Stefano Spezia, Dec 12 2022
a(n) = Sum_{k = 0..n-1} binomial(n+k, 2*k+1)*6^k = Sum_{k = 0..n-1} (-1)^(n+k+1)* binomial(n+k, 2*k+1)*10^k. - Peter Bala, Jul 17 2023

Extensions

More terms from Wolfdieter Lang, Aug 02 2000

A007655 Standard deviation of A007654.

Original entry on oeis.org

0, 1, 14, 195, 2716, 37829, 526890, 7338631, 102213944, 1423656585, 19828978246, 276182038859, 3846719565780, 53577891882061, 746243766783074, 10393834843080975, 144767444036350576, 2016350381665827089, 28084137899285228670, 391161580208327374291, 5448177985017298011404
Offset: 1

Views

Author

Keywords

Comments

a(n) corresponds also to one-sixth the area of Fleenor-Heronian triangle with middle side A003500(n). - Lekraj Beedassy, Jul 15 2002
a(n) give all (nontrivial, integer) solutions of Pell equation b(n+1)^2 - 48*a(n+1)^2 = +1 with b(n+1)=A011943(n), n>=0.
For n>=3, a(n) equals the permanent of the (n-2) X (n-2) tridiagonal matrix with 14's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011
For n>1, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,13}. - Milan Janjic, Jan 25 2015
6*a(n)^2 = 6*S(n-1, 14)^2 is the triangular number Tri((T(n, 7) - 1)/2) with Tri = A000217 and T = A053120. This is instance k = 3 of the general k-identity given in a comment to A001109. - Wolfdieter Lang, Feb 01 2016

Examples

			G.f. = x^2 + 14*x^3 + 195*x^4 + 2716*x^5 + 37829*x^6 + 526890*x^7 + ...
		

References

  • D. A. Benaron, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Chebyshev sequence U(n, m): A000027 (m=1), A001353 (m=2), A001109 (m=3), A001090 (m=4), A004189 (m=5), A004191 (m=6), this sequence (m=7), A077412 (m=8), A049660 (m=9), A075843 (m=10), A077421 (m=11), A077423 (m=12), A097309 (m=13), A097311 (m=14), A097313 (m=15), A029548 (m=16), A029547 (m=17), A144128 (m=18), A078987 (m=19), A097316 (m=33).
Cf. A323182.

Programs

  • GAP
    m:=7;; a:=[0,1];; for n in [3..20] do a[n]:=2*m*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 23 2019
  • Magma
    [n le 2 select n-1 else 14*Self(n-1)-Self(n-2): n in [1..70]]; // Vincenzo Librandi, Feb 02 2016
    
  • Maple
    0,seq(orthopoly[U](n,7),n=0..30); # Robert Israel, Feb 04 2016
  • Mathematica
    Table[GegenbauerC[n, 1, 7], {n,0,20}] (* Vladimir Joseph Stephan Orlovsky, Sep 11 2008 *)
    LinearRecurrence[{14,-1}, {0,1}, 20] (* Vincenzo Librandi, Feb 02 2016 *)
    ChebyshevU[Range[21] -2, 7] (* G. C. Greubel, Dec 23 2019 *)
    Table[Sum[Binomial[n, 2 k - 1]*7^(n - 2 k + 1)*48^(k - 1), {k, 1, n}], {n, 0, 15}] (* Horst H. Manninger, Jan 16 2022 *)
  • PARI
    concat(0, Vec((x^2/(1-14*x+x^2) + O(x^30)))) \\ Michel Marcus, Feb 02 2016
    
  • PARI
    vector(21, n, polchebyshev(n-2, 2, 7) ) \\ G. C. Greubel, Dec 23 2019
    
  • Sage
    [lucas_number1(n,14,1) for n in range(0,20)] # Zerinvary Lajos, Jun 25 2008
    
  • Sage
    [chebyshev_U(n,7) for n in (-1..20)] # G. C. Greubel, Dec 23 2019
    

Formula

a(n) = 14*a(n-1) - a(n-2).
G.f.: x^2/(1-14*x+x^2).
a(n+1) ~ 1/24*sqrt(3)*(2 + sqrt(3))^(2*n). - Joe Keane (jgk(AT)jgk.org), May 15 2002
a(n+1) = S(n-1, 14), n>=0, with S(n, x) := U(n, x/2) Chebyshev's polynomials of the second kind. S(-1, x) := 0. See A049310.
a(n+1) = ( (7+4*sqrt(3))^n - (7-4*sqrt(3))^n )/(8*sqrt(3)).
a(n+1) = sqrt((A011943(n)^2 - 1)/48), n>=0.
Chebyshev's polynomials U(n-2, x) evaluated at x=7.
a(n) = A001353(2n)/4. - Lekraj Beedassy, Jul 15 2002
4*a(n+1) + A046184(n) = A055793(n+2) + A098301(n+1) 4*a(n+1) + A098301(n+1) + A055793(n+2) = A046184(n+1) (4*a(n+1))^2 = A098301(2n+1) (conjectures). - Creighton Dement, Nov 02 2004
(4*a(n))^2 = A103974(n)^2 - A011922(n-1)^2. - Paul D. Hanna, Mar 06 2005
From Mohamed Bouhamida, May 26 2007: (Start)
a(n) = 13*( a(n-1) + a(n-2) ) - a(n-3).
a(n) = 15*( a(n-1) - a(n-2) ) + a(n-3). (End)
a(n) = b such that (-1)^n/4*Integral_{x=-Pi/2..Pi/2} (sin((2*n-2)*x))/(2-sin(x)) dx = c+b*log(3). - Francesco Daddi, Aug 02 2011
a(n+2) = Sum_{k=0..n} A101950(n,k)*13^k. - Philippe Deléham, Feb 10 2012
Product {n >= 1} (1 + 1/a(n)) = 1/3*(3 + 2*sqrt(3)). - Peter Bala, Dec 23 2012
Product {n >= 2} (1 - 1/a(n)) = 1/7*(3 + 2*sqrt(3)). - Peter Bala, Dec 23 2012
a(n) = (A028230(n) - A001570(n))/2. - Richard R. Forberg, Nov 14 2013
E.g.f.: 1 - exp(7*x)*(12*cosh(4*sqrt(3)*x) - 7*sqrt(3)*sinh(4*sqrt(3)*x))/12. - Stefano Spezia, Dec 11 2022

Extensions

Chebyshev comments from Wolfdieter Lang, Nov 08 2002

A077412 Chebyshev U(n,x) polynomial evaluated at x=8.

Original entry on oeis.org

1, 16, 255, 4064, 64769, 1032240, 16451071, 262184896, 4178507265, 66593931344, 1061324394239, 16914596376480, 269572217629441, 4296240885694576, 68470281953483775, 1091228270370045824, 17391182043967249409
Offset: 0

Views

Author

Wolfdieter Lang, Nov 08 2002

Keywords

Comments

For positive n, a(n) equals the permanent of the n X n tridiagonal matrix with 16's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011
For n>=2, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,15}. - Milan Janjic, Jan 23 2015

Crossrefs

Chebyshev sequence U(n, m): A000027 (m=1), A001353 (m=2), A001109 (m=3), A001090 (m=4), A004189 (m=5), A004191 (m=6), A007655 (m=7), this sequence (m=8), A049660 (m=9), A075843 (m=10), A077421 (m=11), A077423 (m=12), A097309 (m=13), A097311 (m=14), A097313 (m=15), A029548 (m=16), A029547 (m=17), A144128 (m=18), A078987 (m=19), A097316 (m=33).
Cf. A323182.

Programs

  • GAP
    m:=8;; a:=[1,2*m];; for n in [3..20] do a[n]:=2*m*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 22 2019
  • Magma
    I:=[1, 16, 255]; [n le 3 select I[n] else 16*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Dec 24 2012
    
  • Maple
    seq( simplify(ChebyshevU(n, 8)), n=0..20); # G. C. Greubel, Dec 22 2019
  • Mathematica
    Table[GegenbauerC[n, 1, 8], {n, 0, 20}] (* Vladimir Joseph Stephan Orlovsky, Sep 11 2008 *)
    CoefficientList[Series[1/(1-16x+x^2), {x,0,20}], x] (* Vincenzo Librandi, Dec 24 2012 *)
    LinearRecurrence[{16,-1}, {1,16}, 30] (* G. C. Greubel, Jan 18 2018 *)
    ChebyshevU[Range[21] -1, 8] (* G. C. Greubel, Dec 22 2019 *)
  • PARI
    vector( 21, n, polchebyshev(n-1, 2, 8) ) \\ G. C. Greubel, Jan 18 2018
    
  • Sage
    [lucas_number1(n,16,1) for n in range(1,20)] # Zerinvary Lajos, Jun 25 2008
    
  • Sage
    [chebyshev_U(n,8) for n in (0..20)] # G. C. Greubel, Dec 22 2019
    

Formula

a(n) = 16*a(n-1) - a(n-2), n>=1, a(-1)=0, a(0)=1.
a(n) = S(n, 16) with S(n, x) := U(n, x/2), Chebyshev's polynomials of the second kind. See A049310.
G.f.: 1/(1 - 16*x + x^2).
a(n) = (((8 + 3*sqrt(7))^(n+1) - (8 - 3*sqrt(7))^(n+1)))/(6*sqrt(7)).
a(n) = sqrt((A001081(n+1)^2-1)/63).
a(n) = Sum_{k=0..n} A101950(n,k)*15^k. - Philippe Deléham, Feb 10 2012
Product {n >= 0} (1 + 1/a(n)) = 1/7*(7 + 3*sqrt(7)). - Peter Bala, Dec 23 2012
Product {n >= 1} (1 - 1/a(n)) = 1/16*(7 + 3*sqrt(7)). - Peter Bala, Dec 23 2012

A029547 Expansion of g.f. 1/(1 - 34*x + x^2).

Original entry on oeis.org

1, 34, 1155, 39236, 1332869, 45278310, 1538129671, 52251130504, 1775000307465, 60297759323306, 2048348816684939, 69583562007964620, 2363792759454112141, 80299370259431848174, 2727814796061228725775, 92665403695822344828176, 3147895910861898495432209
Offset: 0

Views

Author

Keywords

Comments

Chebyshev sequence U(n,17)=S(n,34) with Diophantine property.
b(n)^2 - 2*(12*a(n))^2 = 1 with the companion sequence b(n)=A056771(n+1). - Wolfdieter Lang, Dec 11 2002
More generally, for t(m) = m + sqrt(m^2-1) and u(n) = (t(m)^(n+1) - 1/t(m)^(n+1))/(t(m) - 1/t(m)), we can verify that ((u(n+1) - u(n-1))/2)^2 - (m^2-1)*u(n)^2 = 1. - Bruno Berselli, Nov 21 2011
a(n) equals the number of 01-avoiding words of length n on alphabet {0,1,...,33}. - Milan Janjic, Jan 26 2015

Crossrefs

A091761 is an essentially identical sequence.
Chebyshev sequence U(n, m): A000027 (m=1), A001353 (m=2), A001109 (m=3), A001090 (m=4), A004189 (m=5), A004191 (m=6), A007655 (m=7), A077412 (m=8), A049660 (m=9), A075843 (m=10), A077421 (m=11), A077423 (m=12), A097309 (m=13), A097311 (m=14), A097313 (m=15), A029548 (m=16), A029547 (m=17), A144128 (m=18), A078987 (m=19), A097316 (m=33).

Programs

  • GAP
    m:=17;; a:=[1,2*m];; for n in [3..20] do a[n]:=2*m*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 22 2019
  • Magma
    I:=[1,34]; [n le 2 select I[n] else 34*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 22 2011
    
  • Maple
    with (combinat):seq(fibonacci(4*n+4,2)/12, n=0..15); # Zerinvary Lajos, Apr 21 2008
  • Mathematica
    Table[GegenbauerC[n, 1, 17], {n,0,20}] (* Vladimir Joseph Stephan Orlovsky, Sep 11 2008 *)
    LinearRecurrence[{34,-1},{1,34},20] (* Vincenzo Librandi, Nov 22 2011 *)
    ChebyshevU[Range[21] -1, 17] (* G. C. Greubel, Dec 22 2019 *)
  • PARI
    A029547(n, x=[0,1],A=[17,72*4;1,17]) = vector(n,i,(x*=A)[1]) \\ M. F. Hasler, May 26 2007
    
  • PARI
    vector( 21, n, polchebyshev(n-1, 2, 17) ) \\ G. C. Greubel, Dec 22 2019
    
  • Sage
    [lucas_number1(n,34,1) for n in range(1, 16)] # Zerinvary Lajos, Nov 07 2009
    
  • Sage
    [chebyshev_U(n,17) for n in (0..20)] # G. C. Greubel, Dec 22 2019
    

Formula

a(n) = 34*a(n-1) - a(n-2), a(-1)=0, a(0)=1.
a(n) = S(n, 34) with S(n, x):= U(n, x/2) Chebyshev's polynomials of the 2nd kind. See A049310. - Wolfdieter Lang, Dec 11 2002
a(n) = (ap^(n+1) - am^(n+1))/(ap - am) with ap = 17+12*sqrt(2) and am = 17-12*sqrt(2).
a(n) = Sum_{k = 0..floor(n/2)} (-1)^k*binomial(n-k, k)*34^(n-2*k).
a(n) = sqrt((A056771(n+1)^2 -1)/2)/12.
a(n) = 35*a(n-1) - 35*a(n-2) + a(n-3) with a(-1)=0, a(0)=1, a(1)=34. Also a(n) = (sqrt(2)/48)*((17+12*sqrt(2))^n-(17-12*sqrt(2))^n) = (sqrt(2)/48)*((3+2*sqrt(2))^(2n+2)-(3-2*sqrt(2))^(2n+2)) = (sqrt(2)/48)*((1+sqrt(2))^(4n+4)-(1-sqrt(2))^(4n+4)). - Antonio Alberto Olivares, Mar 19 2008
a(n) = Sum_{k=0..n} A101950(n,k)*33^k. - Philippe Deléham, Feb 10 2012
From Peter Bala, Dec 23 2012: (Start)
Product {n >= 0} (1 + 1/a(n)) = 1/4*(4 + 3*sqrt(2)).
Product {n >= 1} (1 - 1/a(n)) = 2/17*(4 + 3*sqrt(2)). (End)
E.g.f.: exp(17*x)*(24*cosh(12*sqrt(2)*x) + 17*sqrt(2)*sinh(12*sqrt(2)*x))/24. - Stefano Spezia, Apr 16 2023

A004191 Expansion of 1/(1 - 12*x + x^2).

Original entry on oeis.org

1, 12, 143, 1704, 20305, 241956, 2883167, 34356048, 409389409, 4878316860, 58130412911, 692686638072, 8254109243953, 98356624289364, 1172025382228415, 13965947962451616, 166419350167190977, 1983066254043840108, 23630375698358890319, 281581442126262843720
Offset: 0

Views

Author

Keywords

Comments

Chebyshev's polynomials U(n,x) evaluated at x=6.
a(n) give all (nontrivial, integer) solutions of Pell equation b(n)^2 - 35*a(n)^2 = +1 with b(n)=A023038(n+1), n>=0.
For positive n, a(n) equals the permanent of the tridiagonal matrix of order n with 12's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011
For n>=1, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,11}. - Milan Janjic, Jan 26 2015
a(n) = -a(-2-n) for all n in Z. - Michael Somos, Jun 29 2019

Examples

			G.f. = 1 + 12*x + 143*x^2 + 1704*x^3 + 20305*x^4 + 241956*x^5 + ...
		

Crossrefs

Chebyshev sequence U(n, m): A000027 (m=1), A001353 (m=2), A001109 (m=3), A001090 (m=4), A004189 (m=5), this sequence (m=6), A007655 (m=7), A077412 (m=8), A049660 (m=9), A075843 (m=10), A077421 (m=11), A077423 (m=12), A097309 (m=13), A097311 (m=14), A097313 (m=15), A029548 (m=16), A029547 (m=17), A144128 (m=18), A078987 (m=19), A097316 (m=33).
Cf. A323182.

Programs

  • GAP
    m:=8;; a:=[1,2*m];; for n in [3..20] do a[n]:=2*m*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 23 2019
  • Magma
    I:=[1, 12]; [n le 2 select I[n] else 12*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Jun 13 2012
    
  • Maple
    seq( simplify(ChebyshevU(n, 6)), n=0..20); # G. C. Greubel, Dec 23 2019
  • Mathematica
    Table[GegenbauerC[n, 1, 6], {n,0,20}] (* Vladimir Joseph Stephan Orlovsky, Sep 11 2008 *)
    CoefficientList[Series[1/(1-12*x+x^2), {x,0,30}], x] (* T. D. Noe, Aug 01 2011 *)
    LinearRecurrence[{12,-1},{1,12},30] (* Harvey P. Dale, Feb 17 2016 *)
    a[n_]:= ChebyshevU[n, 6]; (* Michael Somos, Jun 29 2019 *)
  • PARI
    Vec(1/(1-12*x+x^2)+O(x^99)) \\ Charles R Greathouse IV, Sep 23 2012
    
  • PARI
    {a(n) = polchebyshev(n, 2, 6)}; \\ Michael Somos, Jun 29 2019
    
  • Sage
    [lucas_number1(n,12,1) for n in range(1,20)] # Zerinvary Lajos, Jun 25 2008
    
  • Sage
    [chebyshev_U(n, 6) for n in (0..20)] # G. C. Greubel, Dec 23 2019
    

Formula

a(n) = S(n, 12) with S(n, x) := U(n, x/2) Chebyshev's polynomials of the second kind. See A049310.
a(n) = ((6+sqrt(35))^(n+1) - (6-sqrt(35))^(n+1))/(2*sqrt(35)).
a(n) = sqrt((A023038(n)^2 - 1)/35).
[A077417(n), a(n)] = the 2 X 2 matrix [1,10; 1,11]^(n+1) * [1,0]. - Gary W. Adamson, Mar 19 2008
a(n) = 12*a(n-1) - a(n-2) for n>1, a(0)=1, a(1)=12. - Philippe Deléham, Nov 17 2008
a(n) = b such that (-1)^(n+1)*Integral_{x=0..Pi/2} (sin((n+1)*x))/(6+cos(x)) dx = c + b*(log(2)+log(3)-log(7)). - Francesco Daddi, Aug 01 2011
a(n) = Sum_{k=0..n} A101950(n,k)*11^k. - Philippe Deléham, Feb 10 2012
From Peter Bala, Dec 23 2012 (Start):
Product_{n>=0} (1 + 1/a(n)) = 1/5*(5 + sqrt(35)).
Product_{n>=1} (1 - 1/a(n)) = 1/12*(5 + sqrt(35)). (End)
E.g.f.: exp(6*x)*(35*cosh(sqrt(35)*x) + 6*sqrt(35)*sinh(sqrt(35)*x))/35. - Stefano Spezia, Dec 14 2022

Extensions

Chebyshev comments and a(n) formulas from Wolfdieter Lang, Nov 08 2002

A077421 Chebyshev sequence U(n,11)=S(n,22) with Diophantine property.

Original entry on oeis.org

1, 22, 483, 10604, 232805, 5111106, 112211527, 2463542488, 54085723209, 1187422368110, 26069206375211, 572335117886532, 12565303387128493, 275864339398940314, 6056450163389558415, 132966039255171344816
Offset: 0

Views

Author

Wolfdieter Lang, Nov 29 2002

Keywords

Comments

b(n)^2 - 30*(2*a(n))^2 = 1 with the companion sequence b(n)=A077422(n+1).
For positive n, a(n) equals the permanent of the n X n tridiagonal matrix with 22's along the main diagonal, and i's along the subdiagonal and the superdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011
For n>=2, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,21}. - Milan Janjic, Jan 25 2015

Crossrefs

Chebyshev sequence U(n, m): A000027 (m=1), A001353 (m=2), A001109 (m=3), A001090 (m=4), A004189 (m=5), A004191 (m=6), A007655 (m=7), A077412 (m=8), A049660 (m=9), A075843 (m=10), this sequence (m=11), A077423 (m=12), A097309 (m=13), A097311 (m=14), A097313 (m=15), A029548 (m=16), A029547 (m=17), A144128 (m=18), A078987 (m=19), A097316 (m=33).
Cf. A323182.

Programs

  • GAP
    m:=11;; a:=[1,2*m];; for n in [3..20] do a[n]:=2*m*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 23 2019
  • Magma
    I:=[1, 22]; [n le 2 select I[n] else 22*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Dec 24 2012
    
  • Maple
    seq( simplify(ChebyshevU(n, 11)), n=0..20); # G. C. Greubel, Dec 23 2019
  • Mathematica
    Table[GegenbauerC[n, 1, 11], {n,0,20}] (* Vladimir Joseph Stephan Orlovsky, Sep 11 2008 *)
    CoefficientList[Series[1/(1-22x+x^2), {x,0,20}], x] (* Vincenzo Librandi, Dec 24 2012 *)
    ChebyshevU[Range[21] -1, 11] (* G. C. Greubel, Dec 23 2019 *)
  • PARI
    vector( 21, n, polchebyshev(n-1, 2, 11) ) \\ G. C. Greubel, Dec 23 2019
    
  • Sage
    [lucas_number1(n,22,1) for n in range(1,20)] # Zerinvary Lajos, Jun 25 2008
    
  • Sage
    [chebyshev_U(n,11) for n in (0..20)] # G. C. Greubel, Dec 23 2019
    

Formula

a(n) = 22*a(n-1) - a(n-1), a(-1)=0, a(0)=1.
a(n) = S(n, 22) with S(n, x) := U(n, x/2) Chebyshev's polynomials of the 2nd kind. See A049310.
a(n) = (ap^(n+1) - am^(n+1))/(ap - am) with ap := 11+2*sqrt(30) and am := 11-2*sqrt(30).
a(n) = Sum_{k=0..floor(n/2)} (-1)^k*binomial(n-k, k)*22^(n-2*k).
a(n) = sqrt((A077422(n+1)^2-1)/30)/2.
G.f.: 1/(1-22*x+x^2). - Philippe Deléham, Nov 18 2008
a(n) = Sum_{k, 0<=k<=n} A101950(n,k)*21^k. - Philippe Deléham, Feb 10 2012
Product {n >= 0} (1 + 1/a(n)) = 1/5*(5 + sqrt(30)). - Peter Bala, Dec 23 2012
Product {n >= 1} (1 - 1/a(n)) = 1/11*(5 + sqrt(30)). - Peter Bala, Dec 23 2012

A078987 Chebyshev U(n,x) polynomial evaluated at x=19.

Original entry on oeis.org

1, 38, 1443, 54796, 2080805, 79015794, 3000519367, 113940720152, 4326746846409, 164302439443390, 6239165952002411, 236924003736648228, 8996872976040630253, 341644249085807301386, 12973484592284636822415, 492650770257730391950384, 18707755785201470257292177
Offset: 0

Views

Author

Wolfdieter Lang, Jan 10 2003

Keywords

Comments

A078986(n+1)^2 - 10*(6*a(n))^2 = +1, n>=0 (Pell equation +1, see A033313 and A033317).
a(n) equals the number of 01-avoiding words of length n on alphabet {0,1,...,37}. - Milan Janjic, Jan 26 2015

Crossrefs

Chebyshev sequence U(n, m): A000027 (m=1), A001353 (m=2), A001109 (m=3), A001090 (m=4), A004189 (m=5), A004191 (m=6), A007655 (m=7), A077412 (m=8), A049660 (m=9), A075843 (m=10), A077421 (m=11), A077423 (m=12), A097309 (m=13), A097311 (m=14), A097313 (m=15), A029548 (m=16), A029547 (m=17), A144128 (m=18), this sequence (m=19), A097316 (m=33).

Programs

  • GAP
    m:=19;; a:=[1,2*m];; for n in [3..20] do a[n]:=2*m*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 22 2019
  • Magma
    m:=19; I:=[1, 2*m]; [n le 2 select I[n] else 2*m*Self(n-1) -Self(n-2): n in [1..20]]; // G. C. Greubel, Dec 22 2019
    
  • Maple
    seq( simplify(ChebyshevU(n, 19)), n=0..20); # G. C. Greubel, Dec 22 2019
  • Mathematica
    lst={};Do[AppendTo[lst, GegenbauerC[n, 1, 19]], {n, 0, 8^2}];lst (* Vladimir Joseph Stephan Orlovsky, Sep 11 2008 *)
    ChebyshevU[Range[21] -1, 19] (* G. C. Greubel, Dec 22 2019 *)
  • PARI
    a(n)=subst(polchebyshev(n,2),x,19) \\ Charles R Greathouse IV, Feb 10 2012
    
  • PARI
    Vec(1/(1-38*x+x^2) + O(x^50)) \\ Colin Barker, Jun 15 2015
    
  • Sage
    [lucas_number1(n,38,1) for n in range(1, 16)] # Zerinvary Lajos, Nov 07 2009
    
  • Sage
    [chebyshev_U(n,19) for n in (0..20)] # G. C. Greubel, Dec 22 2019
    

Formula

a(n) = 38*a(n-1) - a(n-2), n>=1, a(-1)=0, a(0)=1.
a(n) = S(n, 38) with S(n, x) = U(n, x/2), Chebyshev's polynomials of the second kind. See A049310.
G.f.: 1/(1-38*x+x^2).
a(n) = Sum_{k=0..floor(n/2)} (-1)^k*binomial(n-k, k)*38^(n-2*k).
a(n) = ((19+6*sqrt(10))^(n+1) - (19-6*sqrt(10))^(n+1))/(12*sqrt(10)).
a(n) = Sum_{k=0..n} A101950(n,k)*37^k. - Philippe Deléham, Feb 10 2012
Product_{n>=0} (1 + 1/a(n)) = 1/3*(3 + sqrt(10)). - Peter Bala, Dec 23 2012
Product_{n>=1} (1 - 1/a(n)) = 3/19*(3 + sqrt(10)). - Peter Bala, Dec 23 2012
From Andrea Pinos, Jan 02 2023: (Start)
a(n) = (A097314(n+1) - A097315(n+1))/2.
a(n) = (A097314(n) + A097315(n))/2. (End)

A004525 One even followed by three odd.

Original entry on oeis.org

0, 1, 1, 1, 2, 3, 3, 3, 4, 5, 5, 5, 6, 7, 7, 7, 8, 9, 9, 9, 10, 11, 11, 11, 12, 13, 13, 13, 14, 15, 15, 15, 16, 17, 17, 17, 18, 19, 19, 19, 20, 21, 21, 21, 22, 23, 23, 23, 24, 25, 25, 25, 26, 27, 27, 27, 28, 29, 29, 29, 30, 31, 31, 31, 32, 33, 33, 33, 34, 35, 35, 35, 36, 37, 37, 37
Offset: 0

Views

Author

Keywords

Comments

a(n+1) is the composition length of the n-th symmetric power of the natural representation of a finite subgroup of SL(2,C) of type E_6 (binary tetrahedral group). - Paul Boddington, Oct 23 2003
(1 + x + x^2 + x^3 + x^4 + x^5) / ( (1-x^3)*(1- x^4)) is the Poincaré series [or Poincare series] (or Molien series) for H^*(GL_2(F_3)). - N. J. A. Sloane, Jun 12 2004
The Fi1 and Fi2 sums, see A180662 for the definition of these sums, of triangle A101950 equal the terms of this sequence without the first term. - Johannes W. Meijer, Aug 06 2011
Also the domination number of the n X n black bishop graph. - Eric W. Weisstein, Jun 26 2017
Also the domination number of the (n-1)-Moebius laddder. - Eric W. Weisstein, Jun 30 2017
Also the rook domination number of the hexagonal hexagon board B_n [Harborth and Nienborg] - N. J. A. Sloane, Aug 31 2021
Two players play a game, the object of which is to determine a score. Player 1 prefers larger scores, while player 2 prefers smaller scores. The game begins with a set of potential scores {1,2,3, ... n}. Player 1 divides this set into two nonempty sets, one of which player 2 chooses. Player 2 the divides their chosen set into two nonempty sets, one of which player 1 chooses, and so on, until the final score is arrived at. a(n+1) is the final score when both players play optimally. - Thomas Anton, Jul 14 2023

Examples

			G.f. = x + x^2 + x^3 + 2*x^4 + 3*x^5 + 3*x^6 + 3*x^7 + 4*x^8 + 5*x^9 + ...
		

References

  • A. Adem and R. J. Milgram, Cohomology of Finite Groups, Springer-Verlag, 2nd. ed., 2004; p. 247.
  • Y. Ito, I. Nakamura, Hilbert schemes and simple singularities, New trends in algebraic geometry (Warwick, 1996), 151-233, Cambridge University Press, 1999.

Crossrefs

Programs

  • Haskell
    a004525 n = a004525_list !! n
    a004525_list = 0 : 1 : 1 : zipWith3 (\x y z -> x - y + z + 1)
                   a004525_list (tail a004525_list) (drop 2 a004525_list)
    -- Reinhard Zumkeller, Jul 14 2012
    
  • Magma
    [Floor(n/4) + Ceiling(n/4): n in [0..70]]; // Vincenzo Librandi, Aug 07 2011
    
  • Maple
    A004525 := proc(n): floor(n/4) + ceil(n/4) end: seq(A004525(n), n=0..75); # Johannes W. Meijer, Aug 06 2011
  • Mathematica
    Table[Floor[n/4] + Ceiling[n/4], {n, 0, 100}] (* Wesley Ivan Hurt, Oct 22 2013 *)
    Table[(n + Sin[n Pi/2])/2, {n, 0, 30}] (* Eric W. Weisstein, Jun 30 2017 *)
    LinearRecurrence[{2, -2, 2, -1}, {1, 1, 1, 2}, {0, 20}] (* Eric W. Weisstein, Jun 30 2017 *)
    Table[{n - 1, n, n, n}, {n, 1, 41, 2}] // Flatten (* Harvey P. Dale, Oct 18 2019 *)
  • Maxima
    makelist((1/4)*(2*n-(1-(-1)^n)*(-1)^(n*(n+1)/2)), n, 0, 75); /* Bruno Berselli, Mar 13 2012 */
    
  • PARI
    {a(n) = n\4 + (n+3)\4}; /* Michael Somos, Jul 19 2003 */
    
  • Python
    def A004525(n): return ((n>>1)&-2)+bool(n&3) # Chai Wah Wu, Jan 27 2023

Formula

a(n) = a(n-1) - a(n-2) + a(n-3) + 1 = n - A004524(n+1). - Henry Bottomley, Mar 08 2000
G.f.: x*(1-x+x^2)/((1-x)^2*(1+x^2)) = x*(1-x^6)/((1-x)*(1-x^3)*(1-x^4)). - Michael Somos, Jul 19 2003
a(n) = -a(-n) for all n in Z. - Michael Somos, Jul 19 2003
a(n) = floor(n/4) + ceiling(n/4). See also A004396, one even followed by two odd and A002620, quarter-squares: floor(n/2)*ceiling(n/2). - Jonathan Vos Post, Mar 19 2006
a(n) = Sum_{k=0..n-1} (1 + (-1)^binomial(k+1, 2))/2. - Paul Barry, Mar 31 2008
E.g.f: A(x) = (x*exp(x) + sin(x))/2. - Vladimir Kruchinin, Feb 20 2011
a(n) = (1/4)*(2*n - (1 - (-1)^n)*(-1)^(n*(n+1)/2)). - Bruno Berselli, Mar 13 2012
a(n) = (n - floor(cos(Pi*(n+1)/2)))/2. - Wesley Ivan Hurt, Oct 22 2013
Euler transform of length 6 sequence [1, 0, 1, 1, 0, -1]. - Michael Somos, Apr 03 2017
a(n) = (n + sin(n*Pi/2))/2. - Wesley Ivan Hurt, Oct 02 2017
a(n) = n-1-a(n-2) for n >= 2. - Kritsada Moomuang, Oct 29 2019
Previous Showing 11-20 of 55 results. Next