cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 61 results. Next

A139341 Decimal expansion of e^((1+sqrt(5))/2).

Original entry on oeis.org

5, 0, 4, 3, 1, 6, 5, 6, 4, 3, 3, 6, 0, 0, 2, 8, 6, 5, 1, 3, 1, 1, 8, 8, 2, 1, 8, 9, 2, 8, 5, 4, 2, 4, 7, 1, 0, 3, 2, 3, 5, 9, 0, 1, 7, 5, 4, 1, 3, 8, 4, 6, 3, 6, 0, 3, 0, 2, 0, 0, 0, 1, 9, 6, 7, 7, 7, 7, 8, 6, 9, 6, 0, 9, 1, 0, 8, 9, 2, 9, 4, 2, 8, 4, 1, 5, 1, 8, 7, 8, 2, 1, 8, 4, 3, 3, 8, 4, 6, 5, 3, 3, 0, 5, 4
Offset: 1

Views

Author

Mohammad K. Azarian, Apr 14 2008

Keywords

Comments

By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 13 2019

Examples

			5.04316564336002865131188218928542471032359017541384...
		

Crossrefs

Programs

Formula

From Amiram Eldar, Feb 08 2022: (Start)
Equals exp(A001622).
Equals 1/A139342. (End)

A132338 Decimal expansion of 1 - 1/phi.

Original entry on oeis.org

3, 8, 1, 9, 6, 6, 0, 1, 1, 2, 5, 0, 1, 0, 5, 1, 5, 1, 7, 9, 5, 4, 1, 3, 1, 6, 5, 6, 3, 4, 3, 6, 1, 8, 8, 2, 2, 7, 9, 6, 9, 0, 8, 2, 0, 1, 9, 4, 2, 3, 7, 1, 3, 7, 8, 6, 4, 5, 5, 1, 3, 7, 7, 2, 9, 4, 7, 3, 9, 5, 3, 7, 1, 8, 1, 0, 9, 7, 5, 5, 0, 2, 9, 2, 7, 9, 2, 7, 9, 5, 8, 1, 0, 6, 0, 8, 8, 6, 2, 5, 1, 5, 2, 4
Offset: 0

Views

Author

N. J. A. Sloane, Nov 07 2007

Keywords

Comments

Density of 1's in Fibonacci word A003849.
Also decimal expansion of Sum_{n>=1} ((-1)^(n+1))*1/phi^n. - Michel Lagneau, Dec 04 2011
The Lambert series evaluated at this point is 0.8828541617125076... [see André-Jeannin]. - R. J. Mathar, Oct 28 2012
Because this equals 2 - phi, this is an integer in the quadratic number field Q(sqrt(5)). (Note that this is also sqrt(5 - 3*phi).) - Wolfdieter Lang, Jan 08 2018
When m >= 1, the equation m*x^m + (m-1)*x^(m-1) + ... + 2*x^2 + x - 1 = 0 has only one positive root, u(m) (say); then lim_{m->oo} u(m) = (3-sqrt(5))/2 (see Aubonnet). - Bernard Schott, May 12 2019
Cosine of the zenith angle at which a string should be cut so that a ball tied to one of its ends, set moving without friction around a vertical circle with the minimum speed in a uniform gravitational field, will then travel through the fixed center of the circle. - Stefano Spezia, Oct 25 2020
Algebraic number of degree 2 with minimal polynomial x^2 - 3*x + 1. The other root is 1 + phi = A104457. - Wolfdieter Lang, Aug 29 2022

Examples

			0.38196601125010515179541316563436188...
		

References

  • F. Aubonnet, D. Guinin and A. Ravelli, Oral, Concours d'entrée des Grandes Ecoles Scientifiques, Exercices résolus, "Crus" 1982-83, Bréal, 1983, Exercice 210, 40-42.

Crossrefs

Programs

Formula

Equals 1 - 1/phi = 2 - phi, with phi from A001622.
Equals A094874 - 1, or A079585 - 2, or the square of A094214.
Equals (5-sqrt(5))^2/20 = 1/phi^2 = 1/A104457. - Joost Gielen, Sep 28 2013 [corrected by Joerg Arndt, Sep 29 2013]
Equals (3-sqrt(5))/2. - Bernard Schott, May 12 2019
Equals Sum_{k >= 2} (-1)^k/(Fibonacci(k)*Fibonacci(k+1)). See Ni et al. - Michel Marcus, Jun 26 2018

A296184 Decimal expansion of 2 + phi, with the golden section phi from A001622.

Original entry on oeis.org

3, 6, 1, 8, 0, 3, 3, 9, 8, 8, 7, 4, 9, 8, 9, 4, 8, 4, 8, 2, 0, 4, 5, 8, 6, 8, 3, 4, 3, 6, 5, 6, 3, 8, 1, 1, 7, 7, 2, 0, 3, 0, 9, 1, 7, 9, 8, 0, 5, 7, 6, 2, 8, 6, 2, 1, 3, 5, 4, 4, 8, 6, 2, 2, 7, 0, 5, 2, 6, 0, 4, 6, 2, 8, 1, 8, 9
Offset: 1

Views

Author

Wolfdieter Lang, Jan 08 2018

Keywords

Comments

In a regular pentagon, inscribed in a unit circle this equals twice the largest distance between a vertex and a midpoint of a side.
This is an integer in the quadratic number field Q(sqrt(5)).
Only the first digit differs from A001622.

Examples

			3.618033988749894848204586834365638117720309179805762862135448622705260462...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 5.25, p. 417.

Crossrefs

2 + 2*cos(2*Pi/n): A104457 (n = 5), A116425 (n = 7), A332438 (n = 9), A019973 (n = 12).

Programs

Formula

Equals 2 + A001622 = 1 + A104457 = 3 + A094214.
From Christian Katzmann, Mar 19 2018: (Start)
Equals Sum_{n>=0} (15*(2*n)!+40*n!^2)/(2*n!^2*3^(2*n+2)).
Equals 5/2 + Sum_{n>=0} 5*(2*n)!/(2*n!^2*3^(2*n+1)). (End)
Constant c = 2 + 2*cos(2*Pi/10). The linear fractional transformation z -> c - c/z has order 10, that is, z = c - c/(c - c/(c - c/(c - c/(c - c/(c - c/(c - c/(c - c/(c - c/(c - c/(z)))))))))). - Peter Bala, May 09 2024

A139340 Decimal expansion of the cube root of the golden ratio. That is, the decimal expansion of ((1+sqrt(5))/2)^(1/3).

Original entry on oeis.org

1, 1, 7, 3, 9, 8, 4, 9, 9, 6, 7, 0, 5, 3, 2, 8, 5, 0, 9, 9, 6, 6, 6, 8, 3, 9, 7, 1, 8, 8, 6, 2, 6, 6, 7, 4, 1, 9, 5, 5, 7, 9, 9, 0, 6, 9, 0, 9, 0, 8, 1, 1, 2, 0, 6, 7, 7, 6, 0, 5, 0, 0, 3, 3, 0, 6, 8, 2, 7, 9, 9, 0, 3, 1, 0, 4, 8, 2, 0, 2, 7, 7, 8, 1, 8, 4, 0, 6, 5, 7, 4, 7, 5, 8, 1, 1, 4, 3, 9, 9, 9, 2, 7, 7, 3
Offset: 1

Views

Author

Mohammad K. Azarian, Apr 14 2008

Keywords

Comments

Larger of the real roots of x^6 - x^3 - 1. - Charles R Greathouse IV, Apr 14 2014

Examples

			1.1739849967053285...
		

Crossrefs

Programs

A116425 Decimal expansion of 2 + 2*cos(2*Pi/7).

Original entry on oeis.org

3, 2, 4, 6, 9, 7, 9, 6, 0, 3, 7, 1, 7, 4, 6, 7, 0, 6, 1, 0, 5, 0, 0, 0, 9, 7, 6, 8, 0, 0, 8, 4, 7, 9, 6, 2, 1, 2, 6, 4, 5, 4, 9, 4, 6, 1, 7, 9, 2, 8, 0, 4, 2, 1, 0, 7, 3, 1, 0, 9, 8, 8, 7, 8, 1, 9, 3, 7, 0, 7, 3, 0, 4, 9, 1, 2, 9, 7, 4, 5, 6, 9, 1, 5, 1, 8, 8, 5, 0, 1, 4, 6, 5, 3, 1, 7, 0, 7, 4, 3, 3, 3, 4, 1, 1
Offset: 1

Views

Author

Eric W. Weisstein, Feb 15 2006

Keywords

Comments

A root of the equation x^3 - 5*x^2 + 6*x - 1 = 0. - Arkadiusz Wesolowski, Jan 13 2016
The other two roots of this minimal polynomial of the present algebraic number (rho(7))^2, with rho(7) = 2*cos(Pi/7) = A160389 are (2*cos(3*Pi/7))^2 = (A255241)^2 and (2*cos(5*Pi/7))^2 = (-A255249)^2. - Wolfdieter Lang, Mar 30 2020

Examples

			3.246979603717467061...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.25 Tutte-Beraha Constants, p. 417.

Crossrefs

2 + 2*cos(2*Pi/n): A104457 (n = 5), A332438 (n = 9), A296184 (n = 10), A019973 (n = 12).

Programs

Formula

Equals (2*cos(Pi/7))^2 = (A160389)^2.
Equals 2 + i^(4/7) - i^(10/7). - Peter Luschny, Apr 04 2020
Let c = 2 + 2*cos(2*Pi/7). The linear fractional transformation z -> c - c/z has order 7, that is, z = c - c/(c - c/(c - c/(c - c/(c - c/(c - c/(c - c/z)))))). - Peter Bala, May 09 2024

A332438 Decimal expansion of (2*cos(Pi/9))^2 = A332437^2.

Original entry on oeis.org

3, 5, 3, 2, 0, 8, 8, 8, 8, 6, 2, 3, 7, 9, 5, 6, 0, 7, 0, 4, 0, 4, 7, 8, 5, 3, 0, 1, 1, 1, 0, 8, 3, 3, 3, 4, 7, 8, 7, 1, 6, 6, 4, 9, 1, 4, 1, 6, 0, 7, 9, 0, 4, 9, 1, 7, 0, 8, 0, 9, 0, 5, 6, 9, 2, 8, 4, 3, 1, 0, 7, 7, 7, 7, 1, 3, 7, 4, 9, 4, 4, 7, 0, 5, 6, 4, 5, 8, 5, 5, 3, 3, 6, 1, 0, 9, 6, 9
Offset: 1

Views

Author

Wolfdieter Lang, Mar 31 2020

Keywords

Comments

This algebraic number rho(9)^2 of degree 3 is a root of its minimal polynomial x^3 - 6*x^2 + 9*x - 1.
The other two roots are x2 = (2*cos(5*Pi/9))^2 = (2*cos(4*Pi/9))^2 = (R(4,rho(9)))^2 = 2 - rho(9) = 0.120614758..., and x3 = (2*cos(7*Pi/9))^2 = (2*cos(7*Pi/9))^2 = (R(7,rho(9)))^2 = 4 + rho(9) - rho(9)^2 = 2.347296355... = A130880 + 2, with rho(9) = 2*cos(Pi/9) = A332437, the monic Chebyshev polynomials R (see A127672), and the computation is done modulo the minimal polynomial of rho(9) which is x^3 - 3*x - 1 (see A187360).
This gives the representation of these roots in the power basis of the simple field extension Q(rho(9)). See the linked W. Lang paper in A187360, sect. 4.
This number rho(9)^2 appears as limit of the quotient of consecutive numbers af various sequences, e.g., A094256 and A094829.
The algebraic number rho(9)^2 - 2 = 1.532088898... of Q(rho(9)) has minimal polynomial x^3 - 3*x + 1 over Q. The other roots are -rho(9) = -A332437 and 2 + rho(9) - rho(9)^2 = A130880. - Wolfdieter Lang, Sep 20 2022

Examples

			3.5320888862379560704047853011108333478716649...
		

Crossrefs

2 + 2*cos(2*Pi/n): A104457 (n = 5), A116425 (n = 7), A296184 (n = 10), A019973 (n = 12).

Programs

  • Mathematica
    RealDigits[(2*Cos[Pi/9])^2, 10, 100][[1]] (* Amiram Eldar, Mar 31 2020 *)
  • PARI
    (2*cos(Pi/9))^2 \\ Michel Marcus, Sep 23 2022

Formula

Equals (2*cos(Pi/9))^2 = rho(9)^2 = A332437^2.
Equals 2 + i^(4/9) - i^(14/9). - Peter Luschny, Apr 04 2020
Equals 2 + w1^(1/3) + w2^(1/3), where w1 = (-1 + sqrt(3)*i)/2 = exp(2*Pi*i/3) and w2 = (-1 - sqrt(3)*i)/2 are the complex roots of x^3 - 1. - Wolfdieter Lang, Sep 20 2022
Constant c = 2 + 2*cos(2*Pi/9). The linear fractional transformation z -> c - c/z has order 9, that is, z = c - c/(c - c/(c - c/(c - c/(c - c/(c - c/(c - c/(c - c/(c - c/(z))))))))). - Peter Bala, May 09 2024
From Amiram Eldar, Nov 22 2024: (Start)
Equals 3 + sec(Pi/9)/2 = 3 + 1/(2*A019879).
Equals 3 + Product_{k>=3} (1 + (-1)^k/A063289(k)). (End)

A032908 One of four 3rd-order recurring sequences for which the first derived sequence and the Galois transformed sequence coincide.

Original entry on oeis.org

2, 2, 3, 6, 14, 35, 90, 234, 611, 1598, 4182, 10947, 28658, 75026, 196419, 514230, 1346270, 3524579, 9227466, 24157818, 63245987, 165580142, 433494438, 1134903171, 2971215074, 7778742050, 20365011075, 53316291174, 139583862446, 365435296163, 956722026042
Offset: 0

Views

Author

Michele Elia (elia(AT)polito.it)

Keywords

Comments

a(n) is also a sequence with the property that the difference between the sum and product of two consecutive terms is equal to the square of the difference between those terms, i.e., a(n)*a(n+1) - (a(n)+ a(n+1)) = (a(n) - a(n + 1))^2. The difference between those two terms, a(n + 1) - a(n) = F(2n -2), the (2n - 2)th Fibonacci number. - John Baker, May 18 2010
Conjecture: consecutive terms of this sequence and consecutive terms of A101265 provide all the positive integer solutions of (a+b)*(a+b+1) == 0 (mod (a*b)). - Robert Israel, Aug 26 2015
Conjecture is true: see Mathematics Stack Exchange link. - Robert Israel, Sep 06 2015
Consecutive terms of this sequence and consecutive terms of A101879 provide all the positive integer pairs for which K = (a+1)/b + (b+1)/a is an integer. For this sequence, K = 3. - Andrey Vyshnevyy, Sep 18 2015

References

  • L. E. Dickson, History of the Theory of Numbers, Dover, New York, 1971.

Crossrefs

Programs

  • Magma
    [2] cat [n le 1 select 2 else Floor((3*Self(n-1) + Sqrt(5*Self(n-1)^2 - 10*Self(n-1) + 1) - 1)/2): n in [1..30]]; // Vincenzo Librandi, Aug 27 2015
  • Maple
    f:= proc(n) option remember; local x;
      x:= procname(n-1); (3*x + sqrt(5*x^2 - 10*x + 1) - 1)/2 end proc:
    f(0):= 2: f(1):= 2:
    map(f, [$0..30]); # Robert Israel, Aug 26 2015
  • Mathematica
    Table[Fibonacci[2 n - 1] + 1, {n, 0, 27}] (* Michael De Vlieger, Aug 26 2015 *)
    LinearRecurrence[{4,-4,1},{2,2,3},40] (* Harvey P. Dale, Apr 11 2018 *)
  • PARI
    Vec((2-6*x+3*x^2)/(1-4*x+4*x^2-x^3)+O(x^66)) \\ Joerg Arndt, Jul 02 2013
    

Formula

G.f.: (2 - 6*x + 3*x^2)/((1 - x)*(1 - 3*x + x^2)).
a(n) = 4*a(n-1) - 4*a(n-2) + a(n-3).
a(n) = Fibonacci(2*n-1) + 1 = A001519(n) + 1. - Vladeta Jovovic, Mar 19 2003
a(n) = 3*a(n - 1) - a(n - 2) - 1. - N. Sato, Jan 21 2010
From Wolfdieter Lang, Aug 27 2014: (Start)
a(n) = 1 + S(n-1, 3) - S(n-2, 3) = 1 + A001519(n), with Chebyshev S-polynomials (see A049310). For n < 0, we have S(-1, x) = 0 and S(-2, x) = -1.
This follows from the partial fraction decomposition of the g.f., 1/(1 - x) + (1 - 2*x)/ (1 - 3*x + x^2), using the recurrence for S, or from A001519. (End)
From Robert Israel, Aug 26 2015: (Start)
(a(n) + a(n+1))*(a(n) + a(n+1) + 1) = 5*a(n)*a(n+1).
a(n+1) = (3*a(n) + sqrt(5*a(n)^2 - 10*a(n) + 1) - 1)/2 for n >= 1. (End)
a(n) = 1 + (2^(-1-n) * ((3 - sqrt(5))^n * (1 + sqrt(5)) + (-1 + sqrt(5)) * (3 + sqrt(5))^n)) / sqrt(5). - Colin Barker, Nov 02 2016
Sum_{n>=0} 1/a(n) = phi (A001622). - Amiram Eldar, Oct 05 2020
Product_{n>=1} (1 + 1/a(n)) = (3+sqrt(5))/2 = phi^2 (A104457). - Amiram Eldar, Nov 28 2024

Extensions

More terms from Ralf Stephan, Mar 10 2003
Index for Chebyshev polynomials and cross reference added by Wolfdieter Lang, Aug 27 2014

A106729 Sum of two consecutive squares of Lucas numbers (A001254).

Original entry on oeis.org

5, 10, 25, 65, 170, 445, 1165, 3050, 7985, 20905, 54730, 143285, 375125, 982090, 2571145, 6731345, 17622890, 46137325, 120789085, 316229930, 827900705, 2167472185, 5674515850, 14856075365, 38893710245, 101825055370, 266581455865
Offset: 0

Views

Author

Lekraj Beedassy, May 14 2005

Keywords

Comments

Positive values of x (or y) satisfying x^2 - 3xy + y^2 + 25 = 0. - Colin Barker, Feb 08 2014
Positive values of x (or y) satisfying x^2 - 7xy + y^2 + 225 = 0. - Colin Barker, Feb 09 2014
Positive values of x (or y) satisfying x^2 - 18xy + y^2 + 1600 = 0. - Colin Barker, Feb 26 2014

Crossrefs

Programs

  • Magma
    [Fibonacci(n-2)^2+Fibonacci(n+3)^2: n in [0..30]]; // Vincenzo Librandi, Jul 09 2011
    
  • Maple
    seq(combinat:-fibonacci(n-2)^2 + combinat:-fibonacci(n+3)^2, n=0..100); # Robert Israel, Nov 23 2014
  • Mathematica
    Table[LucasL[n]^2 + LucasL[n+1]^2, {n, 0, 30}] (* Wesley Ivan Hurt, Nov 23 2014 *)
    Total/@Partition[LucasL[Range[0,30]]^2,2,1] (* Harvey P. Dale, Jun 26 2022 *)
  • PARI
    a(n) = fibonacci(n-2)^2 + fibonacci(n+3)^2;
    vector(30, n, a(n-1)) \\ G. C. Greubel, Dec 17 2017
    
  • Sage
    [fibonacci(n-2)^2 + fibonacci(n+3)^2 for n in (0..30)] # G. C. Greubel, Sep 10 2021

Formula

a(n) = Lucas(n)^2 + Lucas(n+1)^2 = 5*(Fibonacci(n)^2 + Fibonacci(n+1)^2) = 5*A001519(n+1).
a(n) = 3*a(n-1) - a(n-2). - T. D. Noe, Dec 11 2006
G.f.: 5*(1-x)/(1-3*x+x^2). - Philippe Deléham, Nov 16 2008
a(n) = Fibonacci(n-2)^2 + Fibonacci(n+3)^2. - Gary Detlefs, Dec 28 2010
a(n) = [1,1; 1,2]^(n-2).{3,4}.{3,4}, for n>=3. - John M. Campbell, Jul 09 2011
a(n) = Lucas(2n) + Lucas(2n+2). - Richard R. Forberg, Nov 23 2014
From Robert Israel, Nov 23 2014: (Start)
a(n) = 5*A000045(2*n+1).
E.g.f.: (5+sqrt(5))/2 * exp((3+sqrt(5))*x/2) + (5-sqrt(5))/2 * exp((3-sqrt(5))*x/2). (End)
From Enrique Navarrete, Mar 24 2025: (Start)
a(n)^2 = 20 + 5*A081071(n).
Limit_{n->oo} a(n+1)/a(n) = (3 + sqrt(5))/2 (see A104457). (End)

Extensions

Corrected by T. D. Noe, Dec 11 2006
More terms from Bruno Berselli, Jul 17 2011

A109134 Decimal expansion of Phi, the real root of the equation 1/x = (x-1)^2.

Original entry on oeis.org

1, 7, 5, 4, 8, 7, 7, 6, 6, 6, 2, 4, 6, 6, 9, 2, 7, 6, 0, 0, 4, 9, 5, 0, 8, 8, 9, 6, 3, 5, 8, 5, 2, 8, 6, 9, 1, 8, 9, 4, 6, 0, 6, 6, 1, 7, 7, 7, 2, 7, 9, 3, 1, 4, 3, 9, 8, 9, 2, 8, 3, 9, 7, 0, 6, 4, 6, 0, 8, 0, 6, 5, 5, 1, 2, 8, 0, 8, 1, 0, 9, 0, 7, 3, 8, 2, 2, 7, 0, 9, 2, 8, 4, 2, 2, 5, 0, 3, 0, 3, 6, 4, 8, 3, 7
Offset: 1

Views

Author

Lekraj Beedassy, Aug 17 2005

Keywords

Comments

The silver number (A060006) is equal to Phi*(Phi-1).
Also Phi*(Phi-1) = 1/(Phi-1). - Richard R. Forberg, Oct 08 2014
Equations to which this is a root can also be written as: x = sqrt(x + sqrt(x)); x^2 - x - sqrt(x) = 0; or this form where n = 1: x = n + 1/sqrt(x). When n = 2 then the root is 2.618033988... = A104457 = 1 + A001622 or 1 + "Golden Ratio" called phi. - Richard R. Forberg, Oct 08 2014
Also equals the largest root (negated) of the Mandelbrot polynomial P_2(z) = 1+z*(1+z)^2. - Jean-François Alcover, Apr 16 2015
Suppose that r is a real number in the interval [3/2, 5/3). Let C(r) = (c(k)) be the sequence of coefficients in the Maclaurin series for 1/(Sum_{k>=0} floor((k+1)*r))(-x)^k). Conjectures: the limit L(r) of c(k+1)/c(k) as k -> oo exists, L(r) is discontinuous at 5/3 (cf. A279676), and the left limit of L(r) as r->5/3 is Phi. - Clark Kimberling, Jul 11 2017
From Wolfdieter Lang, Nov 07 2022: (Start)
This equals r + 2/3 where r is the real root of y^3 - (1/3)*y - 25/27.
The other roots of x^3 - 2*x^2 + x - 1 are (2 + w1*((25 + 3*sqrt(69))/2)^(1/3) + w2*((25 - 3*sqrt(69))/2)^(1/3))/3 = 0.1225611668... + 0.7448617668...*i, and its complex conjugate, where w1 = (-1 + sqrt(3)*i)/2 = exp(2*Pi*i/3) and w2 = (-1 - sqrt(3)*i)/2 are the complex conjugate roots of x^3 - 1.
Using hyperbolic functions these roots are (2 - cosh((1/3)*arccosh(25/2)) + sqrt(3)*sinh((1/3)*arccosh(25/2))*i)/3, and its complex conjugate. (End)

Examples

			1.75487766624669276004950889635852869189460661777279314398928397064...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 5.11, p. 340.
  • Martin Gardner, A Gardner's Workout, pp. 124-126, A. K. Peters MA 2001.

Crossrefs

Programs

  • Mathematica
    FindRoot[x^3 - 2x^2 + x - 1 == 0, {x, 1.75}, WorkingPrecision -> 128][[1, 2]] (* Robert G. Wilson v, Aug 19 2005 *)
    Root[x^3-2x^2+x-1, x, 1] // RealDigits[#, 10, 105]& // First (* Jean-François Alcover, Mar 05 2013 *)
  • PARI
    d=104;default(realprecision,d);print(k=solve(x=1,2,(x-1)^2-1/x)); for(c=0,d,z=floor(k);print1(z,",",);k=10*(k-z))
    
  • PARI
    polrootsreal(x^3-2*x^2+x-1)[1] \\ Charles R Greathouse IV, Aug 15 2014

Formula

Equals 1+A075778. - R. J. Mathar, Aug 20 2008
Equals (1/6*(108+12*sqrt(69))^(1/3) + 2/(108+12*sqrt(69))^(1/3))^2. - Vaclav Kotesovec, Oct 08 2014
Equals Rho^2 where Rho is the plastic number 1.3247179572...(see A060006). - Philippe Deléham, Sep 29 2020
From Wolfdieter Lang, Nov 07 2022: (Start)
Equals (2 + ((25 + 3*sqrt(69))/2)^(1/3) + ((25 + 3*sqrt(69))/2)^(-1/3))/3.
Equals (2 + ((25 + 3*sqrt(69))/2)^(1/3) + ((25 - 3*sqrt(69))/2)^(1/3))/3.
Equals 2*(1 + cosh((1/3)*arccosh(25/2)))/3. (End)
Equals - Sum_{k>=1} Gamma(k - k/5 - 1)*Gamma(k/5 + 1)*sin(3*k*Pi/5)/(k*Pi*Gamma(k)). - Antonio Graciá Llorente, Dec 14 2024

Extensions

Extended by Klaus Brockhaus and Robert G. Wilson v, Aug 19 2005

A112373 a(n+2) = (a(n+1)^3 + a(n+1)^2)/a(n) with a(0)=1, a(1)=1.

Original entry on oeis.org

1, 1, 2, 12, 936, 68408496, 342022190843338960032, 584861200495456320274313200204390612579749188443599552
Offset: 0

Views

Author

Andrew Hone, Dec 02 2005

Keywords

Comments

As n tends to infinity, log(log(a(n)))/n tends to log((3+sqrt(5))/2) = A104457.
The Laurent property is satisfied by any second-order recurrence of the form a(n+2)=f(a(n+1))/a(n) where f is a polynomial of the form f(x)=x^m*p(x) with m a positive integer >= 2 and p arbitrary. In that case a(0)=a(1)=1 generates a sequence of integers and the ratios a(n+1)/a(n) and a(n+1)*a(n-1)/a(n)^2 are integers for all n. - Andrew Hone, Dec 12 2005
Also denominators of Sum_{k=0..n} 1/a(k) with numerators = A259644. - Reinhard Zumkeller, Jul 02 2015
The next term (a(8)) has 141 digits. - Harvey P. Dale, Apr 05 2019

Crossrefs

Programs

  • Haskell
    a112373 n = a112373_list !! n
    a112373_list = 1 : 1 : zipWith (\u v -> (u^3 + u^2) `div` v)
                                   (tail a112373_list) a112373_list
    -- Reinhard Zumkeller, Jul 02 2015
    
  • Magma
    I:=[1,1]; [n le 2 select I[n] else (Self(n-1)^3+Self(n-1)^2)/Self(n-2): n in [1..10]]; // Vincenzo Librandi, Jul 02 2015
    
  • Maple
    a[0]:=1; a[1]:=1; f(x):=x^3+x^2; for n from 0 to 8 do a[n+2]:=simplify(subs(x=a[n+1],f(x))/a[n]) od; s[3]:=ln(2^2*3); s[4]:=ln(2^3*3^2*13); for n from 3 to 10000 do s[n+2]:=evalf(3*s[n+1]+ln(1+exp(-s[n+1]))-s[n]): od: print(evalf(ln(s[10002])/(10002))): evalf(ln((3+sqrt(5))/2));
    # s[n]=ln(a[n]); ln(s[n])/n converges slowly to 0.962...
  • Mathematica
    RecurrenceTable[{a[n] == (a[n - 1]^3 + a[n - 1]^2)/a[n - 2], a[0] == a[1] == 1}, a, {n, 0, 7}] (* Michael De Vlieger, Jul 02 2015 *)
    nxt[{a_,b_}]:={b,(b^3+b^2)/a}; NestList[nxt,{1,1},8][[All,1]] (* Harvey P. Dale, Apr 05 2019 *)
  • PARI
    {a(n) = my(a=self()); if(n<0, a(1-n), n<2, 1, a(n-1)^2 * (1 + a(n-1)) / a(n-2))}; /* Michael Somos, Apr 19 2017 */

Formula

a(n+1) / a(n) = A114552(n), a(n) = a(1-n) for all n in Z. - Michael Somos, Apr 19 2017
Sum_{n>=0} 1/a(n) = A114550. - Amiram Eldar, Nov 13 2020
Previous Showing 11-20 of 61 results. Next