cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A000085 Number of self-inverse permutations on n letters, also known as involutions; number of standard Young tableaux with n cells.

Original entry on oeis.org

1, 1, 2, 4, 10, 26, 76, 232, 764, 2620, 9496, 35696, 140152, 568504, 2390480, 10349536, 46206736, 211799312, 997313824, 4809701440, 23758664096, 119952692896, 618884638912, 3257843882624, 17492190577600, 95680443760576, 532985208200576, 3020676745975552
Offset: 0

Views

Author

Keywords

Comments

a(n) is also the number of n X n symmetric permutation matrices.
a(n) is also the number of matchings (Hosoya index) in the complete graph K(n). - Ola Veshta (olaveshta(AT)my-deja.com), Mar 25 2001
a(n) is also the number of independent vertex sets and vertex covers in the n-triangular graph. - Eric W. Weisstein, May 22 2017
Equivalently, this is the number of graphs on n labeled nodes with degrees at most 1. - Don Knuth, Mar 31 2008
a(n) is also the sum of the degrees of the irreducible representations of the symmetric group S_n. - Avi Peretz (njk(AT)netvision.net.il), Apr 01 2001
a(n) is the number of partitions of a set of n distinguishable elements into sets of size 1 and 2. - Karol A. Penson, Apr 22 2003
Number of tableaux on the edges of the star graph of order n, S_n (sometimes T_n). - Roberto E. Martinez II, Jan 09 2002
The Hankel transform of this sequence is A000178 (superfactorials). Sequence is also binomial transform of the sequence 1, 0, 1, 0, 3, 0, 15, 0, 105, 0, 945, ... (A001147 with interpolated zeros). - Philippe Deléham, Jun 10 2005
Row sums of the exponential Riordan array (e^(x^2/2),x). - Paul Barry, Jan 12 2006
a(n) is the number of nonnegative lattice paths of upsteps U = (1,1) and downsteps D = (1,-1) that start at the origin and end on the vertical line x = n in which each downstep (if any) is marked with an integer between 1 and the height of its initial vertex above the x-axis. For example, with the required integer immediately preceding each downstep, a(3) = 4 counts UUU, UU1D, UU2D, U1DU. - David Callan, Mar 07 2006
Equals row sums of triangle A152736 starting with offset 1. - Gary W. Adamson, Dec 12 2008
Proof of the recurrence relation a(n) = a(n-1) + (n-1)*a(n-2): number of involutions of [n] containing n as a fixed point is a(n-1); number of involutions of [n] containing n in some cycle (j, n), where 1 <= j <= n-1, is (n-1) times the number of involutions of [n] containing the cycle (n-1 n) = (n-1)*a(n-2). - Emeric Deutsch, Jun 08 2009
Number of ballot sequences (or lattice permutations) of length n. A ballot sequence B is a string such that, for all prefixes P of B, h(i) >= h(j) for i < j, where h(x) is the number of times x appears in P. For example, the ballot sequences of length 4 are 1111, 1112, 1121, 1122, 1123, 1211, 1212, 1213, 1231, and 1234. The string 1221 does not appear in the list because in the 3-prefix 122 there are two 2's but only one 1. (Cf. p. 176 of Bruce E. Sagan: "The Symmetric Group"). - Joerg Arndt, Jun 28 2009
Number of standard Young tableaux of size n; the ballot sequences are obtained as a length-n vector v where v_k is the (number of the) row in which the number r occurs in the tableaux. - Joerg Arndt, Jul 29 2012
Number of factorial numbers of length n-1 with no adjacent nonzero digits. For example the 10 such numbers (in rising factorial radix) of length 3 are 000, 001, 002, 003, 010, 020, 100, 101, 102, and 103. - Joerg Arndt, Nov 11 2012
Also called restricted Stirling numbers of the second kind (see Mezo). - N. J. A. Sloane, Nov 27 2013
a(n) is the number of permutations of [n] that avoid the consecutive patterns 123 and 132. Proof. Write a self-inverse permutation in standard cycle form: smallest entry in each cycle in first position, first entries decreasing. For example, (6,7)(3,4)(2)(1,5) is in standard cycle form. Then erase parentheses. This is a bijection to the permutations that avoid consecutive 123 and 132 patterns. - David Callan, Aug 27 2014
Getu (1991) says these numbers are also known as "telephone numbers". - N. J. A. Sloane, Nov 23 2015
a(n) is the number of elements x in the symmetric group S_n such that x^2 = e where e is the identity. - Jianing Song, Aug 22 2018 [Edited on Jul 24 2025]
a(n) is the number of congruence orbits of upper-triangular n X n matrices on skew-symmetric matrices, or the number of Borel orbits in largest sect of the type DIII symmetric space SO_{2n}(C)/GL_n(C). Involutions can also be thought of as fixed-point-free partial involutions. See [Bingham and Ugurlu] link. - Aram Bingham, Feb 08 2020
From Thomas Anton, Apr 20 2020: (Start)
Apparently a(n) = b*c where b is odd iff a(n+b) (when a(n) is defined) is divisible by b.
Apparently a(n) = 2^(f(n mod 4)+floor(n/4))*q where f:{0,1,2,3}->{0,1,2} is given by f(0),f(1)=0, f(2)=1 and f(3)=2 and q is odd. (End)
From Iosif Pinelis, Mar 12 2021: (Start)
a(n) is the n-th initial moment of the normal distribution with mean 1 and variance 1. This follows because the moment generating function of that distribution is the e.g.f. of the sequence of the a(n)'s.
The recurrence a(n) = a(n-1) + (n-1)*a(n-2) also follows, by writing E(Z+1)^n=EZ(Z+1)^(n-1)+E(Z+1)^(n-1), where Z is a standard normal random variable, and then taking the first of the latter two integrals by parts. (End)

Examples

			Sequence starts 1, 1, 2, 4, 10, ... because possibilities are {}, {A}, {AB, BA}, {ABC, ACB, BAC, CBA}, {ABCD, ABDC, ACBD, ADCB, BACD, BADC, CBAD, CDAB, DBCA, DCBA}. - _Henry Bottomley_, Jan 16 2001
G.f. = 1 + x + 2*x^2 + 4*x^4 + 10*x^5 + 26*x^6 + 76*x^7 + 232*x^8 + 764*x^9 + ...
From _Gus Wiseman_, Jan 08 2021: (Start)
The a(4) = 10 standard Young tableaux:
  1 2 3 4
.
  1 2   1 3   1 2 3   1 2 4   1 3 4
  3 4   2 4   4       3       2
.
  1 2   1 3   1 4
  3     2     2
  4     4     3
.
  1
  2
  3
  4
The a(0) = 1 through a(4) = 10 set partitions into singletons or pairs:
  {}  {{1}}  {{1,2}}    {{1},{2,3}}    {{1,2},{3,4}}
             {{1},{2}}  {{1,2},{3}}    {{1,3},{2,4}}
                        {{1,3},{2}}    {{1,4},{2,3}}
                        {{1},{2},{3}}  {{1},{2},{3,4}}
                                       {{1},{2,3},{4}}
                                       {{1,2},{3},{4}}
                                       {{1},{2,4},{3}}
                                       {{1,3},{2},{4}}
                                       {{1,4},{2},{3}}
                                       {{1},{2},{3},{4}}
(End)
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, pages 32, 911.
  • S. Chowla, The asymptotic behavior of solutions of difference equations, in Proceedings of the International Congress of Mathematicians (Cambridge, MA, 1950), Vol. I, 377, Amer. Math. Soc., Providence, RI, 1952.
  • W. Fulton, Young Tableaux, Cambridge, 1997.
  • D. E. Knuth, The Art of Computer Programming, Vol. 3, Section 5.1.4, p. 65.
  • L. C. Larson, The number of essentially different nonattacking rook arrangements, J. Recreat. Math., 7 (No. 3, 1974), circa pages 180-181.
  • T. Muir, A Treatise on the Theory of Determinants. Dover, NY, 1960, p. 6.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 86.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.10.

Crossrefs

See also A005425 for another version of the switchboard problem.
Equals 2 * A001475(n-1) for n>1.
First column of array A099020.
A069943(n+1)/A069944(n+1) = a(n)/A000142(n) in lowest terms.
Cf. A152736, A128229. - Gary W. Adamson, Dec 12 2008
Diagonal of A182172. - Alois P. Heinz, May 30 2012
Row sums of: A047884, A049403, A096713 (absolute value), A100861, A104556 (absolute value), A111924, A117506 (M_4 numbers), A122848, A238123.
A320663/A339888 count unlabeled multiset partitions into singletons/pairs.
A322661 counts labeled covering half-loop-graphs.
A339742 counts factorizations into distinct primes or squarefree semiprimes.

Programs

  • Haskell
    a000085 n = a000085_list !! n
      a000085_list = 1 : 1 : zipWith (+)
        (zipWith (*) [1..] a000085_list) (tail a000085_list) -- Reinhard Zumkeller, May 16 2013
    
  • Maple
    A000085 := proc(n) option remember; if n=0 then 1 elif n=1 then 1 else procname(n-1)+(n-1)*procname(n-2); fi; end;
    with(combstruct):ZL3:=[S,{S=Set(Cycle(Z,card<3))}, labeled]:seq(count(ZL3,size=n),n=0..25); # Zerinvary Lajos, Sep 24 2007
    with (combstruct):a:=proc(m) [ZL, {ZL=Set(Cycle(Z, m>=card))}, labeled]; end: A:=a(2):seq(count(A, size=n), n=0..25); # Zerinvary Lajos, Jun 11 2008
  • Mathematica
    <Roger L. Bagula, Oct 06 2006 *)
    With[{nn=30},CoefficientList[Series[Exp[x+x^2/2],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, May 28 2013 *)
    a[ n_] := Sum[(2 k - 1)!! Binomial[ n, 2 k], {k, 0, n/2}]; (* Michael Somos, Jun 01 2013 *)
    a[ n_] := If[ n < 0, 0, HypergeometricU[ -n/2, 1/2, -1/2] / (-1/2)^(n/2)]; (* Michael Somos, Jun 01 2013 *)
    a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ Exp[ x + x^2 / 2], {x, 0, n}]]; (* Michael Somos, Jun 01 2013 *)
    Table[(I/Sqrt[2])^n HermiteH[n, -I/Sqrt[2]], {n, 0, 100}] (* Emanuele Munarini, Mar 02 2016 *)
    a[n_] := Sum[StirlingS1[n, k]*2^k*BellB[k, 1/2], {k, 0, n}]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Jul 18 2017, after Emanuele Munarini *)
    RecurrenceTable[{a[n] == a[n-1] + (n-1)*a[n-2], a[0] == 1, a[1] == 1}, a, {n, 0, 20}] (* Joan Ludevid, Jun 17 2022 *)
    sds[{}]:={{}};sds[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sds[Complement[set,s]]]/@Cases[Subsets[set,{1,2}],{i,_}]; Table[Length[sds[Range[n]]],{n,0,10}] (* Gus Wiseman, Jan 11 2021 *)
  • Maxima
    B(n,x):=sum(stirling2(n,k)*x^k,k,0,n);
      a(n):=sum(stirling1(n,k)*2^k*B(k,1/2),k,0,n);
      makelist(a(n),n,0,40); /* Emanuele Munarini, May 16 2014 */
    
  • Maxima
    makelist((%i/sqrt(2))^n*hermite(n,-%i/sqrt(2)),n,0,12); /* Emanuele Munarini, Mar 02 2016 */
    
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff( exp( x + x^2 / 2 + x * O(x^n)), n))}; /* Michael Somos, Nov 15 2002 */
    
  • PARI
    N=66; x='x+O('x^N); egf=exp(x+x^2/2); Vec(serlaplace(egf)) \\ Joerg Arndt, Mar 07 2013
    
  • Python
    from math import factorial
    def A000085(n): return sum(factorial(n)//(factorial(n-(k<<1))*factorial(k)*(1<>1)+1)) # Chai Wah Wu, Aug 31 2023
  • Sage
    A000085 = lambda n: hypergeometric([-n/2,(1-n)/2], [], 2)
    [simplify(A000085(n)) for n in range(28)] # Peter Luschny, Aug 21 2014
    
  • Sage
    def a85(n): return sum(factorial(n) / (factorial(n-2*k) * 2**k * factorial(k)) for k in range(1+n//2))
    for n in range(100): print(n, a85(n)) # Manfred Scheucher, Jan 07 2018
    

Formula

D-finite with recurrence a(0) = a(1) = 1, a(n) = a(n-1) + (n-1)*a(n-2) for n>1.
E.g.f.: exp(x+x^2/2).
a(n) = a(n-1) + A013989(n-2) = A013989(n)/(n+1) = 1+A001189(n).
a(n) = Sum_{k=0..floor(n/2)} n!/((n-2*k)!*2^k*k!).
a(m+n) = Sum_{k>=0} k!*binomial(m, k)*binomial(n, k)*a(m-k)*a(n-k). - Philippe Deléham, Mar 05 2004
For n>1, a(n) = 2*(A000900(n) + A000902(floor(n/2))). - Max Alekseyev, Oct 31 2015
The e.g.f. y(x) satisfies y^2 = y''y' - (y')^2.
a(n) ~ c*(n/e)^(n/2)exp(n^(1/2)) where c=2^(-1/2)exp(-1/4). [Chowla]
a(n) = HermiteH(n, 1/(sqrt(2)*i))/(-sqrt(2)*i)^n, where HermiteH are the Hermite polynomials. - Karol A. Penson, May 16 2002
a(n) = Sum_{k=0..n} A001498((n+k)/2, (n-k)/2)(1+(-1)^(n-k))/2. - Paul Barry, Jan 12 2006
For asymptotics see the Robinson paper.
a(n) = Sum_{m=0..n} A099174(n,m). - Roger L. Bagula, Oct 06 2006
O.g.f.: A(x) = 1/(1-x-1*x^2/(1-x-2*x^2/(1-x-3*x^2/(1-... -x-n*x^2/(1- ...))))) (continued fraction). - Paul D. Hanna, Jan 17 2006
From Gary W. Adamson, Dec 29 2008: (Start)
a(n) = (n-1)*a(n-2) + a(n-1); e.g., a(7) = 232 = 6*26 + 76.
Starting with offset 1 = eigensequence of triangle A128229. (End)
a(n) = (1/sqrt(2*Pi))*Integral_{x=-oo..oo} exp(-x^2/2)*(x+1)^n. - Groux Roland, Mar 14 2011
Row sums of |A096713|. a(n) = D^n(exp(x)) evaluated at x = 0, where D is the operator sqrt(1+2*x)*d/dx. Cf. A047974 and A080599. - Peter Bala, Dec 07 2011
From Sergei N. Gladkovskii, Dec 03 2011 - Oct 28 2013: (Start)
Continued fractions:
E.g.f.: 1+x*(2+x)/(2*G(0)-x*(2+x)) where G(k)=1+x*(x+2)/(2+2*(k+1)/G(k+1)).
G.f.: 1/(U(0) - x) where U(k) = 1 + x*(k+1) - x*(k+1)/(1 - x/U(k+1)).
G.f.: 1/Q(0) where Q(k) = 1 + x*k - x/(1 - x*(k+1)/Q(k+1)).
G.f.: -1/(x*Q(0)) where Q(k) = 1 - 1/x - (k+1)/Q(k+1).
G.f.: T(0)/(1-x) where T(k) = 1 - x^2*(k+1)/( x^2*(k+1) - (1-x)^2/T(k+1)). (End)
a(n) ~ (1/sqrt(2)) * exp(sqrt(n)-n/2-1/4) * n^(n/2) * (1 + 7/(24*sqrt(n))). - Vaclav Kotesovec, Mar 07 2014
a(n) = Sum_{k=0..n} s(n,k)*(-1)^(n-k)*2^k*B(k,1/2), where the s(n,k) are (signless) Stirling numbers of the first kind, and the B(n,x) = Sum_{k=0..n} S(n,k)*x^k are the Stirling polynomials, where the S(n,k) are the Stirling numbers of the second kind. - Emanuele Munarini, May 16 2014
a(n) = hyper2F0([-n/2,(1-n)/2],[],2). - Peter Luschny, Aug 21 2014
0 = a(n)*(+a(n+1) + a(n+2) - a(n+3)) + a(n+1)*(-a(n+1) + a(n+2)) for all n in Z. - Michael Somos, Aug 22 2014
From Peter Bala, Oct 06 2021: (Start)
a(n+k) == a(n) (mod k) for all n >= 0 and all positive odd integers k.
Hence for each odd k, the sequence obtained by taking a(n) modulo k is a periodic sequence and the exact period divides k. For example, taking a(n) modulo 7 gives the purely periodic sequence [1, 1, 2, 4, 3, 5, 6, 1, 1, 2, 4, 3, 5, 6, 1, 1, 2, 4, 3, 5, 6, ...] of period 7. For similar results see A047974 and A115329. (End)

A001475 a(n) = a(n-1) + n * a(n-2), where a(1) = 1, a(2) = 2.

Original entry on oeis.org

1, 2, 5, 13, 38, 116, 382, 1310, 4748, 17848, 70076, 284252, 1195240, 5174768, 23103368, 105899656, 498656912, 2404850720, 11879332048, 59976346448, 309442319456, 1628921941312, 8746095288800, 47840221880288, 266492604100288, 1510338372987776
Offset: 1

Views

Author

Keywords

Comments

a(n) is the number of set partitions of [n] in which the block containing 1 is of length <= 3 and all other blocks are of length <= 2. Example: a(4)=13 counts all 15 partitions of [4] except 1234 and 1/234. - David Callan, Jul 22 2008
Empirical: a(n) is the sum of the entries in the second-last row of the lower-triangular matrix of coefficients giving the expansion of degree-(n+1) complete homogeneous symmetric functions in the Schur basis of the algebra of symmetric functions. - John M. Campbell, Mar 18 2018

Examples

			G.f. = x + 2*x + 5*x^2 + 13*x^3 + 38*x^4 + 116*x^5 + 382*x^6 + 1310*x^7 + ... - _Michael Somos_, Jan 23 2018
		

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 86 (divided by 2).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • GAP
    a:=[1, 2];; for n in [3..10^2] do a[n] := a[n-1] + n*a[n-2]; od; a;  # Muniru A Asiru, Jan 25 2018
    
  • Magma
    I:=[1,2]; [n le 2 select I[n] else Self(n-1)+n*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Mar 31 2018
    
  • Maple
    a := proc(n) option remember: if n = 1 then 1 elif n = 2 then 2 elif  n >= 3 then procname(n-1) +n*procname(n-2) fi; end:
    seq(a(n), n = 1..100); # Muniru A Asiru, Jan 25 2018
  • Mathematica
    RecurrenceTable[{a[1]==1,a[2]==2,a[n]==a[n-1]+n a[n-2]},a,{n,30}] (* Harvey P. Dale, Apr 21 2012 *)
    (* Programs from Michael Somos, Jan 23 2018 *)
    a[n_]:= With[{m=n+1}, If[m<2, 0, Sum[(2 k-1)!! Binomial[m, 2 k], {k, 0, m/2}]/2]];
    a[n_]:= With[{m=n+1}, If[m<2, 0, HypergeometricU[-m/2, 1/2, -1/2] / (-1/2)^(m/2)/2]];
    a[n_]:= With[{m=n+1}, If[m<2, 0, HypergeometricPFQ[{-m/2, (1-m)/2}, {}, 2]/2]];
    a[n_]:= If[ n<1, 0, n! SeriesCoefficient[Exp[x+x^2/2]*(1+x)/2, {x, 0, n}]]; (* End *)
    Fold[Append[#1, #1[[-1]] + #2 #1[[-2]]] &, {1, 2}, Range[3, 26]] (* Michael De Vlieger, Jan 23 2018 *)
  • PARI
    {a(n) = if( n<1, 0, n! * polcoeff( exp( x + x^2/2 + x * O(x^n)) * (1 + x) / 2, n))}; /* Michael Somos, Jan 23 2018 */
    
  • PARI
    my(N=30,x='x+O('x^N)); Vec(serlaplace((1/2)*( (1+x)*exp(x + x^2/2) - 1))) \\ Joerg Arndt, Sep 04 2023
    
  • SageMath
    def A001475_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( ((1+x)*exp(x+x^2/2) -1)/2 ).egf_to_ogf().list()
    a=A001475_list(40); a[1:] # G. C. Greubel, Sep 03 2023

Formula

a(n) = (1/2)*A000085(n+1).
E.g.f.: (1/2)*( (1+x)*exp(x + x^2/2) - 1). - Vladeta Jovovic, Nov 04 2003
Given e.g.f. y(x), then 0 = y'(x) * (1+x) - (y(x)+1/2) * (2+2*x+x^2) = 1 - y''(x) + y'(x)*(1 + x) + 2*y(x). - Michael Somos, Jan 23 2018
0 = +a(n)*(+a(n+1) +a(n+2) -a(n+3)) +a(n+1)*(-a(n+1) +a(n+2)) for all n>0. - Michael Somos, Jan 23 2018
a(n) ~ n^((n+1)/2) / (2^(3/2) * exp(n/2 - sqrt(n) + 1/4)) * (1 + 19/(24*sqrt(n))). - Vaclav Kotesovec, Apr 01 2018

Extensions

More terms from Harvey P. Dale, Apr 21 2012

A162970 Number of 2-cycles in all involutions of {1,2,...,n}.

Original entry on oeis.org

0, 1, 3, 12, 40, 150, 546, 2128, 8352, 34380, 144100, 626736, 2784288, 12753832, 59692920, 286857600, 1407536896, 7069630608, 36217682352, 189489626560, 1010037302400, 5488251406176, 30348031302688, 170812160339712
Offset: 1

Views

Author

Emeric Deutsch, Jul 22 2009

Keywords

Examples

			a(3) = 3 because in (1)(2)(3), (1)(23), (12)(3), (13)(2) we have three 2-cycles.
		

Crossrefs

Programs

  • Maple
    a[1] := 0: a[2] := 1: for n from 3 to 27 do a[n] := n*(a[n-1]+(n-1)*a[n-2])/(n-2) end do: seq(a[n], n = 1 .. 27);
  • Mathematica
    Range[0, 20]! CoefficientList[ Series[x^2/2  Exp[x+x^2/2], {x, 0, 20}], x] // Rest

Formula

a(n) = (1/2)*n*(n-1)*I(n-2) for n>=2, where I(n)=A000085(n) is the number of involutions of {1,2,...,n}.
Rec. rel.: a(n) = [n/(n-2)][a(n-1) + (n-1)a(n-2)], a(1)=0, a(2)=1.
E.g.f.: x^2/2 * exp(x+x^2/2).
a(n) ~ sqrt(2)/4 * n^(n/2+1)*exp(sqrt(n)-n/2-1/4) * (1-17/(24*sqrt(n))). - Vaclav Kotesovec, Aug 15 2013

A099020 Euler-Seidel matrix T(k,n) with start sequence A001147, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 2, 1, 1, 4, 2, 1, 0, 10, 6, 4, 3, 3, 26, 16, 10, 6, 3, 0, 76, 50, 34, 24, 18, 15, 15, 232, 156, 106, 72, 48, 30, 15, 0, 764, 532, 376, 270, 198, 150, 120, 105, 105, 2620, 1856, 1324, 948, 678, 480, 330, 210, 105, 0, 9496, 6876, 5020, 3696, 2748, 2070, 1590, 1260, 1050, 945, 945
Offset: 0

Views

Author

Ralf Stephan, Sep 23 2004

Keywords

Comments

In an Euler-Seidel matrix, the rows are consecutive pairwise sums and the columns consecutive differences, with the first column the inverse binomial transform of the start sequence.

Examples

			1,   0,  1,  0,   3,   0,   15, ...
1,   1,  1,  3,   3,  15,   15, ...
2,   2,  4,  6,  18,  30,  120, ...
4,   6, 10, 24,  48, 150,  330, ...
10, 16, 34, 72, 198, 480, 1590, ...
		

Crossrefs

First column is A000085, 2nd A013989, main diagonal is in A099021.

Programs

  • Maple
    T:= proc(k, n) option remember; `if`(k=0, `if`(irem(n, 2)=0,
          doublefactorial(n-1), 0), T(k-1, n) +T(k-1, n+1))
        end:
    seq(seq(T(d-n, n), n=0..d), d=0..14);  # Alois P. Heinz, Oct 14 2012
  • Mathematica
    t[0, n_?EvenQ] := (n-1)!!; t[0, n_?OddQ] := 0; t[k_, n_] := t[k, n] = t[k-1, n] + t[k-1, n+1]; Table[t[k-n, n], {k, 0, 10}, {n, 0, k}] // Flatten (* Jean-François Alcover, Dec 10 2012 *)

Formula

Recurrence: T(0, 2n) = (2n-1)!!, T(0, 2n+1) = 0, T(k, n) = T(k-1, n) + T(k-1, n+1).

A111062 Triangle T(n, k) = binomial(n, k) * A000085(n-k), 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 4, 6, 3, 1, 10, 16, 12, 4, 1, 26, 50, 40, 20, 5, 1, 76, 156, 150, 80, 30, 6, 1, 232, 532, 546, 350, 140, 42, 7, 1, 764, 1856, 2128, 1456, 700, 224, 56, 8, 1, 2620, 6876, 8352, 6384, 3276, 1260, 336, 72, 9, 1, 9496, 26200, 34380, 27840, 15960, 6552, 2100, 480, 90, 10, 1
Offset: 0

Views

Author

Philippe Deléham, Oct 07 2005

Keywords

Comments

Triangle related to A000085.
Riordan array [exp(x(2+x)/2),x]. - Paul Barry, Nov 05 2008
Array is exp(S+S^2/2) where S is A132440 the infinitesimal generator for Pascal's triangle. T(n,k) gives the number of ways to choose a subset of {1,2,...,n} of size k and then partitioning the remaining n-k elements into sets each of size 1 or 2. Cf. A122832. - Peter Bala, May 14 2012
T(n,k) is equal to the number of R-classes (equivalently, L-classes) in the D-class consisting of all rank k elements of the partial Brauer monoid of degree n. - James East, Aug 17 2015

Examples

			Rows begin:
     1;
     1,    1;
     2,    2,    1;
     4,    6,    3,    1;
    10,   16,   12,    4,    1;
    26,   50,   40,   20,    5,    1;
    76,  156,  150,   80,   30,    6,   1;
   232,  532,  546,  350,  140,   42,   7,  1;
   764, 1856, 2128, 1456,  700,  224,  56,  8, 1;
  2620, 6876, 8352, 6384, 3276, 1260, 336, 72, 9, 1;
From _Paul Barry_, Apr 23 2009: (Start)
Production matrix is:
  1, 1,
  1, 1, 1,
  0, 2, 1, 1,
  0, 0, 3, 1, 1,
  0, 0, 0, 4, 1, 1,
  0, 0, 0, 0, 5, 1, 1,
  0, 0, 0, 0, 0, 6, 1, 1,
  0, 0, 0, 0, 0, 0, 7, 1, 1,
  0, 0, 0, 0, 0, 0, 0, 8, 1, 1 (End)
From _Peter Bala_, Feb 12 2017: (Start)
The infinitesimal generator has integer entries and begins
  0
  1  0
  1  2  0
  0  3  3  0
  0  0  6  4  0
  0  0  0 10  5  0
  0  0  0  0 15  6  0
  ...
and is the generalized exponential Riordan array [x + x^2/2!,x].(End)
		

Crossrefs

Cf. A099174, A133314, A159834 (inverse matrix).

Programs

  • GAP
    Flat(List([0..10],n->List([0..n],k->(Factorial(n)/Factorial(k))*Sum([0..n-k],j->Binomial(j,n-k-j)/(Factorial(j)*2^(n-k-j)))))); # Muniru A Asiru, Jun 29 2018
  • Mathematica
    a[n_] := Sum[(2 k - 1)!! Binomial[n, 2 k], {k, 0, n/2}]; Table[Binomial[n, k] a[n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Aug 20 2015, after Michael Somos at A000085 *)
  • Sage
    def A111062_triangle(dim):
        M = matrix(ZZ,dim,dim)
        for n in (0..dim-1): M[n,n] = 1
        for n in (1..dim-1):
            for k in (0..n-1):
                M[n,k] = M[n-1,k-1]+M[n-1,k]+(k+1)*M[n-1,k+1]
        return M
    A111062_triangle(9) # Peter Luschny, Sep 19 2012
    

Formula

Sum_{k>=0} T(m, k)*T(n, k)*k! = T(m+n, 0) = A000085(m+n).
Sum_{k=0..n} T(n, k) = A005425(n).
Apparently satisfies T(n,m) = T(n-1,m-1) + T(n-1,m) + (m+1) * T(n-1,m+1). - Franklin T. Adams-Watters, Dec 22 2005 [corrected by Werner Schulte, Feb 12 2025]
T(n,k) = (n!/k!)*Sum_{j=0..n-k} C(j,n-k-j)/(j!*2^(n-k-j)). - Paul Barry, Nov 05 2008
G.f.: 1/(1-xy-x-x^2/(1-xy-x-2x^2/(1-xy-x-3x^2/(1-xy-x-4x^2/(1-... (continued fraction). - Paul Barry, Apr 23 2009
T(n,k) = C(n,k)*Sum_{j=0..n-k} C(n-k,j)*(n-k-j-1)!! where m!!=0 if m is even. - James East, Aug 17 2015
From Tom Copeland, Jun 26 2018: (Start)
E.g.f.: exp[t*p.(x)] = exp[t + t^2/2] e^(x*t).
These polynomials (p.(x))^n = p_n(x) are an Appell sequence with the lowering and raising operators L = D and R = x + 1 + D, with D = d/dx, such that L p_n(x) = n * p_(n-1)(x) and R p_n(x) = p_(n+1)(x), so the formalism of A133314 applies here, giving recursion relations.
The transpose of the production matrix gives a matrix representation of the raising operator R.
exp(D + D^2/2) x^n= e^(D^2/2) (1+x)^n = h_n(1+x) = p_n(x) = (a. + x)^n, with (a.)^n = a_n = A000085(n) and h_n(x) the modified Hermite polynomials of A099174.
A159834 with the e.g.f. exp[-(t + t^2/2)] e^(x*t) gives the matrix inverse for this entry with the umbral inverse polynomials q_n(x), an Appell sequence with the raising operator x - 1 - D, such that umbrally composed q_n(p.(x)) = x^n = p_n(q.(x)). (End)

Extensions

Corrected by Franklin T. Adams-Watters, Dec 22 2005
10th row added by James East, Aug 17 2015

A069943 a(n) = numerator(b(n)), where b(1) = b(2) = 1, b(n) = (b(n-1) + b(n-2))/(n-1).

Original entry on oeis.org

1, 1, 1, 2, 5, 13, 19, 29, 191, 131, 1187, 2231, 17519, 71063, 29881, 323423, 2887921, 13237457, 2397389, 15030317, 742458253, 3748521653, 9670072483, 25451905333, 10932619111, 78684575461, 4163946939067, 11799518538967, 136025604432743
Offset: 1

Views

Author

Benoit Cloitre, Apr 27 2002

Keywords

Comments

Sum_{k>=1} b(k) = exp(3/2). More generally if b(1) = b(2) = ... = b(m) = 1 and b(n+m+1) = (1/(n+m))*(b(n+m) + b(n+m-1) + ... + b(n)) then Sum_{k>=1} b(k) = exp(H(m)) where H(m) = Sum_{j=1..m} 1/j is the m-th harmonic number. [Benoit Cloitre and Boris Gourevitch]

Crossrefs

Programs

  • Magma
    A013989:= func< n | (&+[Factorial(n)/(2^k*Factorial(n-2*k)*Factorial(k)): k in [0..Floor(n/2)]]) >;
    A069944:= func< n | Numerator(A013989(n-1)/Factorial(n)) >;
    [A069944(n): n in [1..40]]; // G. C. Greubel, Aug 17 2022
    
  • Mathematica
    Table[Numerator[n*(-I/Sqrt[2])^(n-1)*HermiteH[n-1, I/Sqrt[2]]/n!], {n, 40}] (* G. C. Greubel, Aug 17 2022 *)
    nxt[{n_,a_,b_}]:={n+1,b,(a+b)/n}; NestList[nxt,{2,1,1},30][[;;,2]]//Numerator (* Harvey P. Dale, Feb 02 2025 *)
  • SageMath
    @CachedFunction
    def A013989(n): return n+1 if (n<2) else (n+1)*(A013989(n-1) + n*A013989(n-2))/n
    [numerator(A013989(n-1)/factorial(n)) for n in (1..40)] # G. C. Greubel, Aug 17 2022

Formula

a(n)/A069944(n) = A000085(n-1)/A000142(n-1) in lowest terms. [Christian G. Bower, Jan 14 2006]
Numerators in the power series of exp(x+x^2/2) (e.g.f. for involutions, cf. A000085). exp(x+x^2/2) = 1 + x + x^2 + 2/3*x^3 + 5/12*x^4 + 13/60*x^5 + 19/180*x^6 + 29/630*x^7 + 191/10080*x^8 + ... [Joerg Arndt, May 10 2008]
a(n) = numerator( A013989(n-1)/n! ). - G. C. Greubel, Aug 17 2022

A069944 a(n) = denominator(b(n)), where b(1) = b(2) = 1, b(n) = (b(n-1) + b(n-2))/(n-1).

Original entry on oeis.org

1, 1, 1, 3, 12, 60, 180, 630, 10080, 18144, 453600, 2494800, 59875200, 778377600, 1089728640, 40864824000, 1307674368000, 22230464256000, 15390321408000, 380140938777600, 76028187755520000, 1596591942865920000
Offset: 1

Views

Author

Benoit Cloitre, Apr 27 2002

Keywords

Comments

Sum_{k >= 1} b(k) = e^(3/2) where e = 2.718... . More generally if b(1) = b(2) = ... = b(m) = 1 and b(n+m+1) = 1/(n+m)*( b(n+m) + b(n+m-1) + ... + b(n) ) then Sum_{k >= 1} b(k) = e^H(m) where H(m) = Sum_{j=1..m} 1/j is the m-th harmonic number (Benoit Cloitre and Boris Gourevitch).

Crossrefs

Programs

  • Magma
    A013989:= func< n | (&+[Factorial(n)/(2^k*Factorial(n-2*k)*Factorial(k)): k in [0..Floor(n/2)]]) >;
    A069944:= func< n | Denominator(A013989(n-1)/Factorial(n-1)) >;
    [A069944(n): n in [1..30]]; // G. C. Greubel, Aug 17 2022
    
  • Mathematica
    Table[Denominator[n*(-I/Sqrt[2])^(n-1)*HermiteH[n-1, I/Sqrt[2]]/n!], {n, 30}] (* G. C. Greubel, Aug 17 2022 *)
  • SageMath
    @CachedFunction
    def A013989(n): return n+1 if (n<2) else (n+1)*(A013989(n-1) + n*A013989(n-2))/n
    [denominator(A013989(n-1)/factorial(n)) for n in (1..30)] # G. C. Greubel, Aug 17 2022

Formula

A069943(n)/a(n) = A000085(n-1)/A000142(n-1) in lowest terms. - Christian G. Bower, Jan 14 2006
a(n) = denominator( A013989(n-1)/n! ). - G. C. Greubel, Aug 17 2022

A210861 Triangle of coefficients of polynomials v(n,x) jointly generated with A210860; see the Formula section.

Original entry on oeis.org

1, 2, 2, 6, 7, 3, 16, 30, 20, 5, 50, 116, 108, 47, 8, 156, 460, 552, 338, 105, 13, 532, 1842, 2692, 2119, 941, 221, 21, 1856, 7532, 13072, 12574, 7216, 2452, 451, 34, 6876, 31600, 63240, 71860, 50525, 22371, 6035, 895, 55, 26200, 135576, 308568
Offset: 1

Views

Author

Clark Kimberling, Mar 28 2012

Keywords

Comments

Row n ends with F(n+1), where F=A000045 (Fibonacci numbers).
Column 1: A013989
Alternating row sums: 1,0,2,1,3,2,4,3,5,4,...
For a discussion and guide to related arrays, see A208510.

Examples

			First five rows:
1
2....2
6....7.....3
16...30....20....5
50...116...108...47...8
First three polynomials v(n,x): 1, 2 + 2x, 6 + 7x + 3x^2
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 14;
    u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x];
    v[n_, x_] := (x + n)*u[n - 1, x] + x*v[n - 1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]   (* A210860 *)
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]   (* A210861 *)

Formula

u(n,x)=u(n-1,x)+(x+1)*v(n-1,x),
v(n,x)=(x+n)*u(n-1,x)+x*v(n-1,x),
where u(1,x)=1, v(1,x)=1.

A233387 Number of labeled star graphs with added edges.

Original entry on oeis.org

32, 185, 1308, 10822, 102176, 1081908, 12681640, 162880256, 2273437392, 34249286656, 553698389888, 9558929197560, 175471796530816, 3412297318315472, 70064350595106336, 1514554957975079008, 34377185731361631680
Offset: 4

Views

Author

Geoffrey Critzer, Feb 02 2014

Keywords

Comments

Here, a star graph is a tree on n nodes (n>=4) with one specially designated (center) vertex, v of degree n-1. We are allowed to add edges so that the degree of any node (excepting v) is at most 3 and so that every cycle includes the vertex v with the possible exception of a single cycle of length n-1 through each non-center vertex. We note that anytime edges are added the original "center" node remains specially designated. a(n) is the number of such connected simple labeled graphs with a specially designated node.
If we don't add any edges we have a star graph and there are n labelings.
If we add exactly one edge then we produce a cycle of length 3 and we no longer have a tree.
If we add the maximum number of edges we get a wheel graph A171005.

Examples

			a(4) = 32. There are 4 labelings for the star graph on 4 nodes. There are 12 labelings after we add one edge. There are 12 labelings after we add two edges. There are 4 labelings after we add 3 edges. 4+12+12+4=32.
		

Crossrefs

Cf. A013989 (with appropriate offset) enumerates such graphs where the maximum degree of non-center vertices is restricted to 2.

Programs

  • Mathematica
    nn=20; a=x/(1-x)/2+x/2; Drop[Range[0,nn]! CoefficientList[Series[x Exp[a]+x (Log[1/(1-x)]/2+x^2/4+x/2), {x,0,nn}], x], 4]

Formula

Ignoring the first 4 terms the e.g.f. is: x*exp(A(x))+ x*(log(1/(1-x))/2 + x^2/4 + x/2) where A(x) = x/(1-x)/2 + x/2.
Showing 1-9 of 9 results.