cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A117950 a(n) = n^2 + 3.

Original entry on oeis.org

3, 4, 7, 12, 19, 28, 39, 52, 67, 84, 103, 124, 147, 172, 199, 228, 259, 292, 327, 364, 403, 444, 487, 532, 579, 628, 679, 732, 787, 844, 903, 964, 1027, 1092, 1159, 1228, 1299, 1372, 1447, 1524, 1603, 1684, 1767, 1852, 1939, 2028, 2119, 2212, 2307, 2404, 2503
Offset: 0

Views

Author

Eric W. Weisstein, Apr 04 2006

Keywords

Comments

Nonnegative X values of solutions to the equation X^3 - (X + 3)^2 + X + 6 = Y^2. To prove that X = n^2 + 3: Y^2 = X^3 - (X + 3)^2 + X + 6 = X^3 - X^2 - 5X - 3 = (X - 3)(X^2 + 2X + 1) = (X - 3)*(X + 1)^2 it means: (X - 3) must be a perfect square, so X = n^2 + 3 and Y = n(n^2 + 4). - Mohamed Bouhamida, Nov 12 2007
An equivalent technique of integer factorization would work, for example, for the equation X^3 - 3*X^2 - 9*X - 5 = (X-5)(X+1)^2 = Y^2, looking for perfect squares of the form X - 5 = n^2. - R. J. Mathar, Nov 20 2007
Take a square array of (n+1) X (n+1) dots (which correspond to the vertices of a grid of n X n squares). Connect the dots with vertical and horizontal line segments of any length so that each dot is connected to each of its orthogonal neighbors, and so that no line segment crosses any previously drawn line segment. Then the minimum number of line segments is a(n), for n >= 1. - Leroy Quet, Apr 12 2009
a(n) is also the Wiener index of the double fan graph F(n). The double fan graph F(n) is defined as the graph obtained by joining each node of an n-node path graph with two additional nodes. The Wiener index of a connected graph is the sum of the distances between all unordered pairs of vertices in the graph. The Wiener polynomial of the graph F(n) is (3n-1)t + (1/2)(n^2 - 3n + 4)t^2. Example: a(3)=12 because the corresponding double fan graph is the wheel graph on 5 nodes OABCD, O being the center of the wheel. Its Wiener index = number of edges + |AC| +|BD| = 8 + 2 + 2 = 12. - Emeric Deutsch, Sep 24 2010

Crossrefs

For primes in this sequence see A049422.

Programs

Formula

G.f.: (3 - 5*x + 4*x^2)/(1-x)^3. - R. J. Mathar, Nov 20 2007
a(n) = A000290(n) + 3. - Omar E. Pol, Dec 20 2008
a(n) = ((n-3)^2 + 3*(n+1)^2)/4. - Reinhard Zumkeller, Feb 13 2009
a(n) = A132111(n-1,2) for n>1. - Reinhard Zumkeller, Aug 10 2007
a(n) = ceiling((n+1/n)^2), n>0. - Vincenzo Librandi, Oct 19 2011
a(n) = 2*n + a(n-1) - 1 (with a(0)=3). - Vincenzo Librandi, Nov 13 2010
a(n)*a(n-1) - 3 = (a(n)-n)^2 = A027688(n-1)^2. - Bruno Berselli, Dec 08 2011
From Amiram Eldar, Jul 21 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + sqrt(3)*Pi*coth(sqrt(3)*Pi))/6.
Sum_{n>=0} (-1)^n/a(n) = (1 + (sqrt(3)*Pi)*csch(sqrt(3)*Pi))/6. (End)
From Amiram Eldar, Jan 29 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = 2*csch(sqrt(3)*Pi)*sinh(2*Pi)/sqrt(3).
Product_{n>=0} (1 - 1/a(n)) = sqrt(2/3)*csch(sqrt(3)*Pi)*sinh(sqrt(2)*Pi). (End)
E.g.f.: exp(x)*(3 + x + x^2). - Stefano Spezia, Aug 26 2024

Extensions

Edited by N. J. A. Sloane Apr 15 2009 at the suggestion of Leroy Quet

A176271 The odd numbers as a triangle read by rows.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 13 2010

Keywords

Comments

A108309(n) = number of primes in n-th row.

Examples

			From _Philippe Deléham_, Oct 03 2011: (Start)
Triangle begins:
   1;
   3,  5;
   7,  9, 11;
  13, 15, 17, 19;
  21, 23, 25, 27, 29;
  31, 33, 35, 37, 39, 41;
  43, 45, 47, 49, 51, 53, 55;
  57, 59, 61, 63, 65, 67, 69, 71;
  73, 75, 77, 79, 81, 83, 85, 87, 89; (End)
		

Crossrefs

Programs

  • Haskell
    a176271 n k = a176271_tabl !! (n-1) !! (k-1)
    a176271_row n = a176271_tabl !! (n-1)
    a176271_tabl = f 1 a005408_list where
       f x ws = us : f (x + 1) vs where (us, vs) = splitAt x ws
    -- Reinhard Zumkeller, May 24 2012
    
  • Magma
    [n^2-n+2*k-1: k in [1..n], n in [1..15]]; // G. C. Greubel, Mar 10 2024
    
  • Maple
    A176271 := proc(n,k)
        n^2-n+2*k-1 ;
    end proc: # R. J. Mathar, Jun 28 2013
  • Mathematica
    Table[n^2-n+2*k-1, {n,15}, {k,n}]//Flatten (* G. C. Greubel, Mar 10 2024 *)
  • SageMath
    flatten([[n^2-n+2*k-1 for k in range(1,n+1)] for n in range(1,16)]) # G. C. Greubel, Mar 10 2024

Formula

T(n, k) = n^2 - n + 2*k - 1 for 1 <= k <= n.
T(n, k) = A005408(n*(n-1)/2 + k - 1).
T(2*n-1, n) = A016754(n-1) (main diagonal).
T(2*n, n) = A000466(n).
T(2*n, n+1) = A053755(n).
T(n, k) + T(n, n-k+1) = A001105(n), 1 <= k <= n.
T(n, 1) = A002061(n), central polygonal numbers.
T(n, 2) = A027688(n-1) for n > 1.
T(n, 3) = A027690(n-1) for n > 2.
T(n, 4) = A027692(n-1) for n > 3.
T(n, 5) = A027694(n-1) for n > 4.
T(n, 6) = A048058(n-1) for n > 5.
T(n, n-3) = A108195(n-2) for n > 3.
T(n, n-2) = A082111(n-2) for n > 2.
T(n, n-1) = A014209(n-1) for n > 1.
T(n, n) = A028387(n-1).
Sum_{k=1..n} T(n, k) = A000578(n) (Nicomachus's theorem).
Sum_{k=1..n} (-1)^(k-1)*T(n, k) = (-1)^(n-1)*A065599(n) (alternating sign row sums).
Sum_{j=1..n} (Sum_{k=1..n} T(j, k)) = A000537(n) (sum of first n rows).

A061925 a(n) = ceiling(n^2/2) + 1.

Original entry on oeis.org

1, 2, 3, 6, 9, 14, 19, 26, 33, 42, 51, 62, 73, 86, 99, 114, 129, 146, 163, 182, 201, 222, 243, 266, 289, 314, 339, 366, 393, 422, 451, 482, 513, 546, 579, 614, 649, 686, 723, 762, 801, 842, 883, 926, 969, 1014, 1059, 1106, 1153, 1202, 1251, 1302, 1353, 1406
Offset: 0

Views

Author

Henry Bottomley, May 17 2001

Keywords

Comments

a(n+1) gives index of the first occurrence of n in A100795. - Amarnath Murthy, Dec 05 2004
First term in each group in A074148. - Amarnath Murthy, Aug 28 2002
From Christian Barrientos, Jan 01 2021: (Start)
For n >= 3, a(n) is the number of square polyominoes with at least 2n - 2 cells whose bounding box has size 2 X n.
For n = 3, there are 6 square polyominoes with a bounding box of size 2 X 3:
_ _ _ _ _
|||_| |||_| |||_| |||_| |||_| |||_
|||_| ||| || || || || |||
(End)
Except for a(2), a(n) agrees with the lower matching number of the (n+1) X (n+1) bishop graph up to at least n = 13. - Eric W. Weisstein, Dec 23 2024

Crossrefs

Programs

Formula

a(n) = a(n-1) + 2*floor((n-1)/2) + 1 = A061926(3, k) = 2*A002620(n+1) - (n-1) = A000982(n) + 1.
a(2*n) = a(2*n-1) + 2*n - 1 = 2*n^2 + 1 = A058331(n).
a(2*n+1) = a(2*n) + 2*n + 1 = 2*(n^2 + n + 1) = A051890(n+1).
a(n) = floor((n^2+3)/2). - Gary Detlefs, Feb 13 2010
From R. J. Mathar, Feb 19 2010: (Start)
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
G.f.: (1-x^2+2*x^3)/((1+x) * (1-x)^3). (End)
a(n) = (2*n^2 - (-1)^n + 5)/4. - Bruno Berselli, Sep 29 2011
a(n) = A007590(n+1) - n + 1. - Wesley Ivan Hurt, Jul 15 2013
a(n) + a(n+1) = A027688(n). a(n+1) - a(n) = A109613(n). - R. J. Mathar, Jul 20 2013
E.g.f.: ((2 + x + x^2)*cosh(x) + (3 + x + x^2)*sinh(x))/2. - Stefano Spezia, May 07 2021

Extensions

Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jun 09 2007

A163253 An interspersion: the order array of the odd-numbered columns of the double interspersion at A161179.

Original entry on oeis.org

1, 4, 2, 9, 5, 3, 16, 10, 7, 6, 25, 17, 13, 11, 8, 36, 26, 21, 18, 14, 12, 49, 37, 31, 27, 22, 19, 15, 64, 50, 43, 38, 32, 28, 23, 20, 81, 65, 57, 51, 44, 39, 33, 29, 24, 100, 82, 73, 66, 58, 52, 45, 40, 34, 30, 121, 101, 91, 83, 74, 67, 59, 53, 46, 41, 35
Offset: 1

Views

Author

Clark Kimberling, Jul 23 2009

Keywords

Comments

A permutation of the natural numbers.
Row 1 consists of the squares.
Beginning with row 5, the columns obey a 3rd-order recurrence:
c(n)=c(n-1)+c(n-2)-c(n-3)+1; thus disregarding row 1, the nonsquares are partitioned by this recurrence.
Except for initial terms, the first ten rows match A000290, A002522, A002061, A059100, A014209, A117950, A027688, A087475, A027689, A117951, and the first column, A035106.

Examples

			Corner:
1....4....9...16...25
2....5...10...17...26
3....7...13...21...31
6...11...18...27...38
The double interspersion A161179 begins thus:
1....4....7...12...17...24
2....3....8...11...18...23
5....6...13...16...25...30
9...10...19...22...33...38
Expel the even-numbered columns, leaving
1....7...17...
2....8...18...
5...13...25...
9...19...33...
Then replace each of those numbers by its rank when all the numbers are jointly ranked.
		

Crossrefs

Formula

Let S(n,k) denote the k-th term in the n-th row. Three cases:
S(1,k)=k^2;
if n is even, then S(n,k)=k^2+(n-2)k+(n^2-2*n+4)/4;
if n>=3 is odd, then S(n,k)=k^2+(n-2)k+(n^2-2*n+1)/4.

Extensions

Edited and augmented by Clark Kimberling, Jul 24 2009

A027714 Numbers k such that k^2+k+3 is a palindrome.

Original entry on oeis.org

0, 1, 2, 5, 19, 23, 60, 71, 175, 179, 184, 243, 753, 2431, 6154, 23111, 30947, 73188, 75146, 230663, 237721, 598350, 3093852, 5492899, 17605724, 18886025, 30909092, 62127180, 76675186, 177865385, 230098566, 309230287, 549199524, 589167859, 726714741
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    npalQ[n_]:=Module[{c=n^2+n+3},c==IntegerReverse[c]]; Select[Range[ 0,31*10^5],npalQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 15 2016 *)

Extensions

More terms from Giovanni Resta, Aug 29 2018

A027715 Palindromes of form k^2 + k + 3.

Original entry on oeis.org

3, 5, 9, 33, 383, 555, 3663, 5115, 30803, 32223, 34043, 59295, 567765, 5912195, 37877873, 534141435, 957747759, 5356556535, 5646996465, 53205650235, 56511511565, 358023320853, 9571923291759, 30171944917103, 309961535169903, 356681959186653, 955371999173559
Offset: 1

Views

Author

Keywords

Comments

Palindromes h such that 4*h - 11 is a square. - Bruno Berselli, Aug 29 2018

Crossrefs

Programs

  • Mathematica
    palQ[n_] := Block[{d = IntegerDigits[n]}, d == Reverse[d]]; f[n_] := n^2 + n + 3; Select[f@ Range[0, 10^5], palQ] (* Giovanni Resta, Aug 29 2018 *)

Extensions

More terms from Giovanni Resta, Aug 29 2018

A118403 Unsigned row sums of triangle A118401; a(n) = A118402(n^2-n+2), where A118402 is the row sums of triangle A118400.

Original entry on oeis.org

1, 1, 3, 5, 9, 15, 23, 33, 45, 59, 75, 93, 113, 135, 159, 185, 213, 243, 275, 309, 345, 383, 423, 465, 509, 555, 603, 653, 705, 759, 815, 873, 933, 995, 1059, 1125, 1193, 1263, 1335, 1409, 1485, 1563, 1643, 1725, 1809, 1895, 1983, 2073, 2165, 2259, 2355
Offset: 0

Views

Author

Paul D. Hanna, Apr 27 2006

Keywords

Crossrefs

Programs

  • Maple
    seq(coeff(series((1-2*x+2*x^2)*(1+x^2)/(1-x)^3,x,n+1), x, n), n = 0 .. 55); # Muniru A Asiru, Jan 02 2019
  • Mathematica
    Join[{1, 1}, Table[n^2 + n + 3, {n, 0, 47}]] (* Jon Maiga, Jan 02 2019 *)
  • PARI
    {a(n)=polcoeff((1-2*x+2*x^2)*(1+x^2)/(1-x+x*O(x^n))^3,n,x)}

Formula

G.f.: A(x) = (1-2*x+2*x^2)*(1+x^2)/(1-x)^3.
a(n) = A027688(n-2) for n > 1. - Jon Maiga, Jan 02 2019
E.g.f.: exp(x)*(5 - 2*x + x^2) - 2*(2 + x). - Stefano Spezia, Dec 21 2024

A220508 T(n,k) = n^2 + k if k <= n, otherwise T(n,k) = k*(k + 2) - n; square array T(n,k) read by ascending antidiagonals (n >= 0, k >= 0).

Original entry on oeis.org

0, 1, 3, 4, 2, 8, 9, 5, 7, 15, 16, 10, 6, 14, 24, 25, 17, 11, 13, 23, 35, 36, 26, 18, 12, 22, 34, 48, 49, 37, 27, 19, 21, 33, 47, 63, 64, 50, 38, 28, 20, 32, 46, 62, 80, 81, 65, 51, 39, 29, 31, 45, 61, 79, 99, 100, 82, 66, 52, 40, 30, 44, 60, 78, 98, 120
Offset: 0

Views

Author

Omar E. Pol, Feb 09 2013

Keywords

Comments

This sequence consists of 0 together with a permutation of the natural numbers. The nonnegative integers (A001477) are arranged in the successive layers from T(0,0) = 0. The n-th layer start with T(n,1) = n^2. The n-th layer is formed by the first n+1 elements of row n and the first n elements in increasing order of the column n.
The first antidiagonal is formed by odd numbers: 1, 3. The second antidiagonal is formed by even numbers: 4, 2, 8. The third antidiagonal is formed by odd numbers: 9, 5, 7, 15. And so on.
It appears that in the n-th layer there is at least a prime number <= g and also there is at least a prime number > g, where g is the number on the main diagonal, the n-th oblong number A002378(n), if n >= 1.

Examples

			The second layer is [4, 5, 6, 7, 8] which looks like this:
  .  .  8
  .  .  7,
  4, 5, 6,
Square array T(0,0)..T(10,10) begins:
    0,   3,   8,  15,  24,  35,  48,  63,  80,  99, 120,...
    1,   2,   7,  14,  23,  34,  47,  62,  79,  98, 119,...
    4,   5,   6,  13,  22,  33,  46,  61,  78,  97, 118,...
    9,  10,  11,  12,  21,  32,  45,  60,  77,  96, 117,...
   16,  17,  18,  19,  20,  31,  44,  59,  76,  95, 118,...
   25,  26,  27,  28,  29,  30,  43,  58,  75,  94, 117,...
   36,  37,  38,  39,  40,  41,  42,  57,  74,  93, 114,...
   49,  50,  51,  52,  53,  54,  55,  56,  73,  92, 113,...
   64,  65,  66,  67,  68,  69,  70,  71,  72,  91, 112,...
   81,  82,  83,  84,  85,  86,  87,  88,  89,  90, 111,...
  100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110,...
  ...
		

Crossrefs

Column 1 is A000290. Main diagonal is A002378. Column 2 is essentially A002522. Row 1 is A005563. Row 2 gives the absolute terms of A008865.

Formula

From Petros Hadjicostas, Mar 10 2021: (Start)
T(n,k) = (A342354(n,k) - 1)/2.
O.g.f.: (x^4*y^3 + 3*x^3*y^4 + x^4*y^2 - 10*x^3*y^3 - x^2*y^4 + 3*x^3*y^2 + x^2*y^3 - 4*x^3*y + 8*x^2*y^2 + 3*x^2*y + x*y^2 + x^2 - 10*x*y - y^2 + x + 3*y)/((1 - x)^3*(1 - y)^3*(1 - x*y)^2). (End)

Extensions

Name edited by Petros Hadjicostas, Mar 10 2021

A213921 Natural numbers placed in table T(n,k) layer by layer. The order of placement: at the beginning filled odd places of layer clockwise, next - even places clockwise. Table T(n,k) read by antidiagonals.

Original entry on oeis.org

1, 2, 3, 5, 4, 7, 10, 8, 9, 13, 17, 14, 6, 16, 21, 26, 22, 11, 12, 25, 31, 37, 32, 18, 15, 20, 36, 43, 50, 44, 27, 23, 24, 30, 49, 57, 65, 58, 38, 33, 19, 35, 42, 64, 73, 82, 74, 51, 45, 28, 29, 48, 56, 81, 91, 101, 92, 66, 59, 39, 34, 41, 63, 72, 100, 111
Offset: 1

Views

Author

Boris Putievskiy, Mar 05 2013

Keywords

Comments

A permutation of the natural numbers.
a(n) is a pairing function: a function that reversibly maps Z^{+} x Z^{+} onto Z^{+}, where Z^{+} is the set of integer positive numbers.
Layer is pair of sides of square from T(1,n) to T(n,n) and from T(n,n) to T(n,1). Enumeration table T(n,k) is layer by layer. The order of the list:
T(1,1)=1;
T(1,2), T(2,1), T(2,2);
. . .
T(1,n), T(3,n), ... T(n,3), T(n,1), T(2,n), T(4,n), ... T(n,4), T(n,2);
...

Examples

			The start of the sequence as table:
   1   2   5  10  17  26 ...
   3   4   8  14  22  32 ...
   7   9   6  11  18  27 ...
  13  16  12  15  23  33 ...
  21  25  20  24  19  28 ...
  31  36  30  35  29  34 ...
  ...
The start of the sequence as triangle array read by rows:
   1;
   2,  3;
   5,  4,  7;
  10,  8,  9, 13;
  17, 14,  6, 16, 21;
  26, 22, 11, 12, 25, 31;
  ...
		

Crossrefs

Programs

  • Python
    t=int((math.sqrt(8*n-7) - 1)/ 2)
    i=n-t*(t+1)/2
    j=(t*t+3*t+4)/2-n
    if i > j:
       result=i*i-(j%2)*i+2-int((j+2)/2)
    else:
       result=j*j-((i%2)+1)*j + int((i+3)/2)

Formula

As a table:
T(n,k) = n*n - (k mod 2)*n + 2 - floor((k+2)/2), if n>k;
T(n,k) = k*k - ((n mod 2)+1)*k + floor((n+3)/2), if n<=k.
As a linear sequence:
a(n) = i*i - (j mod 2)*i + 2 - floor((j+2)/2), if i>j;
a(n) = j*j - ((i mod 2)+1)*j + floor((i+3)/2), if i<=j; where i = n-t*(t+1)/2, j = (t*t+3*t+4)/2-n, t = floor((-1+sqrt(8*n-7))/2).

A235355 0 followed by the sum of (1),(2), (3,4),(5,6), (7,8,9),(10,11,12) from the natural numbers.

Original entry on oeis.org

0, 1, 2, 7, 11, 24, 33, 58, 74, 115, 140, 201, 237, 322, 371, 484, 548, 693, 774, 955, 1055, 1276, 1397, 1662, 1806, 2119, 2288, 2653, 2849, 3270, 3495, 3976, 4232, 4777, 5066, 5679, 6003, 6688, 7049, 7810, 8210, 9051, 9492, 10417, 10901, 11914, 12443, 13548
Offset: 0

Views

Author

Paul Curtz, Jan 07 2014

Keywords

Comments

Difference table for 0 followed by a(n):
0, 0, 1, 2, 7, 11, 24, 33,...
0, 1, 1, 5, 4, 13, 9, 25,... =A147685(n)
1, 0, 4, -1, 9, -4, 16, -9,... =interleave A000290(n+1),-A000290(n)
-1, 4, -5, 10, -13, 20, -25, 34,...
5, -9, 15, -23, 33, -45, 59, -75,... =(-1)^n*A027688(n+2).
a(-n) = -a(n-1).
From the second row, signature (0,3,0,-3,0,1).
Consider a(n+2k+1)+a(2k-n):
1, 2, 6, 9, 17, 22, 34,...
9, 12, 24, 33, 57, 72, 108,...
35, 40, 60, 75, 115, 140, 200,...
91, 98, 126, 147, 203, 238, 322,...
189, 198, 234, 261, 333, 378, 486,... .
The first column is A005898(n).
The rows are successively divisible by 2*k+1. Hence
1, 2, 6, 9, 17, 22, 34,...
3, 4, 8, 11, 19, 24, 36,...
7, 8, 12, 15, 23, 28, 40,...
13, 14, 18, 21, 29, 34, 46,...
21, 22, 26, 29, 37, 42, 54,...
The first column is A002061(n+1).
The main diagonal is A212965(n).
The first difference of every row is A022998(n+1).
Compare to the (2k+1)-sections of A061037 in A165943.

Examples

			a(1)=1, a(2)=2, a(3)=3+4=7, a(4)=5+6=11, a(5)=7+8+9=24, a(6)=10+11+12=33.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,3,-3,-3,3,1,-1},{0,1,2,7,11,24,33},50] (* Harvey P. Dale, Nov 22 2014 *)
  • PARI
    Vec(x*(x^2+1)*(x^2+x+1)/((x-1)^4*(x+1)^3) + O(x^100)) \\ Colin Barker, Jan 20 2014

Formula

a(n) = 4*a(n-2) -6*a(n-4) +4*a(n-6) -a(n-8), n>7.
a(2n) = 0 followed by A085786(n). a(2n+1) = A081436(n).
a(2n) + a(2n+1) = A005898(n).
a(2n-1) + a(2n) = A061317(n).
a(n) = (-1)*((-1+(-1)^n-2*n)*(2+n+n^2))/16. a(n) = a(n-1)+3*a(n-2)-3*a(n-3)-3*a(n-4)+3*a(n-5)+a(n-6)-a(n-7). G.f.: x*(x^2+1)*(x^2+x+1) / ((x-1)^4*(x+1)^3). - Colin Barker, Jan 20 2014

Extensions

More terms from Colin Barker, Jan 20 2014
Showing 1-10 of 17 results. Next