cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A038721 k=2 column of A038719.

Original entry on oeis.org

2, 18, 110, 570, 2702, 12138, 52670, 223290, 931502, 3842058, 15718430, 63928410, 258885902, 1045076778, 4208939390, 16921719930, 67944897902, 272553908298, 1092539107550, 4377127901850, 17529428119502, 70180466208618, 280910134414910, 1124205363178170, 4498515962822702
Offset: 1

Views

Author

N. J. A. Sloane, May 02 2000

Keywords

Comments

For n>=1, a(n) is equal to the number of functions f: {1,2,...,n+1}->{1,2,3,4} such that Im(f) contains 2 fixed elements. - Aleksandar M. Janjic and Milan Janjic, Feb 27 2007
Let P(A) be the power set of an n-element set A and R be a relation on P(A) such that for all x, y of P(A), xRy if x is not a subset of y and y is not a subset of x. Then a(n+1) = |R|. - Ross La Haye, Mar 19 2009
Number of ordered (n+1)-tuples of positive integers, whose minimum is 0 and maximum 3. - Ovidiu Bagdasar, Sep 19 2014
a(n-2) is the number of possible player-reduced binary games observed by each player in an n X 2 game assuming k < n - 1 players reverse their initially fixed individual strategies and the remaining n - k - 1 players will play as one, either maintaining their status quo strategies or jointly adopting an alternative strategy. - Ambrosio Valencia-Romero, Apr 11 2024

Crossrefs

Programs

  • Haskell
    import Data.List (transpose)
    a038721 n = a038721_list !! (n-1)
    a038721_list = (transpose a038719_tabl) !! 2
    -- Reinhard Zumkeller, Jul 08 2012
  • Mathematica
    Table[4^n-2*3^n+2^n,{n,2,30}] (* or *) LinearRecurrence[{9,-26,24},{2,18,110},30] (* Harvey P. Dale, Aug 16 2012 *)

Formula

a(n) = 4^(n+1) - 2*3^(n+1) + 2^(n+1).
a(1)=2, a(2)=18, a(3)=110, a(n)=9*a(n-1)-26*a(n-2)+24*a(n-3). - Harvey P. Dale, Aug 16 2012
G.f.: -2*x/((2*x-1)*(3*x-1)*(4*x-1)). - Colin Barker, Nov 27 2012
E.g.f.: 2*exp(2*x)*(1 - 3*exp(x) + 2*exp(2*x)). - Stefano Spezia, Jun 04 2024
a(n) = 2 * A016269(n-1). - Alois P. Heinz, Jun 04 2024

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), May 09 2000

A001047 a(n) = 3^n - 2^n.

Original entry on oeis.org

0, 1, 5, 19, 65, 211, 665, 2059, 6305, 19171, 58025, 175099, 527345, 1586131, 4766585, 14316139, 42981185, 129009091, 387158345, 1161737179, 3485735825, 10458256051, 31376865305, 94134790219, 282412759265, 847255055011, 2541798719465, 7625463267259, 22876524019505
Offset: 0

Views

Author

Keywords

Comments

a(n+1) is the sum of the elements in the n-th row of triangle pertaining to A036561. - Amarnath Murthy, Jan 02 2002
Number of 2 X n binary arrays with a path of adjacent 1's and no path of adjacent 0's from top row to bottom row. - R. H. Hardin, Mar 21 2002
With offset 1, partial sums of A027649. - Paul Barry, Jun 24 2003
Number of distinct lines through the origin in the n-dimensional lattice of side length 2. A049691 has the values for the 2-dimensional lattice of side length n. - Joshua Zucker, Nov 19 2003
a(n+1)/(n+1)=(3*3^n-2*2^n)/(n+1) is the second binomial transform of the harmonic sequence 1/(n+1). - Paul Barry, Apr 19 2005
a(n+1) is the sum of n-th row of A036561. - Reinhard Zumkeller, May 14 2006
The sequence gives the sum of the lengths of the segments in Cantor's dust generating sequence up to the i-th step. Measurement unit = length of the segment of i-th step. - Giorgio Balzarotti, Nov 18 2006
Let T be a binary relation on the power set P(A) of a set A having n = |A| elements such that for every element x, y of P(A), xTy if x is a proper subset of y. Then a(n) = |T|. - Ross La Haye, Dec 22 2006
From Alexander Adamchuk, Jan 04 2007: (Start)
a(n) is prime for n in A057468.
p divides a(p) - 1 for prime p.
Quotients (3^p - 2^p - 1)/p, where p = prime(n), are listed in A127071.
Numbers k such that k divides 3^k - 2^k - 1 are listed in A127072.
Pseudoprimes in A127072(n) include all powers of primes {2,3,7} and some composite numbers that are listed in A127073, which includes all Carmichael numbers A002997.
Numbers n such that n^2 divides 3^n - 2^n - 1 are listed in A127074.
5 divides a(2n).
5^2 divides a(2*5n).
5^3 divides a(2*5^2n).
5^4 divides a(2*5^3n).
7^2 divides a(6*7n).
13 divides a(4n).
13^2 divides a(4*13n).
19 divides a(3n).
19^2 divides a(3*19n).
23^2 divides a(11n).
23^3 divides a(11*23n).
23^4 divides a(11*23^2n).
29 divides a(7n).
p divides a((p-1)n) for prime p>3.
p divides a((p-1)/2) for prime p in A097934. Also primes p such that 6 is a square mod p, except {2,3}, A038876(n).
p^(k+1) divides a(p^k*(p-1)/2*n) for prime p in A097934.
p^(k+1) divides a(p^k*(p-1)*n) for prime p>3.
Note the exception that for p = 23, p^(k+2) divides a(p^k*(p-1)/2*n).
There are no more such exceptions for primes p up to 600000. (End)
a(n) divides a(q*(n+1)-1), for all q integer. Leonardo Sarasua, Apr 15 2024
Final digits of terms follow sequence 1,5,9,5. - Enoch Haga, Nov 26 2007
This is also the second column sequence of the Sheffer triangle A143494 (2-restricted Stirling2 numbers). See the e.g.f. given below. - Wolfdieter Lang, Oct 08 2011
Partial sums give A000392. - Jon Perry, Apr 05 2014
For n >= 1, this is also row 2 of A281890: when consecutive positive integers are written as a product of primes in nondecreasing order, "3" occurs in n-th position a(n) times out of every 6^n. - Peter Munn, May 17 2017
a(n) is the number of ternary sequences of length n which include the digit 2. For example, a(2)=5 since the sequences are 02,20,12,21,22. - Enrique Navarrete, Apr 05 2021
a(n-1) is the number of ways we can form disjoint unions of two nonempty subsets of [n] such that the union contains n. For example, for n = 3, a(2) = 5 since the disjoint unions are {1}U{3}, {1}U{2,3}, {2}U{3}, {2}U{1,3}, and {1,2}U{3}. Cf. A000392 if we drop the requirement that the union contains n. - Enrique Navarrete, Aug 24 2021
Configures as a composite Koch Snowflake Fractal (see illustration in links) based on the five-fold division of the Cantor Square/Cantor Dust Fractal of (9^n-4^n)/5 see my illustration in (A016153). - John Elias, Oct 13 2021
Number of pairs (A,B) where B is a subset of {1,2,...,n} and A is a proper subset of B. - Jianing Song, Jun 18 2022
From Manfred Boergens, Mar 29 2023: (Start)
With regard to the comments by Ross La Haye and Jianing Song: Omitting "proper" gives A000244.
Number of pairs (A,B) where B is a nonempty subset of {1,2,...,n} and A is a nonempty subset of B. For nonempty proper subsets see a(n+1) in A028243. (End)
a(n) is the number of n-digit numbers whose smallest decimal digit is 7. - Stefano Spezia, Nov 15 2023
a(n-1) is the number of all possible player-reduced binary games observed by each player in an nx2 game assuming the individual strategies of k < n - 1 players are fixed and the remaining n - k - 1 player will play as one, either maintaining their status quo strategies or jointly adopting an alternative strategy. - Ambrosio Valencia-Romero, Apr 11 2024

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 86-87.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n) = row sums of A091913, row 2 of A047969, column 1 of A090888 and column 1 of A038719.
Cf. partitions: A241766, A241759.
A diagonal of A262307.

Programs

  • Haskell
    a001047 n = a001047_list !! n
    a001047_list = map fst $ iterate (\(u, v) -> (3 * u + v, 2 * v)) (0, 1)
    -- Reinhard Zumkeller, Jun 09 2013
  • Magma
    [3^n - 2^n: n in [0..30]]; // Vincenzo Librandi, Jul 17 2011
    
  • Maple
    seq(3^n - 2^n, n=0..40); # Giorgio Balzarotti, Nov 18 2006
    A001047:=1/(3*z-1)/(2*z-1); # Simon Plouffe in his 1992 dissertation, dropping the initial zero
  • Mathematica
    Table[ 3^n - 2^n, {n, 0, 25} ]
    LinearRecurrence[{5, -6}, {0, 1}, 25] (* Harvey P. Dale, Aug 18 2011 *)
    Numerator@NestList[(3#+1)/2&,1/2,100] (* Zak Seidov, Oct 03 2011 *)
  • PARI
    {a(n) = 3^n - 2^n};
    
  • Python
    [3**n - 2**n for n in range(25)] # Ross La Haye, Aug 19 2005; corrected by David Radcliffe, Jun 26 2016
    
  • Sage
    [lucas_number1(n, 5, 6) for n in range(26)]  # Zerinvary Lajos, Apr 22 2009
    

Formula

G.f.: x/((1-2*x)*(1-3*x)).
a(n) = 5*a(n-1) - 6*a(n-2).
a(n) = 3*a(n-1) + 2^(n-1). - Jon Perry, Aug 23 2002
Starting 0, 0, 1, 5, 19, ... this is 3^n/3 - 2^n/2 + 0^n/6, the binomial transform of A086218. - Paul Barry, Aug 18 2003
a(n) = A083323(n)-1 = A056182(n)/2 = (A002783(n)-1)/2 = (A003063(n+2)-A003063(n+1))/2. - Ralf Stephan, Jan 12 2004
Binomial transform of A000225. - Ross La Haye, Feb 07 2005
a(n) = Sum_{k=0..n-1} binomial(n, k)*2^k. - Ross La Haye, Aug 20 2005
a(n) = 2^(2n) - A083324(n). - Ross La Haye, Sep 10 2005
a(n) = A112626(n, 1). - Ross La Haye, Jan 11 2006
E.g.f.: exp(3*x) - exp(2*x). - Mohammad K. Azarian, Jan 14 2009
a(n) = A217764(n,1). - Ross La Haye, Mar 27 2013
a(n) = 2*a(n-1) + 3^(n-1). - Toby Gottfried, Mar 28 2013
a(n) = A000244(n) - A000079(n). - Omar E. Pol, Mar 28 2013
a(n) = Sum_{k=0..2} Stirling1(2,k)*(k+1)^n = c_2^{(-n)}, poly-Cauchy numbers. - Takao Komatsu, Mar 28 2013
a(n) = A227048(n,A098294(n)). - Reinhard Zumkeller, Jun 30 2013
a(n+1) = Sum_{k=0..n} 2^k*3^(n-k). - J. M. Bergot, Mar 27 2018
Sum_{n>=1} 1/a(n) = A329064. - Amiram Eldar, Nov 20 2020
a(n) = (1/2)*Sum_{k=0..n} binomial(n, k)*(2^(n-k) + 2^k - 2).
a(n) = A001117(n) + 2*A000918(n) + 1. - Ambrosio Valencia-Romero, Mar 08 2022
a(n) = A000225(n) + A028243(n+1). - Ambrosio Valencia-Romero, Mar 09 2022
From Peter Bala, Jun 27 2025: (Start)
exp(Sum_{n >=1} a(2*n)/a(n)*x^n/n) = Sum_{n >= 0} a(n+1)*x^n.
exp(Sum_{n >=1} a(3*n)/a(n)*x^n/n) = 1 + 19*x + 247*x^2 + ... is the g.f. of A019443.
exp(Sum_{n >=1} a(4*n)/a(n)*x^n/n) = 1 + 65*x + 2743*x^2 + ... is the g.f. of A383754.
The following are all examples of telescoping series:
Sum_{n >= 1} 6^n/(a(n)*a(n+1)) = 2, since 6^n/(a(n)*a(n+1)) = b(n) - b(n+1), where b(n) = 2^n/a(n);
Sum_{n >= 1} 18^n/(a(n)*a(n+1)*a(n+2)) = 22/75, since 18^n/(a(n)*a(n+1)*a(n+2)) = c(n) - c(n+1), where c(n) = (5*6^n - 2*4^n)/(15*a(n)*a(n+1));
Sum_{n >= 1} 54^n/(a(n)*a(n+1)*a(n+2)*a(n+3)) = 634/48735 since 54^n/(a(n)*a(n+1)*a(n+2)*a(n+3)) = d(n) - d(n+1), where d(n) = (57*18^n - 38*12^n + 8*8^n)/(513*a(n)*a(n+1)*a(n+2)).
Sum_{n >= 1} 6^n/(a(n)*a(n+2)) = 14/25; Sum_{n >= 1} (-6)^n/(a(n)*a(n+2)) = -6/25.
Sum_{n >= 1} 6^n/(a(n)*a(n+3)) = 306/1805.
Sum_{n >= 1} 6^n/(a(n)*a(n+4)) = 4282/80275; Sum_{n >= 1} (-6)^n/(a(n)*a(n+4)) = -1698/80275. (End)

Extensions

Edited by Charles R Greathouse IV, Mar 24 2010

A028246 Triangular array a(n,k) = (1/k)*Sum_{i=0..k} (-1)^(k-i)*binomial(k,i)*i^n; n >= 1, 1 <= k <= n, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 7, 12, 6, 1, 15, 50, 60, 24, 1, 31, 180, 390, 360, 120, 1, 63, 602, 2100, 3360, 2520, 720, 1, 127, 1932, 10206, 25200, 31920, 20160, 5040, 1, 255, 6050, 46620, 166824, 317520, 332640, 181440, 40320, 1, 511, 18660, 204630, 1020600, 2739240, 4233600, 3780000, 1814400, 362880
Offset: 1

Views

Author

N. J. A. Sloane, Doug McKenzie (mckfam4(AT)aol.com)

Keywords

Comments

Let M = n X n matrix with (i,j)-th entry a(n+1-j, n+1-i), e.g., if n = 3, M = [1 1 1; 3 1 0; 2 0 0]. Given a sequence s = [s(0)..s(n-1)], let b = [b(0)..b(n-1)] be its inverse binomial transform and let c = [c(0)..c(n-1)] = M^(-1)*transpose(b). Then s(k) = Sum_{i=0..n-1} b(i)*binomial(k,i) = Sum_{i=0..n-1} c(i)*k^i, k=0..n-1. - Gary W. Adamson, Nov 11 2001
From Gary W. Adamson, Aug 09 2008: (Start)
Julius Worpitzky's 1883 algorithm generates Bernoulli numbers.
By way of example [Wikipedia]:
B0 = 1;
B1 = 1/1 - 1/2;
B2 = 1/1 - 3/2 + 2/3;
B3 = 1/1 - 7/2 + 12/3 - 6/4;
B4 = 1/1 - 15/2 + 50/3 - 60/4 + 24/5;
B5 = 1/1 - 31/2 + 180/3 - 390/4 + 360/5 - 120/6;
B6 = 1/1 - 63/2 + 602/3 - 2100/4 + 3360/5 - 2520/6 + 720/7;
...
Note that in this algorithm, odd n's for the Bernoulli numbers sum to 0, not 1, and the sum for B1 = 1/2 = (1/1 - 1/2). B3 = 0 = (1 - 7/2 + 13/3 - 6/4) = 0. The summation for B4 = -1/30. (End)
Pursuant to Worpitzky's algorithm and given M = A028246 as an infinite lower triangular matrix, M * [1/1, -1/2, 1/3, ...] (i.e., the Harmonic series with alternate signs) = the Bernoulli numbers starting [1/1, 1/2, 1/6, ...]. - Gary W. Adamson, Mar 22 2012
From Tom Copeland, Oct 23 2008: (Start)
G(x,t) = 1/(1 + (1-exp(x*t))/t) = 1 + 1 x + (2 + t)*x^2/2! + (6 + 6t + t^2)*x^3/3! + ... gives row polynomials for A090582, the f-polynomials for the permutohedra (see A019538).
G(x,t-1) = 1 + 1*x + (1 + t)*x^2 / 2! + (1 + 4t + t^2)*x^3 / 3! + ... gives row polynomials for A008292, the h-polynomials for permutohedra.
G[(t+1)x,-1/(t+1)] = 1 + (1+ t) x + (1 + 3t + 2 t^2) x^2 / 2! + ... gives row polynomials for the present triangle. (End)
The Worpitzky triangle seems to be an apt name for this triangle. - Johannes W. Meijer, Jun 18 2009
If Pascal's triangle is written as a lower triangular matrix and multiplied by A028246 written as an upper triangular matrix, the product is a matrix where the (i,j)-th term is (i+1)^j. For example,
1,0,0,0 1,1,1, 1 1,1, 1, 1
1,1,0,0 * 0,1,3, 7 = 1,2, 4, 8
1,2,1,0 0,0,2,12 1,3, 9,27
1,3,3,1 0,0,0, 6 1,4,16,64
So, numbering all three matrices' rows and columns starting at 0, the (i,j) term of the product is (i+1)^j. - Jack A. Cohen (ProfCohen(AT)comcast.net), Aug 03 2010
The Fi1 and Fi2 triangle sums are both given by sequence A000670. For the definition of these triangle sums see A180662. The mirror image of the Worpitzky triangle is A130850. - Johannes W. Meijer, Apr 20 2011
Let S_n(m) = 1^m + 2^m + ... + n^m. Then, for n >= 0, we have the following representation of S_n(m) as a linear combination of the binomial coefficients:
S_n(m) = Sum_{i=1..n+1} a(i+n*(n+1)/2)*C(m,i). E.g., S_2(m) = a(4)*C(m,1) + a(5)*C(m,2) + a(6)*C(m,3) = C(m,1) + 3*C(m,2) + 2*C(m,3). - Vladimir Shevelev, Dec 21 2011
Given the set X = [1..n] and 1 <= k <= n, then a(n,k) is the number of sets T of size k of subset S of X such that S is either empty or else contains 1 and another element of X and such that any two elemements of T are either comparable or disjoint. - Michael Somos, Apr 20 2013
Working with the row and column indexing starting at -1, a(n,k) gives the number of k-dimensional faces in the first barycentric subdivision of the standard n-dimensional simplex (apply Brenti and Welker, Lemma 2.1). For example, the barycentric subdivision of the 2-simplex (a triangle) has 1 empty face, 7 vertices, 12 edges and 6 triangular faces giving row 4 of this triangle as (1,7,12,6). Cf. A053440. - Peter Bala, Jul 14 2014
See A074909 and above g.f.s for associations among this array and the Bernoulli polynomials and their umbral compositional inverses. - Tom Copeland, Nov 14 2014
An e.g.f. G(x,t) = exp[P(.,t)x] = 1/t - 1/[t+(1-t)(1-e^(-xt^2))] = (1-t) * x + (-2t + 3t^2 - t^3) * x^2/2! + (6t^2 - 12t^3 + 7t^4 - t^5) * x^3/3! + ... for the shifted, reverse, signed polynomials with the first element nulled, is generated by the infinitesimal generator g(u,t)d/du = [(1-u*t)(1-(1+u)t)]d/du, i.e., exp[x * g(u,t)d/du] u eval. at u=0 generates the polynomials. See A019538 and the G. Rzadkowski link below for connections to the Bernoulli and Eulerian numbers, a Ricatti differential equation, and a soliton solution to the KdV equation. The inverse in x of this e.g.f. is Ginv(x,t) = (-1/t^2)*log{[1-t(1+x)]/[(1-t)(1-tx)]} = [1/(1-t)]x + [(2t-t^2)/(1-t)^2]x^2/2 + [(3t^2-3t^3+t^4)/(1-t)^3]x^3/3 + [(4t^3-6t^4+4t^5-t^6)/(1-t)^4]x^4/4 + ... . The numerators are signed, shifted A135278 (reversed A074909), and the rational functions are the columns of A074909. Also, dG(x,t)/dx = g(G(x,t),t) (cf. A145271). (Analytic G(x,t) added, and Ginv corrected and expanded on Dec 28 2015.) - Tom Copeland, Nov 21 2014
The operator R = x + (1 + t) + t e^{-D} / [1 + t(1-e^(-D))] = x + (1+t) + t - (t+t^2) D + (t+3t^2+2t^3) D^2/2! - ... contains an e.g.f. of the reverse row polynomials of the present triangle, i.e., A123125 * A007318 (with row and column offset 1 and 1). Umbrally, R^n 1 = q_n(x;t) = (q.(0;t)+x)^n, with q_m(0;t) = (t+1)^(m+1) - t^(m+1), the row polynomials of A074909, and D = d/dx. In other words, R generates the Appell polynomials associated with the base sequence A074909. For example, R 1 = q_1(x;t) = (q.(0;t)+x) = q_1(0;t) + q__0(0;t)x = (1+2t) + x, and R^2 1 = q_2(x;t) = (q.(0;t)+x)^2 = q_2(0:t) + 2q_1(0;t)x + q_0(0;t)x^2 = 1+3t+3t^2 + 2(1+2t)x + x^2. Evaluating the polynomials at x=0 regenerates the base sequence. With a simple sign change in R, R generates the Appell polynomials associated with A248727. - Tom Copeland, Jan 23 2015
For a natural refinement of this array, see A263634. - Tom Copeland, Nov 06 2015
From Wolfdieter Lang, Mar 13 2017: (Start)
The e.g.f. E(n, x) for {S(n, m)}{m>=0} with S(n, m) = Sum{k=1..m} k^n, n >= 0, (with undefined sum put to 0) is exp(x)*R(n+1, x) with the exponential row polynomials R(n, x) = Sum_{k=1..n} a(n, k)*x^k/k!. E.g., e.g.f. for n = 2, A000330: exp(x)*(1*x/1!+3*x^2/2!+2*x^3/3!).
The o.g.f. G(n, x) for {S(n, m)}{m >=0} is then found by Laplace transform to be G(n, 1/p) = p*Sum{k=1..n} a(n+1, k)/(p-1)^(2+k).
Hence G(n, x) = x/(1 - x)^(n+2)*Sum_{k=1..n} A008292(n,k)*x^(k-1).
E.g., n=2: G(2, 1/p) = p*(1/(p-1)^2 + 3/(p-1)^3 + 2/(p-1)^4) = p^2*(1+p)/(p-1)^4; hence G(2, x) = x*(1+x)/(1-x)^4.
This works also backwards: from the o.g.f. to the e.g.f. of {S(n, m)}_{m>=0}. (End)
a(n,k) is the number of k-tuples of pairwise disjoint and nonempty subsets of a set of size n. - Dorian Guyot, May 21 2019
From Rajesh Kumar Mohapatra, Mar 16 2020: (Start)
a(n-1,k) is the number of chains of length k in a partially ordered set formed from subsets of an n-element set ordered by inclusion such that the first term of the chains is either the empty set or an n-element set.
Also, a(n-1,k) is the number of distinct k-level rooted fuzzy subsets of an n-set ordered by set inclusion. (End)
The relations on p. 34 of Hasan (also p. 17 of Franco and Hasan) agree with the relation between A019538 and this entry given in the formula section. - Tom Copeland, May 14 2020
T(n,k) is the size of the Green's L-classes in the D-classes of rank (k-1) in the semigroup of partial transformations on an (n-1)-set. - Geoffrey Critzer, Jan 09 2023
T(n,k) is the number of strongly connected binary relations on [n] that have period k (A367948) and index 1. See Theorem 5.4.25(6) in Ki Hang Kim reference. - Geoffrey Critzer, Dec 07 2023

Examples

			The triangle a(n, k) starts:
n\k 1   2    3     4      5      6      7      8     9
1:  1
2:  1   1
3:  1   3    2
4:  1   7   12     6
5:  1  15   50    60     24
6:  1  31  180   390    360    120
7:  1  63  602  2100   3360   2520    720
8:  1 127 1932 10206  25200  31920  20160   5040
9:  1 255 6050 46620 166824 317520 332640 181440 40320
... [Reformatted by _Wolfdieter Lang_, Mar 26 2015]
-----------------------------------------------------
Row 5 of triangle is {1,15,50,60,24}, which is {1,15,25,10,1} times {0!,1!,2!,3!,4!}.
From _Vladimir Shevelev_, Dec 22 2011: (Start)
Also, for power sums, we have
S_0(n) = C(n,1);
S_1(n) = C(n,1) +    C(n,2);
S_2(n) = C(n,1) +  3*C(n,2) +  2*C(n,3);
S_3(n) = C(n,1) +  7*C(n,2) + 12*C(n,3) +  6*C(n,4);
S_4(n) = C(n,1) + 15*C(n,2) + 50*C(n,3) + 60*C(n,4) + 24*C(n,5); etc.
(End)
For X = [1,2,3], the sets T are {{}}, {{},{1,2}}, {{},{1,3}}, {{},{1,2,3}}, {{},{1,2},{1,2,3}}, {{},{1,3},{1,2,3}} and so a(3,1)=1, a(3,2)=3, a(3,3)=2. - _Michael Somos_, Apr 20 2013
		

References

  • Ki Hang Kim, Boolean Matrix Theory and Applications, Marcel Dekker, New York and Basel (1982).

Crossrefs

Dropping the column of 1's gives A053440.
Without the k in the denominator (in the definition), we get A019538. See also the Stirling number triangle A008277.
Row sums give A000629(n-1) for n >= 1.
Cf. A027642, A002445. - Gary W. Adamson, Aug 09 2008
Appears in A161739 (RSEG2 triangle), A161742 and A161743. - Johannes W. Meijer, Jun 18 2009
Binomial transform is A038719. Cf. A131689.
Cf. A119879.
From Rajesh Kumar Mohapatra, Mar 29 2020: (Start)
A000007(n-1) (column k=1), A000225(n-1) (column k=2), A028243(n-1) (column k=3), A028244(n-1) (column k=4), A028245(n-1) (column k=5), for n > 0.
Diagonal gives A000142(n-1), for n >=1.
Next-to-last diagonal gives A001710,
Third, fourth, fifth, sixth, seventh external diagonal respectively give A005460, A005461, A005462, A005463, A005464. (End)

Programs

  • GAP
    Flat(List([1..10], n-> List([1..n], k-> Stirling2(n,k)* Factorial(k-1) ))); # G. C. Greubel, May 30 2019
    
  • Magma
    [[StirlingSecond(n,k)*Factorial(k-1): k in [1..n]]: n in [1..10]]; // G. C. Greubel, May 30 2019
    
  • Maple
    a := (n,k) -> add((-1)^(k-i)*binomial(k,i)*i^n, i=0..k)/k;
    seq(print(seq(a(n,k),k=1..n)),n=1..10);
    T := (n,k) -> add(eulerian1(n,j)*binomial(n-j,n-k), j=0..n):
    seq(print(seq(T(n,k),k=0..n)),n=0..9); # Peter Luschny, Jul 12 2013
  • Mathematica
    a[n_, k_] = Sum[(-1)^(k-i) Binomial[k,i]*i^n, {i,0,k}]/k; Flatten[Table[a[n, k], {n, 10}, {k, n}]] (* Jean-François Alcover, May 02 2011 *)
  • PARI
    {T(n, k) = if( k<0 || k>n, 0, n! * polcoeff( (x / log(1 + x + x^2 * O(x^n) ))^(n+1), n-k))}; /* Michael Somos, Oct 02 2002 */
    
  • PARI
    {T(n,k) = stirling(n,k,2)*(k-1)!}; \\ G. C. Greubel, May 31 2019
    
  • Python
    # Assuming offset (n, k) = (0, 0).
    def T(n, k):
        if k >  n: return 0
        if k == 0: return 1
        return k*T(n - 1, k - 1) + (k + 1)*T(n - 1, k)
    for n in range(9):
        print([T(n, k) for k in range(n + 1)])  # Peter Luschny, Apr 26 2022
  • Sage
    def A163626_row(n) :
        x = polygen(ZZ,'x')
        A = []
        for m in range(0, n, 1) :
            A.append((-x)^m)
            for j in range(m, 0, -1):
                A[j - 1] = j * (A[j - 1] - A[j])
        return list(A[0])
    for i in (1..7) : print(A163626_row(i))  # Peter Luschny, Jan 25 2012
    
  • Sage
    [[stirling_number2(n,k)*factorial(k-1) for k in (1..n)] for n in (1..10)] # G. C. Greubel, May 30 2019
    

Formula

E.g.f.: -log(1-y*(exp(x)-1)). - Vladeta Jovovic, Sep 28 2003
a(n, k) = S2(n, k)*(k-1)! where S2(n, k) is a Stirling number of the second kind (cf. A008277). Also a(n,k) = T(n,k)/k, where T(n, k) = A019538.
Essentially same triangle as triangle [1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, ...] DELTA [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, ...] where DELTA is Deléham's operator defined in A084938, but the notation is different.
Sum of terms in n-th row = A000629(n) - Gary W. Adamson, May 30 2005
The row generating polynomials P(n, t) are given by P(1, t)=t, P(n+1, t) = t(t+1)(d/dt)P(n, t) for n >= 1 (see the Riskin and Beckwith reference). - Emeric Deutsch, Aug 09 2005
From Gottfried Helms, Jul 12 2006: (Start)
Delta-matrix as can be read from H. Hasse's proof of a connection between the zeta-function and Bernoulli numbers (see link below).
Let P = lower triangular matrix with entries P[row,col] = binomial(row,col).
Let J = unit matrix with alternating signs J[r,r]=(-1)^r.
Let N(m) = column matrix with N(m)(r) = (r+1)^m, N(1)--> natural numbers.
Let V = Vandermonde matrix with V[r,c] = (r+1)^c.
V is then also N(0)||N(1)||N(2)||N(3)... (indices r,c always beginning at 0).
Then Delta = P*J * V and B' = N(-1)' * Delta, where B is the column matrix of Bernoulli numbers and ' means transpose, or for the single k-th Bernoulli number B_k with the appropriate column of Delta,
B_k = N(-1)' * Delta[ *,k ] = N(-1)' * P*J * N(k).
Using a single column instead of V and assuming infinite dimension, H. Hasse showed that in x = N(-1) * P*J * N(s), where s can be any complex number and s*zeta(1-s) = x.
His theorem reads: s*zeta(1-s) = Sum_{n>=0..inf} (n+1)^-1*delta(n,s), where delta(n,s) = Sum_{j=0..n} (-1)^j * binomial(n,j) * (j+1)^s.
(End)
a(n,k) = k*a(n-1,k) + (k-1)*a(n-1,k-1) with a(n,1) = 1 and a(n,n) = (n-1)!. - Johannes W. Meijer, Jun 18 2009
Rephrasing the Meijer recurrence above: Let M be the (n+1)X(n+1) bidiagonal matrix with M(r,r) = M(r,r+1) = r, r >= 1, in the two diagonals and the rest zeros. The row a(n+1,.) of the triangle is row 1 of M^n. - Gary W. Adamson, Jun 24 2011
From Tom Copeland, Oct 11 2011: (Start)
With e.g.f.. A(x,t) = G[(t+1)x,-1/(t+1)]-1 (from 2008 comment) = -1 + 1/[1-(1+t)(1-e^(-x))] = (1+t)x + (1+3t+2t^2)x^2/2! + ..., the comp. inverse in x is
B(x,t)= -log(t/(1+t)+1/((1+t)(1+x))) = (1/(1+t))x - ((1+2t)/(1+t)^2)x^2/2 + ((1+3t+3t^2)/(1+t)^3)x^3/3 + .... The numerators are the row polynomials of A074909, and the rational functions are (omitting the initial constants) signed columns of the re-indexed Pascal triangle A007318.
Let h(x,t)= 1/(dB/dx) = (1+x)(1+t(1+x)), then the row polynomial P(n,t) = (1/n!)(h(x,t)*d/dx)^n x, evaluated at x=0, A=exp(x*h(y,t)*d/dy) y, eval. at y=0, and dA/dx = h(A(x,t),t), with P(1,t)=1+t. (Series added Dec 29 2015.)(End)
Let denote the Eulerian numbers A173018(n,k), then T(n,k) = Sum_{j=0..n} *binomial(n-j,n-k). - Peter Luschny, Jul 12 2013
Matrix product A007318 * A131689. The n-th row polynomial R(n,x) = Sum_{k >= 1} k^(n-1)*(x/(1 + x))^k, valid for x in the open interval (-1/2, inf). Cf A038719. R(n,-1/2) = (-1)^(n-1)*(2^n - 1)*Bernoulli(n)/n. - Peter Bala, Jul 14 2014
a(n,k) = A141618(n,k) / C(n,k-1). - Tom Copeland, Oct 25 2014
For the row polynomials, A028246(n,x) = A019538(n-1,x) * (1+x). - Tom Copeland, Dec 28 2015
n-th row polynomial R(n,x) = (1+x) o (1+x) o ... o (1+x) (n factors), where o denotes the black diamond multiplication operator of Dukes and White. See example E11 in the Bala link. - Peter Bala, Jan 12 2018
From Dorian Guyot, May 21 2019: (Start)
Sum_{i=0..k} binomial(k,i) * a(n,i) = (k+1)^n.
Sum_{k=0..n} a(n,k) = 2*A000670(n).
(End)
With all offsets 0, let A_n(x;y) = (y + E.(x))^n, an Appell sequence in y where E.(x)^k = E_k(x) are the Eulerian polynomials of A123125. Then the row polynomials of this entry, A028246, are given by x^n * A_n(1 + 1/x;0). Other specializations of A_n(x;y) give A046802, A090582, A119879, A130850, and A248727. - Tom Copeland, Jan 24 2020
The row generating polynomials R(n,x) = Sum_{i=1..n} a(n,i) * x^i satisfy the recurrence equation R(n+1,x) = R(n,x) + Sum_{k=0..n-1} binomial(n-1,k) * R(k+1,x) * R(n-k,x) for n >= 1 with initial value R(1,x) = x. - Werner Schulte, Jun 17 2021

Extensions

Definition corrected by Li Guo, Dec 16 2006
Typo in link corrected by Johannes W. Meijer, Oct 17 2009
Error in title corrected by Johannes W. Meijer, Sep 24 2010
Edited by M. F. Hasler, Oct 29 2014

A007047 Number of chains in power set of n-set.

Original entry on oeis.org

1, 3, 11, 51, 299, 2163, 18731, 189171, 2183339, 28349043, 408990251, 6490530291, 112366270379, 2107433393523, 42565371881771, 921132763911411, 21262618727925419, 521483068116543603, 13542138653027381291, 371206349277313644531
Offset: 0

Views

Author

N. J. A. Sloane, Roger B. Nelsen

Keywords

Comments

Stirling transform of A052849(n-1) = [1,2,4,12,48,...] is a(n-1) =[1,3,11,51,299,...]. - Michael Somos, Mar 04 2004
It is interesting to note that a chain in the power set of a set X can be thought of as a fuzzy subset of X and conversely. Chains originating with empty set are fuzzy subsets with empty core and those chains not ending with the whole set are with support strictly contained in X. - Venkat Murali (v.murali(AT)ru.ac.za), May 18 2005
Equals the binomial transform of A000629: (1, 2, 6, 26, 150, 1082, ...) and the double binomial transform of A000670: (1, 1, 3, 13, 75, 541, ...). - Gary W. Adamson, Aug 04 2009
Row sums of A038719. - Peter Bala, Jul 09 2014
Also the number of restricted barred preferential arrangements of an n-set having two bars, where one fixed section is a free section and the other two sections are restricted sections. - Sithembele Nkonkobe, Jun 16 2015
The number of all predictable outcomes of a race between a given number registered competitors, where clean finishes, dead heats (ties), disqualifications, cancellations and their combinations are all counted. (11 outcomes for two competitors, 51 for three, 299 for four, etc.. Example for two competitors shown below.) - Gergely Földvári, Jul 28 2024

Examples

			If there are two registered competitors, A and B, in a race, the total number of predictable outcomes counting all possibilities of clean finishes (f), dead heats (t), disqualifications (d), cancellations (c) and their combinations is 11 (eleven). Here is the breakdown: AfBf, BfAf, AtBt, AfBd, AfBc, BfAd, BfAc, AdBd, AcBc, AdBc, AcBd. - _Gergely Földvári_, Jul 28 2024
		

References

  • V. Murali, Counting fuzzy subsets of a finite set, preprint, Rhodes University, Grahamstown 6140, South Africa, 2003.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000629, A000629, A000670. Row sums of A038719.

Programs

  • Haskell
    a007047 = sum . a038719_row  -- Reinhard Zumkeller, Feb 05 2014
  • Maple
    P := proc(n,x) option remember; if n = 0 then 1 else
       (n*x+2*(1-x))*P(n-1,x)+x*(1-x)*diff(P(n-1,x),x);
       expand(%) fi end:
    A007047 := n -> 2^n*subs(x=1/2, P(n,x)):
    seq(A007047(n), n=0..19);  # Peter Luschny, Mar 07 2014
    # second Maple program:
    b:= proc(n) option remember; `if`(n=0, 4,
          add(b(n-j)*binomial(n, j), j=1..n))
        end:
    a:= n-> `if`(n=0, 1, b(n)-1):
    seq(a(n), n=0..21);  # Alois P. Heinz, Feb 07 2020
  • Mathematica
    Table[LerchPhi[1/2, -n, 2]/2, {n, 0, 10}] (* Vladimir Reshetnikov, Feb 16 2011 *)
    Table[2*PolyLog[-n, 1/2] - 1 , {n, 0, 19}] (* Jean-François Alcover, Aug 14 2013 *)
    With[{nn=20},CoefficientList[Series[Exp[2x]/(2-Exp[x]),{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Dec 08 2015 *)
    Table[-(-1)^k HurwitzLerchPhi[2, -k, -1], {k, 0, 30}] (* Federico Provvedi,Sep 05 2020 *)
    a[n_]:= a[n] = 2^n + Sum[Binomial[n, k]*a[k], {k, 0, n-1}]; Table[a[n], {n, 0, 20}] (* Rajesh Kumar Mohapatra, Jul 02 2025 *)
    a[0] = 1; a[n_]:= a[n] = 2^n + Sum[Binomial[n, k]*a[n-k], {k, 1, n}]; Table[a[n], {n, 0, 20}] (* Rajesh Kumar Mohapatra, Jul 02 2025 *)
  • PARI
    a(n)=if(n<0,0,n!*polcoeff(subst((y+1)^2/(1-y),y,exp(x+x*O(x^n))-1),n));
    
  • PARI
    my(x='x+O('x^66)); Vec(serlaplace(exp(2*x)/(2-exp(x)))) \\ Joerg Arndt, Aug 14 2013
    

Formula

E.g.f.: exp(2*x)/(2-exp(x)).
a(n) = Sum_{k>=1} (k+1)^n/2^k = 2*A000629(n)-1. - Benoit Cloitre, Sep 08 2002
a(n) = one less than sum of quotients with numerator 4 times (n!)((k_1 + k_2 + ... + k_n)!) and with denominator (k_1!k_2!...k_n!)(1!^k_1 2!^k_2...n!^k_n) where the sum is taken over all partitions 1*k_1 + 2*k_2 + ... + n*k_n = n. E.g. a(1) = 3 because the membership value of x to {x} is either 1, alpha with 0 < alpha < 1 or 0. a(2) = 11 since the membership values x and y to {x, y} are 1 >= alpha >= beta >= 0 for {empty set, x, y} in that order or {empty set, y, x} exercising all possible > or = . - Venkat Murali (v.murali(AT)ru.ac.za), May 18 2005
G.f.: 1/Q(0), where Q(k) = 1 - 3*x*(k+1) - 2*x^2*(k+1)*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 02 2013
a(n) ~ 2*n! / (log(2))^(n+1). - Vaclav Kotesovec, Sep 27 2017
a(n) = 4 * A000670(n) - 1 for n > 0. - Alois P. Heinz, Feb 07 2020
a(n) = -(-1)^n Phi(2,-n,-1), where Phi(z,s,a) is the Lerch zeta function. - Federico Provvedi, Sep 05 2020
a(n) = 1 + 2 * Sum_{k=0..n-1} (-1)^(n-k-1) * binomial(n,k) * a(k). - Ilya Gutkovskiy, Apr 28 2021
From Rajesh Kumar Mohapatra, Jul 02 2025: (Start)
a(n) = 2*A000629(n) - 1.
a(n) = 2^n + Sum_{k=0..n-1} binomial(n,k) * a(k).
a(n) = 2^n + Sum_{k=1..n} binomial(n,k) * a(n-k), a(0) = 1. (End)

A038720 a(n) = (n+3)*n!/2.

Original entry on oeis.org

2, 5, 18, 84, 480, 3240, 25200, 221760, 2177280, 23587200, 279417600, 3592512000, 49816166400, 741015475200, 11769069312000, 198766503936000, 3556874280960000, 67224923910144000, 1338096104497152000, 27978373094031360000, 613091306060513280000
Offset: 1

Views

Author

N. J. A. Sloane, May 02 2000

Keywords

Comments

Next-to-last diagonal of A038719.
a(n-1) is the sum of the n-th entries in all cycles of all permutations of [n]. a(2) = 5 because the sum of the third entries in all cycles of all permutations of [3] ((123), (132), (12)(3), (13)(2), (1)(23), (1)(2)(3)) is 3+2+0+0+0+0 = 5. - Alois P. Heinz, May 03 2017

Crossrefs

Main diagonal of A285793.

Programs

  • Haskell
    import Data.List (transpose)
    a038720 n = a038720_list !! (n-1)
    a038720_list = (transpose $ map reverse a038719_tabl) !! 1
    -- Reinhard Zumkeller, Jul 08 2012
    
  • Magma
    A038720:= func< n | (n+3)*Factorial(n)/2 >; // G. C. Greubel, May 11 2025
    
  • Mathematica
    Array[(# + 3) #!/2 &, 21] (* Michael De Vlieger, Apr 28 2022 *)
  • SageMath
    def A038720(n): return (n+3)*factorial(n)//2 # G. C. Greubel, May 11 2025

Formula

a(n) = A052572(n)/2.
a(n) = A214178(n+3,n). - Reinhard Zumkeller, Jul 08 2012
G.f.: Sum_{n>=1} ( (n+1)*x/(1 + (n+1)*x) )^n. - Paul D. Hanna, Jan 02 2013
E.g.f.: 1/(1-x) + 1/(2*(x-1)^2) - 3/2. - Alois P. Heinz, May 04 2017
From Amiram Eldar, Dec 11 2022: (Start)
Sum_{n>=1} 1/a(n) = 2*e - 14/3.
Sum_{n>=1} (-1)^(n+1)/a(n) = 10/e - 10/3. (End)

Extensions

Corrected and extended by Larry Reeves (larryr(AT)acm.org), May 09 2000.

A052875 E.g.f.: (exp(x)-1)^2/(2-exp(x)).

Original entry on oeis.org

0, 0, 2, 12, 74, 540, 4682, 47292, 545834, 7087260, 102247562, 1622632572, 28091567594, 526858348380, 10641342970442, 230283190977852, 5315654681981354, 130370767029135900, 3385534663256845322, 92801587319328411132, 2677687796244384203114, 81124824998504073881820
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Previous name was: A simple grammar.
Stirling transform of A005359(n-1)=[0,0,2,0,24,0,...] is a(n-1)=[0,0,2,12,74,...]. - Michael Somos, Mar 04 2004
Stirling transform of -(-1)^n*A052566(n-1)=[1,-1,4,-6,48,...] is a(n-1)=[1,0,2,12,74,...]. - Michael Somos, Mar 04 2004
Stirling transform of A000142(n)=[0,2,6,24,120,...] is a(n)=[0,2,12,74,...]. - Michael Somos, Mar 04 2004
Stirling transform of A007680(n)=[2,10,42,216,...] is a(n+1)=[2,12,74,...]. - Michael Somos, Mar 04 2004
a(n) is the number of chains in the power set of {1,2,...,n} that do not contain the empty set and do not contain {1,2,...,n}. Equivalently, a(n) is the number of ordered set partitions of {1,2,...,n} into at least 2 classes. - Geoffrey Critzer, Sep 01 2014

Examples

			a(3) = 12 because we have: {{1}}, {{2}}, {{3}}, {{1,2}}, {{1,3}}, {{2,3}}, {{1}, {1,2}}, {{1}, {1,3}}, {{2}, {1,2}}, {{2}, {2,3}}, {{3}, {1,3}}, {{3}, {2,3}}. - _Geoffrey Critzer_, Sep 01 2014
		

Crossrefs

Programs

  • Maple
    spec := [S, {B = Set(Z, 1 <= card), C = Sequence(B, 1 <= card), S=Prod(B, C)}, labeled]: seq(combstruct[count](spec, size=n),  n=0..20);
  • Mathematica
    CoefficientList[Series[(E^x-1)^2/(2-E^x), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Feb 25 2014 *)
  • PARI
    a(n)=if(n<0,0,n!*polcoeff(subst(y^2/(1-y),y,exp(x+x*O(x^n))-1),n))
    
  • Sage
    def A052875(n):
        return add(add((-1)^(j-i)*binomial(j,i)*i^n for i in range(n+1)) for j in range(n+1)) - 1
    [A052875(n) for n in range(19)] # Peter Luschny, Jul 22 2014

Formula

Second column of A084416: Sum_{i=2..n} i!*Stirling2(n, i) = A000670(n)-1. - Vladeta Jovovic, Sep 15 2003
E.g.f.: (exp(x)-1)^2/(2-exp(x)).
a(n) ~ n! / (2 * (log(2))^(n+1)). - Vaclav Kotesovec, Feb 25 2014
E.g.f.: A(x)*(1/(1 - A(x)) - 1) where A(x)=exp(x)-1. - Geoffrey Critzer, Sep 01 2014

Extensions

New name using e.g.f., Vaclav Kotesovec, Feb 25 2014

A328044 Number of chains of binary matrices of order n.

Original entry on oeis.org

1, 3, 299, 28349043, 21262618727925419, 426789461753903103302333992563, 576797123806621878513443912437627670334052360619, 110627172261659730424051586605958905845740712964061737226074854597705843
Offset: 0

Views

Author

S. R. Kannan, Rajesh Kumar Mohapatra, Oct 03 2019

Keywords

Comments

For n >= 1, a(n) is the number of chains of n X n (0, 1) matrices.
a(n) is also the number of chains in the power set of n^2 elements.
a(n) is the n^2-th term of A007047.
A chain of binary (crisp or Boolean or logical) matrices of order n can be thought of as a fuzzy matrix of order n.
a(n) is the number of distinct n X n fuzzy matrices.
a(n) is the sum of the n^2-th row of triangle A038719.

Crossrefs

Cf. A000079 (subsets of an n-set), A007047 (chains in power set of an n-set).
Cf. A000290 (squares), A002416 (binary relations on an n-set), A038719 (chains of length k in poset).

Programs

Formula

Let T(n, k) denote the number of chains of binary matrices of order n of length k, T(0, 0) = 1, T(0, k) = 0 for k > 0, thus T(n, k) = A038719(n, k).
a(n) = Sum_{k=0..n^2} T(n, k); a(0) = 1.
a(n) = A007047(n^2) = A007047(A000290(n)).

A330302 Number of chains of 2-element subsets of {0,1, 2, ..., n} that contain no consecutive integers.

Original entry on oeis.org

1, 1, 3, 51, 18731, 408990251, 921132763911411, 324499299994016295527283, 25190248259800264134073495741338539, 576797123806621878513443912437627670334052360619
Offset: 0

Views

Author

S. R. Kannan, Rajesh Kumar Mohapatra, Jan 01 2020

Keywords

Comments

For n >= 1, a(n) is the number of chains of binary reflexive symmetric matrices of order n.
The number of chains of strictly upper triangular or strictly lower triangular matrices.
Also, number of chains in power set of (n^2-n)/2 elements.
a(n) is the number of distinct reflexive symmetric fuzzy matrices of order n.

Crossrefs

Programs

  • Maple
    # P are the polynomials defined in A007047.
    a:= n -> (m-> 2^m*subs(x=1/2, P(m, x)))(n*(n-1)/2):
    seq(a(n), n=0..9);
    # second Maple program:
    b:= proc(n) option remember; `if`(n=0, 4,
          add(b(n-j)*binomial(n, j), j=1..n))
        end:
    a:= n-> `if`(n<2, 1, b(n*(n-1)/2)-1):
    seq(a(n), n=0..10);  # Alois P. Heinz, Feb 11 2020
  • Mathematica
    Array[2 PolyLog[-(#^2-#)/2, 1/2] - 1 &, 10, 0]
    Table[2*PolyLog[-(n^2-n)/2, 1/2] - 1, {n, 0, 29}]
    Table[LerchPhi[1/2, -(n^2-n)/2, 2]/2, {n, 0, 19}]

Formula

a(n) = A007047((n^2-n)/2) = A007047(A161680(n)).

A162509 Row sums of the absolute values of a triangular array related to the Bernoulli numbers.

Original entry on oeis.org

1, 1, 4, 20, 124, 932, 8284, 85220, 997084, 13082852, 190320604, 3040770020, 52937870044, 997533561572, 20228969244124, 439283696014820, 10170742982007004, 250110224694309092, 6510327792455418844, 178832105312143131620, 5169772417850111583964
Offset: 0

Views

Author

Peter Luschny, Jul 05 2009

Keywords

Comments

Let T(n,k) = sum_{v=0..k} (-1)^v*v*binomial(k,v)*(v+1)^(n-1) for n >= 1, k >= 1 and additionally T(0,0) = 1. Then a(n) = sum_{k=0..n} abs(T(n,k)).
a(n) = A073146(n,n-1) for n >= 1.
a(n) appears to be the total number of subsets over all chains of the poset on the powerset of {1,2,...,n-1} ordered by set inclusion. That is, a(n) = Sum_{k=0..n} A038719(n,k)*(k+1). For example a(2)=4 because there are three chains: {}; {1}; {},{1}; and there are 4 total subsets. - Geoffrey Critzer, Nov 28 2014

Crossrefs

Programs

  • Maple
    A162508 := proc(n,k) local v; if n=0 and k=0 then 1 else
    add((-1)^v*v*binomial(k,v)*(v+1)^(n-1),v=0..k) fi end:
    a := proc(n) local k; add(abs(A162508(n,k)),k=0..n) end:
  • Mathematica
    t[0, 0] = 1; t[n_, k_] := Sum[(-1)^v*v*Binomial[k, v]*(v+1)^(n-1), {v, 0, k}]; a[n_] := Sum[Abs[t[n, k]], {k, 0, n}]; Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Jun 28 2013 *)
  • Sage
    def A162509(n):
        return add(abs(A162508(n, k)) for k in (0..n))
    [A162509(n) for n in (0..20)] # Peter Luschny, Jul 21 2014

Formula

a(n+1)=Sum_{k, 0<=k<=n} A199400(n,k) = Sum_{k, 0<=k<=n} A199335(n,k)*2^k. - Philippe Deléham, Nov 06 2011
G.f.: 1+x/(1-4x/(1-x/(1-6x/(1-2x/(1-8x/(1-3x/(1-10x/(1-4x/1-....)))))))) (continued fraction). - Philippe Deléham, Nov 22 2011
G.f.: 1 + x/Q(0), where Q(k) = 1 - x*(3*k+4) - 2*x^2*(k+1)*(k+2)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 03 2013
a(n + 1) = sum {k >= 0} (k*(k + 1)^n)/2^(k + 1) for n >= 0. Comparison with the formula A000670(n) = sum {k >= 0} (k^n)/2^(k + 1) yields a(n + 1) = sum {k = 0..n} binomial(n,k)*A000670(k + 1). - Peter Bala, Jul 21 2014
a(n) ~ n! / log(2)^(n+1). - Vaclav Kotesovec, Apr 17 2018

A162508 A binomial sum of powers related to the Bernoulli numbers, triangular array, read by rows.

Original entry on oeis.org

-1, -2, 2, -4, 10, -6, -8, 38, -54, 24, -16, 130, -330, 336, -120, -32, 422, -1710, 3000, -2400, 720, -64, 1330, -8106, 21840, -29400, 19440, -5040, -128, 4118, -36414, 141624, -285600, 312480, -176400, 40320
Offset: 1

Views

Author

Peter Luschny, Jul 05 2009

Keywords

Comments

T(n,k) = sum_{v=0..k} (-1)^v*v*binomial(k,v)*(v+1)^(n-1)
for n >= 1, k >= 1; by convention T(0,0) = 1.
Gives a representation of the Bernoulli numbers B_{n} = B_{n}(1) (with B_1 = 1/2)
B_{n} = sum_{j=0..n} sum_{k=0..j} T(j,k)/(k+1)
T(n,1) = -2^(n-1) (n>=1)
T(n,n) = (-1)^n*n! (n>=1)
sum_{k=0..n} T(n,k) = -A000007(n-1) = -1,0,0,0,0,... (n>=1)
sum_{k=0..n} abs(T(n,k)) = A162509(n) = A073146(n,n-1) (n>=1)
sum_{k=0..n} T(n,k)/(k+1) = Bernoulli(n,1)-Bernoulli(n-1,1) (n>=1)
numer(sum(T(n,k)/(k+1),k=0..n)) = A051716(n) (n>=0)
denom(sum(T(n,k)/(k+1),k=0..n)) = A051717(n) (n>=0)
Contribution from Peter Luschny, Jul 08 2009: (Start)
More generally, define the polynomials (assume p[0,0](x)=1 and 0^0=1)
p[n,k](x) = sum_{v=0..k} (-1)^v*v*binomial(k,v)*(v+1+x)^(n-1)
[1], [0, -1], [0, -2-x, 2], [0, -4-4x-x^2, 10+4x, -6], ...
then T(n,k)=p[n,k](0) and (-1)^k*k!*Stirling2(n,k)=p[n,k](-1) (cf. A019538).
Assume now k >= 1 and read by rows. Then
p[n,k](1) = -1,-3,2,-9,14,-6,-27,74,-72,24,-81,350,-582,432,-120,...
(-1)^n*(-2)^(n-k)*p[n,k](-1/2))=1,3,2,9,16,6,27,98,90,24,81,544,924,576,120,..
(-1)^n*(-2)^(n-k)*p[n,k](-3/2))=1,1,2,1,8,6,1,26,54,24,1,80,348,384,120,... (End)
Variant of A199400.

Examples

			For n >= 1, k >= 1:
..................... -1
................... -2, 2
................. -4, 10, -6
.............. -8, 38, -54, 24
......... -16, 130, -330, 336, -120
..... -32, 422, -1710, 3000, -2400, 720
-64, 1330, -8106, 21840, -29400, 19440, -5040
		

Crossrefs

Programs

  • Maple
    T := proc(n,k) local v; if n=0 and k=0 then 1 else
    add((-1)^v*v*binomial(k,v)*(v+1)^(n-1),v=0..k) fi end:
    # Peter Bala's e.g.f. assuming offset 0:
    egf := (x, z) -> -((1-x)/exp(z) + x)^(-2):
    ser := series(egf(x, z), z, 10): coz := n -> n!*coeff(ser, z, n):
    row := n -> seq(coeff(coz(n), x, k), k = 0..n):
    seq(print(row(n)), n = 0..9); # Peter Luschny, Jan 28 2021
  • Mathematica
    t[n_, k_] := Sum[(-1)^v*v*Binomial[k, v]*(v + 1)^(n - 1), {v, 0, k}]; Table[t[n, k], {n, 1, 8}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 26 2013, after Maple *)
  • Sage
    def A162508(n, k):
        if n==0 and k==0: return 1
        return add((-1)^v*v*binomial(k, v)*(v+1)^(n-1) for v in (0..k))
    for n in (1..8): [A162508(n, k) for k in (1..n)] # Peter Luschny, Jul 21 2014

Formula

From Peter Bala, Jul 21 2014: (Start)
T(n,k) = (-1)^k*k!*( Stirling2(n+1,k+1) - Stirling2(n,k+1) ), 1 <= k <= n.
T(n,k) = (-1)^k*(k + 1)*A038719(n+1,k+1).
E.g.f.: - B(-x,z)^2, where B(x,z) = 1/((1 + x)*exp(-z) - x) = 1 + (1 + x)*z + (1 + 3*x + 2*x^2)*z^2/2! + ... is an e.g.f. for A028246 (with an offset of 0).
Recurrence: T(n,k) = (k + 1)*T(n-1,k) - k*T(n-1,k-1).
The unsigned version of the triangle equals the matrix product A007318*A019538.
Assuming this triangle is a signed version of A199400 then the n-th row polynomial R(n,x) = 1/(1 - x)*( sum {k = 1..inf} k*(k + 1)^(n-1)*(x/(x - 1))^k ), valid for x in the open interval (-inf, 1/2). (End)

Extensions

More terms from Philippe Deléham, Nov 05 2011
Showing 1-10 of 13 results. Next