A130106 A051731 * diagonalized matrix of A063659.
1, 1, 2, 1, 0, 3, 1, 2, 0, 3, 1, 0, 0, 0, 5, 1, 2, 3, 0, 0, 6, 1, 0, 0, 0, 0, 0, 7, 1, 2, 0, 3, 0, 0, 0, 6, 1, 0, 3, 0, 0, 0, 0, 0, 8, 1, 2, 0, 0, 5, 0, 0, 0, 0, 10, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 1, 2, 3, 3, 0, 6, 0, 0, 0, 0, 0, 9, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13, 1, 2, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 14
Offset: 1
Examples
First few rows of the triangle: 1; 1, 2; 1, 0, 3; 1, 2, 0, 3; 1, 0, 0, 0, 5; 1, 2, 3, 0, 0, 6; 1, 0, 0, 0, 0, 0, 7, 1, 2, 0, 3, 0, 0, 0, 6; 1, 0, 3, 0, 0, 0, 0, 0, 8; ...
Programs
-
Mathematica
m = 14; A051731 = Table[If[Mod[n, k] == 0, 1, 0], {n, m}, {k, m}]; A063659 = Table[Sum[MoebiusMu[GCD[n, k]]^2, {k, n}], {n, m}] // DiagonalMatrix; M = A051731.A063659; Table[M[[n, k]], {n, m}, {k, n}] // Flatten (* Jean-François Alcover, Jan 18 2020 *)
Formula
Inverse Moebius transform of an infinite lower triangular matrix with A063659, (1, 2, 3, 3, 5, 6, 7, 6, 8, 10, ...) in the main diagonal and the rest zeros.
Extensions
More terms from Jean-François Alcover, Jan 18 2020
Comments