cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A000165 Double factorial of even numbers: (2n)!! = 2^n*n!.

Original entry on oeis.org

1, 2, 8, 48, 384, 3840, 46080, 645120, 10321920, 185794560, 3715891200, 81749606400, 1961990553600, 51011754393600, 1428329123020800, 42849873690624000, 1371195958099968000, 46620662575398912000, 1678343852714360832000, 63777066403145711616000
Offset: 0

Views

Author

Keywords

Comments

a(n) is also the size of the automorphism group of the graph (edge graph) of the n-dimensional hypercube and also of the geometric automorphism group of the hypercube (the two groups are isomorphic). This group is an extension of an elementary Abelian group (C_2)^n by S_n. (C_2 is the cyclic group with two elements and S_n is the symmetric group.) - Avi Peretz (njk(AT)netvision.net.il), Feb 21 2001
Then a(n) appears in the power series: sqrt(1+sin(y)) = Sum_{n>=0} (-1)^floor(n/2)*y^(n)/a(n) and sqrt((1+cos(y))/2) = Sum_{n>=0} (-1)^n*y^(2n)/a(2n). - Benoit Cloitre, Feb 02 2002
Appears to be the BinomialMean transform of A001907. See A075271. - John W. Layman, Sep 28 2002
Number of n X n monomial matrices with entries 0, +-1.
Also number of linear signed orders.
Define a "downgrade" to be the permutation d which places the items of a permutation p in descending order. This note concerns those permutations that are equal to their double-downgrades. The number of permutations of order 2n having this property are equinumerous with those of order 2n+1. a(n) = number of double-downgrading permutations of order 2n and 2n+1. - Eugene McDonnell (eemcd(AT)mac.com), Oct 27 2003
a(n) = (Integral_{x=0..Pi/2} cos(x)^(2*n+1) dx) where the denominators are b(n) = (2*n)!/(n!*2^n). - Al Hakanson (hawkuu(AT)excite.com), Mar 02 2004
1 + (1/2)x - (1/8)x^2 - (1/48)x^3 + (1/384)x^4 + ... = sqrt(1+sin(x)).
a(n)*(-1)^n = coefficient of the leading term of the (n+1)-th derivative of arctan(x), see Hildebrand link. - Reinhard Zumkeller, Jan 14 2006
a(n) is the Pfaffian of the skew-symmetric 2n X 2n matrix whose (i,j) entry is j for iDavid Callan, Sep 25 2006
a(n) is the number of increasing plane trees with n+1 edges. (In a plane tree, each subtree of the root is an ordered tree but the subtrees of the root may be cyclically rotated.) Increasing means the vertices are labeled 0,1,2,...,n+1 and each child has a greater label than its parent. Cf. A001147 for increasing ordered trees, A000142 for increasing unordered trees and A000111 for increasing 0-1-2 trees. - David Callan, Dec 22 2006
Hamed Hatami and Pooya Hatami prove that this is an upper bound on the cardinality of any minimal dominating set in C_{2n+1}^n, the Cartesian product of n copies of the cycle of size 2n+1, where 2n+1 is a prime. - Jonathan Vos Post, Jan 03 2007
This sequence and (1,-2,0,0,0,0,...) form a reciprocal pair under the list partition transform and associated operations described in A133314. - Tom Copeland, Oct 29 2007
a(n) = number of permutations of the multiset {1,1,2,2,...,n,n,n+1,n+1} such that between the two occurrences of i, there is exactly one entry >i, for i=1,2,...,n. Example: a(2) = 8 counts 121323, 131232, 213123, 231213, 232131, 312132, 321312, 323121. Proof: There is always exactly one entry between the two 1s (when n>=1). Given a permutation p in A(n) (counted by a(n)), record the position i of the first 1, then delete both 1s and subtract 1 from every entry to get a permutation q in A(n-1). The mapping p -> (i,q) is a bijection from A(n) to the Cartesian product [1,2n] X A(n-1). - David Callan, Nov 29 2007
Row sums of A028338. - Paul Barry, Feb 07 2009
a(n) is the number of ways to seat n married couples in a row so that everyone is next to their spouse. Compare A007060. - Geoffrey Critzer, Mar 29 2009
From Gary W. Adamson, Apr 21 2009: (Start)
Equals (-1)^n * (1, 1, 2, 8, 48, ...) dot (1, -3, 5, -7, 9, ...).
Example: a(4) = 384 = (1, 1, 2, 8, 48) dot (1, -3, 5, -7, 9) = (1, -3, 10, -56, 432). (End)
exp(x/2) = Sum_{n>=0} x^n/a(n). - Jaume Oliver Lafont, Sep 07 2009
Assuming n starts at 0, a(n) appears to be the number of Gray codes on n bits. It certainly is the number of Gray codes on n bits isomorphic to the canonical one. Proof: There are 2^n different starting positions for each code. Also, each code has a particular pattern of bit positions that are flipped (for instance, 1 2 1 3 1 2 1 for n=3), and these bit position patterns can be permuted in n! ways. - D. J. Schreffler (ds1404(AT)txstate.edu), Jul 18 2010
E.g.f. of 0,1,2,8,... is x/(1-2x/(2-2x/(3-8x/(4-8x/(5-18x/(6-18x/(7-... (continued fraction). - Paul Barry, Jan 17 2011
Number of increasing 2-colored trees with choice of two colors for each edge. In general, if we replace 2 with k we get the number of increasing k-colored trees. For example, for k=3 we get the triple factorial numbers. - Wenjin Woan, May 31 2011
a(n) = row sums of triangle A193229. - Gary W. Adamson, Jul 18 2011
Also the number of permutations of 2n (or of 2n+1) that are equal to their reverse-complements. (See the Egge reference.) Note that the double-downgrade described in the preceding comment (McDonnell) is equivalent to the reverse-complement. - Justin M. Troyka, Aug 11 2011
The e.g.f. can be used to form a generator, [1/(1-2x)] d/dx, for A000108, so a(n) can be applied to A145271 to generate the Catalan numbers. - Tom Copeland, Oct 01 2011
The e.g.f. of 1/a(n) is BesselI(0,sqrt(2*x)). See Abramowitz-Stegun (reference and link under A008277), p. 375, 9.6.10. - Wolfdieter Lang, Jan 09 2012
a(n) = order of the largest imprimitive group of degree 2n with n systems of imprimitivity (see [Miller], p. 203). - L. Edson Jeffery, Feb 05 2012
Row sums of triangle A208057. - Gary W. Adamson, Feb 22 2012
a(n) is the number of ways to designate a subset of elements in each n-permutation. a(n) = A000142(n) + A001563(n) + A001804(n) + A001805(n) + A001806(n) + A001807(n) + A035038(n) * n!. - Geoffrey Critzer, Nov 08 2012
For n>1, a(n) is the order of the Coxeter groups (also called Weyl groups) of types B_n and C_n. - Tom Edgar, Nov 05 2013
For m>0, k*a(m-1) is the m-th cumulant of the chi-squared probability distribution for k degrees of freedom. - Stanislav Sykora, Jun 27 2014
a(n) with 0 prepended is the binomial transform of A120765. - Vladimir Reshetnikov, Oct 28 2015
Exponential self-convolution of A001147. - Vladimir Reshetnikov, Oct 08 2016
Also the order of the automorphism group of the n-ladder rung graph. - Eric W. Weisstein, Jul 22 2017
a(n) is the order of the group O_n(Z) = {A in M_n(Z): A*A^T = I_n}, the group of n X n orthogonal matrices over the integers. - Jianing Song, Mar 29 2021
a(n) is the number of ways to tile a (3n,3n)-benzel or a (3n+1,3n+2)-benzel using left stones and two kinds of bones; see Defant et al., below. - James Propp, Jul 22 2023
a(n) is the number of labeled histories for a labeled topology with the modified lodgepole shape and n+1 cherry nodes. - Noah A Rosenberg, Jan 16 2025

Examples

			The following permutations and their reversals are all of the permutations of order 5 having the double-downgrade property:
  0 1 2 3 4
  0 3 2 1 4
  1 0 2 4 3
  1 4 2 0 3
G.f. = 1 + 2*x + 8*x^2 + 48*x^3 + 384*x^4 + 3840*x^5 + 46080*x^6 + 645120*x^7 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000142 (n!), A001147 ((2n-1)!!), A032184 (2^n*(n-1)!).
This sequence gives the row sums in A060187, and (-1)^n*a(n) the alternating row sums in A039757.
Also row sums in A028338.
Column k=2 of A329070.

Programs

  • Haskell
    a000165 n = product [2, 4 .. 2 * n]  -- Reinhard Zumkeller, Mar 28 2015
    
  • Magma
    [2^n*Factorial(n): n in [0..35]]; // Vincenzo Librandi, Apr 22 2011
    
  • Magma
    I:=[2,8]; [1] cat [n le 2 select I[n]  else (3*n-1)*Self(n-1)-2*(n-1)^2*Self(n-2): n in [1..35] ]; // Vincenzo Librandi, Feb 19 2015
    
  • Maple
    A000165 := proc(n) option remember; if n <= 1 then 1 else n*A000165(n-2); fi; end;
    ZL:=[S, {a = Atom, b = Atom, S = Prod(X,Sequence(Prod(X,b))), X = Sequence(b,card >= 0)}, labelled]: seq(combstruct[count](ZL, size=n), n=0..17); # Zerinvary Lajos, Mar 26 2008
    G(x):=(1-2*x)^(-1): f[0]:=G(x): for n from 1 to 29 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..17); # Zerinvary Lajos, Apr 03 2009
    A000165 := proc(n) doublefactorial(2*n) ; end proc; seq(A000165(n),n=0..10) ; # R. J. Mathar, Oct 20 2009
  • Mathematica
    Table[(2 n)!!, {n, 30}] (* Vladimir Joseph Stephan Orlovsky, Dec 13 2008 *)
    (2 Range[0, 30])!! (* Harvey P. Dale, Jan 23 2015 *)
    RecurrenceTable[{a[n] == 2 n*a[n-1], a[0] == 1}, a, {n,0,30}] (* Ray Chandler, Jul 30 2015 *)
  • PARI
    a(n)=n!<Charles R Greathouse IV, Feb 11 2011
    
  • PARI
    {a(n) = prod( k=1, n, 2*k)}; /* Michael Somos, Jan 04 2013 */
    
  • Python
    from math import factorial
    def A000165(n): return factorial(n)<Chai Wah Wu, Jan 24 2023
    
  • SageMath
    [2^n*factorial(n) for n in range(31)] # G. C. Greubel, Jul 21 2024

Formula

E.g.f.: 1/(1-2*x).
a(n) = A001044(n)/A000142(n)*A000079(n) = Product_{i=0..n-1} (2*i+2) = 2^n*Pochhammer(1,n). - Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003
D-finite with recurrence a(n) = 2*n * a(n-1), n>0, a(0)=1. - Paul Barry, Aug 26 2004
This is the binomial mean transform of A001907. See Spivey and Steil (2006). - Michael Z. Spivey (mspivey(AT)ups.edu), Feb 26 2006
a(n) = Integral_{x>=0} x^n*exp(-x/2)/2 dx. - Paul Barry, Jan 28 2008
G.f.: 1/(1-2x/(1-2x/(1-4x/(1-4x/(1-6x/(1-6x/(1-.... (continued fraction). - Paul Barry, Feb 07 2009
a(n) = A006882(2*n). - R. J. Mathar, Oct 20 2009
From Gary W. Adamson, Jul 18 2011: (Start)
a(n) = upper left term in M^n, M = a production matrix (twice Pascal's triangle deleting the first "2", with the rest zeros; cf. A028326):
2, 2, 0, 0, 0, 0, ...
2, 4, 2, 0, 0, 0, ...
2, 6, 6, 2, 0, 0, ...
2, 8, 12, 8, 2, 0, ...
2, 10, 20, 20, 10, 2, ...
... (End)
From Sergei N. Gladkovskii, Apr 11 2013, May 01 2013, May 24 2013, Sep 30 2013, Oct 27 2013: (Start)
Continued fractions:
G.f.: 1 + x*(Q(0) - 1)/(x+1) where Q(k) = 1 + (2*k+2)/(1-x/(x+1/Q(k+1))).
G.f.: 1/Q(0) where Q(k) = 1 + 2*k*x - 2*x*(k+1)/Q(k+1).
G.f.: G(0)/2 where G(k) = 1 + 1/(1 - x*(2*k+2)/(x*(2*k+2) + 1/G(k+1))).
G.f.: 1/Q(0) where Q(k) = 1 - x*(4*k+2) - 4*x^2*(k+1)^2/Q(k+1).
G.f.: R(0) where R(k) = 1 - x*(2*k+2)/(x*(2*k+2)-1/(1-x*(2*k+2)/(x*(2*k+2) -1/R(k+1)))). (End)
a(n) = (2n-2)*a(n-2) + (2n-1)*a(n-1), n>1. - Ivan N. Ianakiev, Aug 06 2013
From Peter Bala, Feb 18 2015: (Start)
Recurrence equation: a(n) = (3*n - 1)*a(n-1) - 2*(n - 1)^2*a(n-2) with a(1) = 2 and a(2) = 8.
The sequence b(n) = A068102(n) also satisfies this second-order recurrence. This leads to the generalized continued fraction expansion lim_{n -> oo} b(n)/a(n) = log(2) = 1/(2 - 2/(5 - 8/(8 - 18/(11 - ... - 2*(n - 1)^2/((3*n - 1) - ... ))))). (End)
From Amiram Eldar, Jun 25 2020: (Start)
Sum_{n>=0} 1/a(n) = sqrt(e) (A019774).
Sum_{n>=0} (-1)^n/a(n) = 1/sqrt(e) (A092605). (End)
Limit_{n->oo} a(n)^4 / (n * A134372(n)) = Pi. - Daniel Suteu, Apr 09 2022
a(n) = 1/([x^n] hypergeom([1], [1], x/2)). - Peter Luschny, Sep 13 2024
a(n) = Sum_{k=0..n} k!*(n-k)!*binomial(n,k)^2. - Ridouane Oudra, Jul 13 2025

A242091 a(n) = r * (n-1)! where r is the rational number that satisfies the equation Sum_{k>=n} (-1)^(k + n)/C(k,n) = n*2^(n-1)*log(2) - r.

Original entry on oeis.org

0, 2, 15, 128, 1310, 15864, 222936, 3572736, 64354608, 1287495360, 28328889600, 679936896000, 17678878214400, 495015296025600, 14850552286080000, 475219068007219200, 16157470542709708800, 581669316147767500800, 22103440771676298854400
Offset: 1

Views

Author

Richard R. Forberg, Aug 14 2014

Keywords

Comments

The sum of the terms of the inverse of the binomial coefficients, 1/C(k,n), with alternating signs, equals an irrational number which is expressed as m * log(2) - r, where m is the integer n*2^(n-1) = A001787(n), n>=1, and r is rational. a(n) = r * (n-1)!.

Examples

			Sum_{k>=1} (-1)^(k + 1)/C(k,1) = Sum_{k>=1} (-1)^(k + 1)/k = log(2) where m = 1 and r = 0. (See A002162.)
Sum_{k>=2} (-1)^(k + 2)/C(k,2) = 4*log(2) - 2. (See A000217.)
Sum_{k>=3} (-1)^(k + 3)/C(k,3) = 12*log(2) - 15/2. (See A000292.)
Sum_{k>=4} (-1)^(k + 4)/C(k,4) = 30*log(2) - 64/3. (See A000332.)
Sum_{k>=5} (-1)^(k + 5)/C(k,5) = 80*log(2) - 655/12. (See A000389.)
		

Crossrefs

Programs

  • Magma
    [n le 1 select 0 else 2*(n)*Self(n-1)+(Factorial(n) div (n-1)): n in [1..20]]; // Vincenzo Librandi, Sep 22 2015
    
  • Maple
    seq(add(2^(n-j-1)*n!/j, j=1..n-1), n=1..100); # Robert Israel, Aug 14 2014
  • Mathematica
    Table[Sum[2^(n - j - 1)*n!/j, {j, n - 1}], {n, 20}] (* Wesley Ivan Hurt, Aug 14 2014 *)
    FullSimplify[Table[-1/2*n!*(LerchPhi[1/2, 1, n] - 2^n*Log[2]),{n, 1, 20}]] (* Vaclav Kotesovec, Aug 15 2014 *)
  • PARI
    my(x='x+O('x^30)); concat([0], Vec(serlaplace(x*log(1-x)/(2*x-1)))) \\ G. C. Greubel, Nov 25 2017

Formula

From Robert Israel, Aug 14 2014: (Start)
a(n) = n * A068102(n-1).
a(n) = n! * Sum_{j=1..(n-1)} 2^(n-j-1)/j.
a(n) = n! * (2^(n-1)*log(2)-(1/2)*LerchPhi(1/2, 1, n)).
a(n+1) = 2*(n+1)*a(n) + (n+1)!/n.
E.g.f.: x*log(1-x)/(2*x-1).
(End)
Recurrence: (n-1)*a(n) = n*(3*n-4)*a(n-1) - 2*(n-2)*(n-1)*n*a(n-2). - Vaclav Kotesovec, Aug 15 2014

A087547 a(n) = n!*2^(n+1) * (Integral_{x = 0..1} 1/(1+x^2)^(n+1) dx) - Pi*(2*n)!/(2^(n+1)*n!).

Original entry on oeis.org

0, 1, 4, 22, 160, 1464, 16224, 211632, 3179520, 54092160, 1028113920, 21594021120, 496702402560, 12418039065600, 335293281792000, 9723592350259200, 301432670532403200, 9947299050359193600, 348155822449999872000, 12881771833023700992000, 502389223133024747520000
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)excite.com), Oct 24 2003

Keywords

Comments

a(n)/A001147 gives an approximation for Pi/2 with (n-1)/3 + 1 digits of accuracy. - Aaron Kastel, Nov 13 2012
a(n) is the number of linear chord diagrams on 2n vertices with one marked chord such that none of the remaining n-1 chords are excluded by (i.e., are outside and do not contain) the marked chord, see [Young]. - Donovan Young, Aug 11 2020

Examples

			a(3) = 22.
		

Crossrefs

Programs

  • Magma
    [0] cat [n eq 1 select 1 else (2*n-1)*Self(n-1)+Factorial(n-1): n in [1..25]]; // Vincenzo Librandi, Nov 07 2014
    
  • Magma
    I:=[1,4]; [0] cat [n le 2 select I[n]  else (3*n-2)*Self(n-1)-(n-1)*(2*n-3)*Self(n-2): n in [1..25] ]; // Vincenzo Librandi, Feb 19 2015
  • Maple
    f := proc(n) 4*n!*2^(n-1) * (int (1/(1+x^2)^(n+1),x=0..1)) - Pi*(2*n)!/(2^(n+1)*n!); end; # N. J. A. Sloane, Oct 30 2003
  • Mathematica
    f[n_] := Simplify[n!*2^(n + 1)*(Integrate[ 1/(1 + x^2)^(n + 1), {x, 0, 1}]) - Pi(2n)!/(2^(n + 1)*n!)]; Table[ f[n], {n, 0, 20}] (* Robert G. Wilson v, Oct 31 2003 *)
    CoefficientList[Normal[Series[1/Sqrt[1-2*x]*ArcTan[x/Sqrt[1-2*x]],{x,0,10}]]/.{x^n_.->x^n*n!},x] (* Donovan Young, Aug 11 2020 *)

Formula

a(n) = (2n-1)*a(n-1) + (n-1)!. - Aaron Kastel, Nov 13 2012
From Peter Bala, Jun 21 2013: (Start)
a(n) = (2*n)!/(n!*2^n)*(Sum_{k = 0..n-1} 2^k*k!^2/(2*k+1)!). Thus a(n)/ ((2*n)!/(n!*2^n)) -> Pi/2 as n -> infinity since Sum_{k >= 0} 2^k*k!^2/(2*k+1)! = Pi/2.
It appears that a(n) = Sum_{k = 1..n} 2^(k-1)*(k-1)!*(n+k-1)!/(2*k-1)!. Cf. A167571.
a(n) = (2*n)!/(n!*2^n)*(Pi/2) - 2^(n+1)*n!*(Integral_{x = 0..1} x^(2*n)/(1 + x^2)^(n+1) dx). Cf. A068102. (End)
From Peter Bala, Feb 18 2015: (Start)
Recurrence equation: a(n) = (3*n - 2)*a(n-1) - (n - 1)*(2*n - 3)*a(n-2) with a(1) = 1 and a(2) = 4.
The sequence b(n) = A001147(n), beginning [1, 3, 15, 105, 945, ... ], satisfies the same second-order recurrence equation. This leads to the generalized continued fraction expansion lim_{n -> infinity} a(n)/b(n) = Pi/2 = 1 + 1/(3 - 6/(7 - 15/(10 - ... - n*(2*n - 1)/((3*n + 1) - ... )))). (End)
E.g.f.: arctan(x/sqrt(1 - 2*x))/sqrt(1 - 2*x). - Donovan Young, Aug 11 2020
From Sela Fried, Apr 13 2023: (Start)
a(n) = (n - 1)!*Sum_{k=0..n - 1} binomial(2*n - 1, 2*k)/binomial(n - 1, k).
a(n)/(n-1)! = 1 + (2*n - 1)/2*Integral_{t = 0..Pi/2} (1 + sin(2*t))^(n - 1) - (1 - sin(2*t))^(n - 1)dt.
Bala's conjecture is true. (End)
a(n) ~ Pi * 2^(n - 1/2) * n^n / exp(n). - Vaclav Kotesovec, Apr 13 2023
a(n) = (n - 1)!/2 * Sum_{k=0..n - 1} binomial(2*n, 2*k + 1)/binomial(n - 1, k). - Sela Fried, May 18 2023

Extensions

More terms from N. J. A. Sloane, Oct 30 2003

A069015 a(n) = n! * 3^n * Sum_{i=1..n} 1/(i * 3^i).

Original entry on oeis.org

1, 7, 65, 786, 11814, 212772, 4468932, 107259408, 2896044336, 86881692960, 2867099496480, 103215621790080, 4025409728814720, 169067214837239040, 7608024754854048000, 365185189540668672000, 18624444687496892160000
Offset: 1

Views

Author

Benoit Cloitre, Apr 14 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[Series[-Log[1-x]/(1-3*x), {x, 0, 20}], x]* Range[0, 20]!] (* Vaclav Kotesovec, Oct 05 2013 *)

Formula

E.g.f.: -log(1-x)/(1-3*x). - Vladeta Jovovic, Feb 07 2003
a(n) ~ n! * 3^n * log(3/2). - Vaclav Kotesovec, Oct 05 2013
From Seiichi Manyama, May 22 2025: (Start)
a(n) = 3 * n * a(n-1) + (n-1)!.
a(n) = (4*n-1) * a(n-1) - 3 * (n-1)^2 * a(n-2). (End)

A087751 Weighted sum of the harmonic numbers.

Original entry on oeis.org

0, 1, 7, 56, 538, 6124, 81048, 1226112, 20902992, 396857376, 8308373760, 190212376320, 4728556327680, 126865966625280, 3654264347274240, 112484501485977600, 3685202487258163200, 128039255560187596800
Offset: 0

Views

Author

Nicholas C. Singer (nsinger2(AT)cox.net), Oct 02 2003

Keywords

Crossrefs

Programs

  • PARI
    H(n)=sum(j=1,n,1/j); a(n)=n!*sum(j=1,n,binomial(n,j)*H(j))

Formula

a(n) = 2*n*a(n-1) + (n-1)!*(2^n-1); a(0)=0, a(1)=1. a(n)=n! * sum(j=1, n, binomial(n, j)*H(j)), where H(j)=sum(k=1, j, 1/k).
E.g.f.: log((2*x-1)/(x-1))/(2*x-1). a(n) = n!*Sum_{k=1..n} (-1)^(k+1)*2^(n-k)*binomial(n, k)/k. a(n) = n!*Sum_{k=1..n} 2^(n-k)*(2^k-1)/k. - Vladeta Jovovic, Aug 12 2005
a(n) ~ n! * log(n) * 2^n * (1 + (gamma-log(2))/log(n)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jun 03 2022

A383897 Expansion of e.g.f. log(1 + x)/(1 - 2*x).

Original entry on oeis.org

0, 1, 3, 20, 154, 1564, 18648, 261792, 4183632, 75345696, 1506551040, 33147751680, 795506123520, 20683638213120, 579135642946560, 17374156466688000, 555971699259648000, 18903058697617920000, 680509757426817024000, 25859377184592752640000, 1034374965738609696768000
Offset: 0

Views

Author

Seiichi Manyama, May 22 2025

Keywords

Crossrefs

Programs

  • Magma
    [0] cat [n le 1 select 1  else  2*n * Self(n-1) - (-1)^n * Factorial(n-1): n in [1..20]]; // Vincenzo Librandi, May 23 2025
  • Mathematica
    a[n_]:= n! * Sum[(-1)^(k-1)*2^(n-k)/k,{k,1,n}];Table[a[n],{n,0,19}] (* Vincenzo Librandi, May 23 2025 *)
  • PARI
    a(n) = n!*sum(k=1, n, (-1)^(k-1)*2^(n-k)/k);
    

Formula

a(n) = n! * Sum_{k=1..n} (-1)^(k-1) * 2^(n-k)/k.
a(n) = 2 * n * a(n-1) - (-1)^n * (n-1)!.
a(n) = (n+1) * a(n-1) + 2 * (n-1)^2 * a(n-2).
a(n) ~ log(3/2) * 2^n * n!. - Vaclav Kotesovec, May 23 2025
a(n) = n!*((-1)^(n+1)/n + (-1)^n*LerchPhi(-1/2,1,n) + 2^n*log(3/2)) for n > 0. - Stefano Spezia, May 23 2025

A300489 a(n) = n! * [x^n] -log(1 - x)/(1 - n*x).

Original entry on oeis.org

0, 1, 5, 65, 1766, 83674, 6124584, 639826452, 90328291248, 16558780949136, 3823322392154880, 1085461798576638240, 371610484248792556800, 150961314165968542273920, 71790302154674639506682880, 39506878580692178250399571200, 24909116615180033772524150937600
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 07 2018

Keywords

Examples

			The table of coefficients of x^k in expansion of e.g.f. -log(1 - x)/(1 - n*x) begins:
n = 0: (0), 1,   1,    2,     6,      24,  ...
n = 1:  0, (1),  3,   11,    50,     274,  ...
n = 2:  0,  1,  (5),  32,   262,    2644,  ...
n = 3:  0,  1,   7,  (65),  786,   11814,  ...
n = 4:  0,  1,   9,  110, (1766),  35344,  ...
n = 5:  0,  1,  11,  167,  3346,  (83674), ...
...
This sequence is the main diagonal of the table.
		

Crossrefs

Programs

  • Mathematica
    Table[n! SeriesCoefficient[-Log[1 - x]/(1 - n x), {x, 0, n}], {n, 0, 16}]
    Join[{0}, Table[n! n^n Sum[1/(k n^k), {k, 1, n}], {n, 1, 16}]]
  • PARI
    a(n) = n!*n^n*sum(i=1, n, 1/(i*n^i)); \\ Altug Alkan, Mar 08 2018

Formula

a(n) = n!*n^n*Sum_{k=1..n} 1/(k*n^k).
Showing 1-7 of 7 results.