A001108
a(n)-th triangular number is a square: a(n+1) = 6*a(n) - a(n-1) + 2, with a(0) = 0, a(1) = 1.
Original entry on oeis.org
0, 1, 8, 49, 288, 1681, 9800, 57121, 332928, 1940449, 11309768, 65918161, 384199200, 2239277041, 13051463048, 76069501249, 443365544448, 2584123765441, 15061377048200, 87784138523761, 511643454094368, 2982076586042449, 17380816062160328, 101302819786919521
Offset: 0
a(1) = ((3 + 2*sqrt(2)) + (3 - 2*sqrt(2)) - 2) / 4 = (3 + 3 - 2) / 4 = 4 / 4 = 1;
a(2) = ((3 + 2*sqrt(2))^2 + (3 - 2*sqrt(2))^2 - 2) / 4 = (9 + 4*sqrt(2) + 8 + 9 - 4*sqrt(2) + 8 - 2) / 4 = (18 + 16 - 2) / 4 = (34 - 2) / 4 = 32 / 4 = 8, etc.
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 193.
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 204.
- L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 10.
- M. S. Klamkin, "International Mathematical Olympiads 1978-1985," (Supplementary problem N.T.6)
- W. Sierpiński, Pythagorean triangles, Dover Publications, Inc., Mineola, NY, 2003, pp. 21-22 MR2002669
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 257-258.
- Indranil Ghosh, Table of n, a(n) for n = 0..1304 (terms 0..200 from T. D. Noe)
- Marco Abrate, Stefano Barbero, Umberto Cerruti, and Nadir Murru, Polynomial sequences on quadratic curves, Integers, Vol. 15, 2015, #A38.
- I. Adler, Three Diophantine equations - Part II, Fib. Quart., 7 (1969), pp. 181-193.
- M. A. Asiru, All square chiliagonal numbers, Int J Math Edu Sci Technol, 47:7(2016), 1123-1134.
- Elwyn Berlekamp and Joe P. Buhler, Puzzle Column, Emissary, MSRI Newsletter, Fall 2005. Problem 1, (6 MB).
- Henk Bruin and Robbert Fokkink, On the records and zeros of a deterministic random walk, arXiv:2503.11734 [math.DS], 2025. See p. 5.
- Zongyun Chen, Steven J. Miller, and Chenghan Wu, Geometric Proof of the Irrationality of Square-Roots for Select Integers, arXiv:2410.14434 [math.HO], 2024. See pp. 10-11.
- Leonhard Euler, De solutione problematum diophanteorum per numeros integros, Par. 19.
- H. G. Forder, A Simple Proof of a Result on Diophantine Approximation, Math. Gaz., 47 (1963), 237-238.
- Jon Grantham and Hester Graves, The abc Conjecture Implies That Only Finitely Many Cullen Numbers Are Repunits, arXiv:2009.04052 [math.NT], 2020.
- D. B. Hayes, Calculemus!, American Scientist, 96 (Sep-Oct 2008), 362-366.
- Olcay Karaatli and Refik Keskin, On some diophantine equations related to square triangular and balancing numbers, J. Alg. Number Theory 4 (2) (2010) 71-89.
- Refik Keskin and Olcay Karaatli, Some New Properties of Balancing Numbers and Square Triangular Numbers, Journal of Integer Sequences, Vol. 15 (2012), Article #12.1.4.
- P. Lafer, Discovering the square-triangular numbers, Fib. Quart., 9 (1971), 93-105.
- Ioana-Claudia Lazăr, Lucas sequences in t-uniform simplicial complexes, arXiv:1904.06555 [math.GR], 2019.
- MSRI newsletter, Emissary, Fall 2005.
- Vladimir Pletser, Recurrent Relations for Multiple of Triangular Numbers being Triangular Numbers, arXiv:2101.00998 [math.NT], 2020.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- B. Polster and M. Ross, Marching in squares, arXiv preprint arXiv:1503.04658 [math.HO], 2015.
- K. Ramsey, Generalized Proof re Square Triangular Numbers.
- K. Ramsey, Generalized Proof re Square Triangular Numbers, digest of 2 messages in Triangular_and_Fibonacci_Numbers Yahoo group, May 27, 2005 - Oct 10, 2011.
- D. L. Vestal, Review of "Pythagorean Triangles" (Chapter 4) by W. Sierpiński.
- Eric Weisstein's World of Mathematics, Square Triangular Number.
- Eric Weisstein's World of Mathematics, Triangular Number.
- H. C. Williams and R. K. Guy, Some Monoapparitic Fourth Order Linear Divisibility Sequences, Integers, Volume 12A (2012) The John Selfridge Memorial Volume.
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (7,-7,1).
- Index entries for two-way infinite sequences
-
a001108 n = a001108_list !! n
a001108_list = 0 : 1 : map (+ 2)
(zipWith (-) (map (* 6) (tail a001108_list)) a001108_list)
-- Reinhard Zumkeller, Jan 10 2012
-
m:=30; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(x*(1+x)/((1-x)*(1-6*x+x^2)))); // G. C. Greubel, Jul 15 2018
-
A001108:=-(1+z)/(z-1)/(z**2-6*z+1); # Simon Plouffe in his 1992 dissertation, without the leading 0
-
Table[(1/2)(-1 + Sqrt[1 + Expand[8(((3 + 2Sqrt[2])^n - (3 - 2Sqrt[2])^n)/(4Sqrt[2]))^2]]), {n, 0, 100}] (* Artur Jasinski, Dec 10 2006 *)
Transpose[NestList[{#[[2]],#[[3]],6#[[3]]-#[[2]]+2}&,{0,1,8},20]][[1]] (* Harvey P. Dale, Sep 04 2011 *)
LinearRecurrence[{7, -7, 1}, {0, 1, 8}, 50] (* Vladimir Joseph Stephan Orlovsky, Feb 12 2012 *)
-
a(n)=(real((3+quadgen(32))^n)-1)/2
-
a(n)=(subst(poltchebi(abs(n)),x,3)-1)/2
-
a(n)=if(n<0,a(-n),(polsym(1-6*x+x^2,n)[n+1]-2)/4)
-
x='x+O('x^99); concat(0, Vec(x*(1+x)/((1-x)*(1-6*x+x^2)))) \\ Altug Alkan, May 01 2018
More terms from Larry Reeves (larryr(AT)acm.org), Apr 19 2000
A346868
Sum of divisors of the numbers with no middle divisors.
Original entry on oeis.org
4, 6, 8, 18, 12, 14, 24, 18, 20, 32, 36, 24, 42, 40, 30, 32, 48, 54, 38, 60, 56, 42, 44, 84, 72, 48, 72, 98, 54, 72, 80, 90, 60, 62, 96, 84, 68, 126, 96, 72, 74, 114, 124, 140, 168, 80, 126, 84, 108, 132, 120, 90, 168, 128, 144, 120, 98, 102, 216, 104, 192, 162, 108, 110
Offset: 1
a(4) = 18 because the sum of divisors of the fourth number with no middle divisors (i.e., 10) is 1 + 2 + 5 + 10 = 18.
On the other hand we can see that in the main diagonal of every diagram the width is equal to zero as shown below.
Illustration of initial terms:
m(n) = A071561(n).
.
n m(n) a(n) Diagram
. _ _ _ _ _ _ _ _ _ _ _ _ _
| | | | | | | | | | | | | | | | | | | | | |
_ _|_| | | | | | | | | | | | | | | | | | | | |
1 3 4 |_ _| _|_| | | | | | | | | | | | | | | | | | |
_ _ _| _|_| | | | | | | | | | | | | | | | |
2 5 6 |_ _ _| _| _ _| | | | | | | | | | | | | | | |
_ _ _ _| | _ _|_| | | | | | | | | | | | | |
3 7 8 |_ _ _ _| _ _|_| _ _|_| | | | | | | | | | | |
| _| | _ _ _| | | | | | | | | | |
_ _ _ _ _| | _|_| _ _ _|_| | | | | | | | |
4 10 18 |_ _ _ _ _ _| _ _| | _ _ _|_| | | | | | |
5 11 12 |_ _ _ _ _ _| | _| _| | _ _ _ _|_| | | | |
_ _ _ _ _ _ _| | _| _ _| | | _ _ _ _|_| | |
6 13 14 |_ _ _ _ _ _ _| | _ _| _| _| | | _ _ _ _ _| |
7 14 24 |_ _ _ _ _ _ _ _| | | | _|_| | _ _ _ _ _|
| _ _| _ _|_| | |
_ _ _ _ _ _ _ _ _| | _ _| _| _|_|
8 17 18 |_ _ _ _ _ _ _ _ _| | |_ _ _| |
_ _ _ _ _ _ _ _ _ _| | _ _| _|
9 19 20 |_ _ _ _ _ _ _ _ _ _| | | _ _|
_ _ _ _ _ _ _ _ _ _ _| | _ _ _|
10 21 32 |_ _ _ _ _ _ _ _ _ _ _| | | _ _|
11 22 36 |_ _ _ _ _ _ _ _ _ _ _ _| | |
12 23 24 |_ _ _ _ _ _ _ _ _ _ _ _| | |
| |
_ _ _ _ _ _ _ _ _ _ _ _ _| |
13 26 42 |_ _ _ _ _ _ _ _ _ _ _ _ _ _|
.
Cf.
A000203,
A067742,
A071090,
A071561,
A071562,
A237591,
A237593,
A245092,
A249351,
A262626,
A281007,
A299777,
A346864.
Some sequences that gives sum of divisors:
A000225 (of powers of 2),
A008864 (of prime numbers),
A065764 (of squares),
A073255 (of composites),
A074285 (of triangular numbers, also of generalized hexagonal numbers),
A139256 (of perfect numbers),
A175926 (of cubes),
A224613 (of multiples of 6),
A346865 (of hexagonal numbers),
A346866 (of second hexagonal numbers),
A346867 (of numbers with middle divisors).
-
s[n_] := Module[{d = Divisors[n]}, If[AnyTrue[d, Sqrt[n/2] <= # < Sqrt[n*2] &], 0, Plus @@ d]]; Select[Array[s, 110], # > 0 &] (* Amiram Eldar, Aug 19 2021 *)
-
is(n) = fordiv(n, d, if(sqrt(n/2) <= d && d < sqrt(2*n), return(0))); 1; \\ A071561 apply(sigma, select(is, [1..150])) \\ Michel Marcus, Aug 19 2021
A346873
Triangle read by rows in which row n lists the row A000217(n) of A237591, n >= 1.
Original entry on oeis.org
1, 2, 1, 4, 1, 1, 6, 2, 1, 1, 8, 3, 2, 1, 1, 11, 4, 3, 1, 1, 1, 15, 5, 3, 2, 1, 1, 1, 19, 6, 4, 2, 2, 1, 1, 1, 23, 8, 5, 2, 2, 2, 1, 1, 1, 28, 10, 5, 3, 3, 2, 1, 1, 1, 1, 34, 11, 6, 4, 3, 2, 2, 1, 1, 1, 1, 40, 13, 7, 5, 3, 2, 2, 2, 1, 1, 1, 1, 46, 16, 8, 5, 4, 2, 3
Offset: 1
Triangle begins:
1;
2, 1;
4, 1, 1;
6, 2, 1, 1;
8, 3, 2, 1, 1;
11, 4, 3, 1, 1, 1;
15, 5, 3, 2, 1, 1, 1;
19, 6, 4, 2, 2, 1, 1, 1;
23, 8, 5, 2, 2, 2, 1, 1, 1;
28, 10, 5, 3, 3, 2, 1, 1, 1, 1;
34, 11, 6, 4, 3, 2, 2, 1, 1, 1, 1;
40, 13, 7, 5, 3, 2, 2, 2, 1, 1, 1, 1;
46, 16, 8, 5, 4, 2, 3, 1, 2, 1, 1, 1, 1;
...
Illustration of initial terms:
Column T gives the triangular numbers (A000217).
Column S gives A074285, the sum of the divisors of the triangular numbers which equals the area (and the number of cells) of the associated diagram.
-------------------------------------------------------------------------
n T S Diagram
-------------------------------------------------------------------------
_ _ _ _ _ _ _
1 1 1 |_| | | | | | | | | | | | |
1 _ _|_| | | | | | | | | | |
2 3 4 |_ _| _ _| | | | | | | | | |
2 1| _| | | | | | | | |
_ _ _| _| _ _| | | | | | | |
3 6 12 |_ _ _ _| 1 | _ _| | | | | | |
4 1 _ _|_| | | | | | |
| _|1 _ _ _|_| | | | |
_ _ _ _ _| | 1 _ _| | | | | |
4 10 18 |_ _ _ _ _ _|2 | _| | | | |
6 _| _| _ _ _ _|_| | |
|_ _|1 1 | | | |
| 2 _| | | |
_ _ _ _ _ _ _ _|4 | _| _ _ _ _ _| |
3 15 24 |_ _ _ _ _ _ _ _| _ _|_| | _ _ _ _ _|
8 _ _| _|1 | |
|_ _ _|1 1 _ _| |
| 3 _ _| _ _|
|4 | _|
_ _ _ _ _ _ _ _ _ _ _| _| _|
4 21 32 |_ _ _ _ _ _ _ _ _ _ _| _ _ _| _|1 1
11 | _ _ _|2
| | 3
| |
| |5
_ _ _ _ _ _ _ _ _ _ _ _ _ _| |
5 28 56 |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
15
.
A256151
Triangular numbers n such that sigma(n) is a square number.
Original entry on oeis.org
1, 3, 66, 210, 820, 2346, 4278, 22578, 27966, 32131, 35511, 51681, 53956, 102378, 169653, 173755, 177906, 223446, 241860, 256686, 306153, 310866, 349866, 431056, 434778, 470935, 491536, 512578, 567645, 579426, 688551, 799480, 845650, 893116, 963966, 1031766, 1110795, 1200475, 1613706, 1719585
Offset: 1
3 is in the sequence because 3=2*3/2 is triangular, and sigma(3)=1+3=4=2^2 is square.
-
[n*(n+1) div 2: n in [1..2000] | IsSquare(SumOfDivisors(n*(n+1) div 2))]; // Vincenzo Librandi, Mar 17 2015
-
Select[Accumulate[Range[0, 2000]], IntegerQ@Sqrt@DivisorSigma[1, #] &] (* Michael De Vlieger, Mar 17 2015 *)
-
{for(i=1,2*10^3,n=i*(i+1)/2;if(issquare(sigma(n)),print1(n,", ")))}
A346865
Sum of divisors of the n-th hexagonal number.
Original entry on oeis.org
1, 12, 24, 56, 78, 144, 112, 360, 234, 360, 384, 672, 434, 960, 720, 992, 864, 1872, 760, 2352, 1344, 1584, 1872, 2880, 1767, 3024, 2160, 4032, 2400, 4320, 1984, 6552, 4032, 3672, 4608, 6552, 2812, 7440, 5376, 7200, 5082, 8064, 4752, 10080, 7020, 8064, 6144
Offset: 1
a(3) = 24 because the sum of divisors of the third hexagonal number (i.e., 15) is 1 + 3 + 5 + 15 = 24.
On the other hand we can see that in the main diagonal of every diagram the smallest Dyck path has a valley and the largest Dyck path has a peak as shown below.
Illustration of initial terms:
-------------------------------------------------------------------------
n H(n) a(n) Diagram
-------------------------------------------------------------------------
_ _ _ _
1 1 1 |_| | | | | | |
| | | | | |
_ _| | | | | |
| _| | | | |
_ _ _| _| | | | |
2 6 12 |_ _ _ _| | | | |
| | | |
_ _ _|_| | |
_ _| | | |
| _| | |
_| _| | |
|_ _| | |
| | |
_ _ _ _ _ _ _ _| _ _ _ _ _| |
3 15 24 |_ _ _ _ _ _ _ _| | _ _ _ _ _|
| |
_ _| |
_ _| _ _|
| _|
_| _|
| _|
_ _ _| |
| _ _ _|
| |
| |
| |
_ _ _ _ _ _ _ _ _ _ _ _ _ _| |
4 28 56 |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
.
Column H gives the nonzero hexagonal numbers (A000384).
a(n) is also the area (and the number of cells) of the n-th diagram.
For n = 3 the sum of the regions (or parts) of the third diagram is 8 + 8 + 8 = 24, so a(3) = 24.
For more information see A237593.
Some sequences that gives sum of divisors:
A000225 (of powers of 2),
A008864 (of prime numbers),
A065764 (of squares),
A073255 (of composites),
A074285 (of triangular numbers, also of generalized hexagonal numbers),
A139256 (of perfect numbers),
A175926 (of cubes),
A224613 (of multiples of 6),
A346866 (of second hexagonal numbers),
A346867 (of numbers with middle divisors),
A346868 (of numbers with no middle divisors).
-
a[n_] := DivisorSigma[1, n*(2*n - 1)]; Array[a, 50] (* Amiram Eldar, Aug 18 2021 *)
-
a(n) = sigma(n*(2*n-1)); \\ Michel Marcus, Aug 18 2021
-
from sympy import divisors
def a(n): return sum(divisors(n*(2*n - 1)))
print([a(n) for n in range(1, 48)]) # Michael S. Branicky, Aug 20 2021
A346866
Sum of divisors of the n-th second hexagonal number.
Original entry on oeis.org
4, 18, 32, 91, 72, 168, 192, 270, 260, 576, 288, 868, 560, 720, 768, 1488, 864, 1482, 1120, 1764, 1408, 2808, 1152, 3420, 2232, 2268, 2880, 4480, 1800, 4464, 3328, 5292, 3264, 5184, 3456, 6734, 4712, 5760, 4480, 10890, 3528, 10368, 5280, 7560, 8736, 9216, 5760, 12152
Offset: 1
a(3) = 32 because the sum of divisors of the third second hexagonal number (i.e., 21) is 1 + 3 + 7 + 21 = 32.
On the other hand we can see that in the main diagonal of every diagram the smallest Dyck path has a peak and the largest Dyck path has a valley as shown below.
Illustration of initial terms:
---------------------------------------------------------------------------------------
n h(n) a(n) Diagram
---------------------------------------------------------------------------------------
_ _ _ _
| | | | | | | |
_ _|_| | | | | | |
1 3 4 |_ _| | | | | | |
| | | | | |
_ _| | | | | |
| _ _| | | | |
_ _|_| | | | |
| _| | | | |
_ _ _ _ _| | | | | |
2 10 18 |_ _ _ _ _ _| | | | |
_ _ _ _|_| | |
| | | |
_| | | |
| _| | |
_ _|_| | |
_ _| _| | |
|_ _ _| | |
| _ _ _ _ _ _ _| |
| | _ _ _ _ _ _|
_ _ _ _ _ _ _ _ _ _ _| | |
3 21 32 |_ _ _ _ _ _ _ _ _ _ _| _ _| |
| |
_| _ _|
| |
_ _| _|
_ _| _|
| _|
_ _ _| _ _|
| |
| _ _ _ _|
| |
| |
| |
| |
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
4 36 91 |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
.
Column h gives the n-th second hexagonal number (A014105).
The widths of the main diagonal of the diagrams are [0, 0, 0, 1] respectively.
a(n) is the area (and the number of cells) of the n-th diagram.
For n = 3 the sum of the regions (or parts) of the third diagram is 11 + 5 + 5 + 11 = 32, so a(3) = 32.
For n = 4 there is only one region (or part) of size 91 in the fourth diagram so a(4) = 91.
Some sequences that gives sum of divisors:
A000225 (of powers of 2),
A008864 (of prime numbers),
A065764 (of squares),
A073255 (of composites),
A074285 (of triangular numbers, also of generalized hexagonal numbers),
A139256 (of perfect numbers),
A175926 (of cubes),
A224613 (of multiples of 6),
A346865 (of hexagonal numbers),
A346867 (of numbers with middle divisors),
A346868 (of numbers with no middle divisors),
A347155 (of nontriangular numbers).
-
a[n_] := DivisorSigma[1, n*(2*n + 1)]; Array[a, 50] (* Amiram Eldar, Aug 18 2021 *)
-
a(n) = sigma(n*(2*n + 1)); \\ Michel Marcus, Aug 18 2021
A116990
Indices of triangular numbers whose sum of divisors is square.
Original entry on oeis.org
1, 2, 11, 20, 40, 68, 92, 212, 236, 253, 266, 321, 328, 452, 582, 589, 596, 668, 695, 716, 782, 788, 836, 928, 932, 970, 991, 1012, 1065, 1076, 1173, 1264, 1300, 1336, 1388, 1436, 1490, 1549, 1796, 1854, 1927, 1995, 2159, 2228, 2252, 2468, 2545, 2588
Offset: 1
a(1) = 1 because sigma(1*2/2) = sigma(1) = 1 = 1^2,
a(2) = 2 because sigma(2*3/2) = sigma(3) = 2^2,
a(3) = 11 because sigma(11*12/2) = sigma(66) = 144 = 12^2.
See also:
A000217 Triangular numbers: a(n) = C(n+1,2) = n(n+1)/2 = 0+1+2+...+n.
A074285 Sum of the divisors of n-th triangular number.
A083675 Triangular number for which the sum of the proper divisors is also a triangular number.
A000203 sigma(n) = sum of divisors of n. Also called sigma_1(n).
-
with(numtheory): a:=proc(n) if type(sqrt(sigma(n*(n+1)/2)),integer)=true then n else fi end: seq(a(n),n=0..3100); # Emeric Deutsch, Apr 06 2006
-
Flatten@ Position[Accumulate[Range@ 2600], n_ /; IntegerQ@ Sqrt@ DivisorSigma[1, n] == True] (* Michael De Vlieger, Mar 17 2015 *)
Select[Range[2600],IntegerQ[Sqrt[DivisorSigma[1,(#(#+1))/2]]]&] (* Harvey P. Dale, Nov 19 2022 *)
-
for(n=1,1000,if(issquare(sigma(n*(n+1)/2)),print1(n","))) \\ Zak Seidov, Mar 21 2015
A346867
Sum of divisors of the numbers that have middle divisors.
Original entry on oeis.org
1, 3, 7, 12, 15, 13, 28, 24, 31, 39, 42, 60, 31, 56, 72, 63, 48, 91, 90, 96, 78, 124, 57, 93, 120, 120, 168, 104, 127, 144, 144, 195, 96, 186, 121, 224, 180, 234, 112, 252, 171, 156, 217, 210, 280, 216, 248, 182, 360, 133, 312, 255, 252, 336, 240, 336, 168, 403, 372, 234
Offset: 1
a(4) = 12 because the sum of divisors of the fourth number that has middle divisors (i.e., 6) is 1 + 2 + 3 + 6 = 12.
On the other hand we can see that in the main diagonal of every diagram the width is >= 1 as shown below.
Illustration of initial terms:
m(n) = A071562(n).
.
n m(n) a(n) Diagram
. _ _ _ _ _ _ _ _ _ _ _ _
1 1 1 |_| | | | | | | | | | | | | | | | | | | |
2 2 3 |_ _|_| | | | | | | | | | | | | | | | | |
_ _| _|_| | | | | | | | | | | | | | | |
3 4 7 |_ _ _| _|_| | | | | | | | | | | | | |
_ _ _| _| _ _|_| | | | | | | | | | | |
4 6 12 |_ _ _ _| _| | _ _ _| | | | | | | | | | |
_ _ _ _| |_ _|_| _ _| | | | | | | | | |
5 8 15 |_ _ _ _ _| _| | _ _ _|_| | | | | | | |
6 9 13 |_ _ _ _ _| | _|_| | _ _ _|_| | | | | |
| _ _| _| | _ _ _|_| | | |
_ _ _ _ _ _| | _| _| _| | _ _ _ _| | |
7 12 28 |_ _ _ _ _ _ _| |_ _| _| _ _| | _ _ _ _ _| |
| _ _| _| _| | _ _ _ _|
_ _ _ _ _ _ _ _| | | | _ _| |
8 15 24 |_ _ _ _ _ _ _ _| | _ _| _ _|_| |
9 16 31 |_ _ _ _ _ _ _ _ _| | _ _| _| _ _|
_ _ _ _ _ _ _ _ _| | | | _|
10 18 39 |_ _ _ _ _ _ _ _ _ _| | _ _| _|
_ _ _ _ _ _ _ _ _ _| | | |
11 20 42 |_ _ _ _ _ _ _ _ _ _ _| | _ _ _|
| |
| |
_ _ _ _ _ _ _ _ _ _ _ _| |
12 24 60 |_ _ _ _ _ _ _ _ _ _ _ _ _|
.
The n-th diagram has the property that at least it shares a vertex with the (n+1)-st diagram.
Cf.
A000203,
A067742,
A071090,
A071561,
A071562,
A237591,
A237593,
A240542,
A245092,
A249351,
A262626,
A281007,
A299777,
A346864.
Some sequences that gives sum of divisors:
A000225 (of powers of 2),
A008864 (of prime numbers),
A065764 (of squares),
A073255 (of composites),
A074285 (of triangular numbers, also of generalized hexagonal numbers),
A139256 (of perfect numbers),
A175926 (of cubes),
A224613 (of multiples of 6),
A346865 (of hexagonal numbers),
A346866 (of second hexagonal numbers),
A346868 (of numbers with no middle divisors).
-
s[n_] := Module[{d = Divisors[n]}, If[AnyTrue[d, Sqrt[n/2] <= # < Sqrt[n*2] &], Plus @@ d, 0]]; Select[Array[s, 150], # > 0 &] (* Amiram Eldar, Aug 19 2021 *)
-
is(n) = fordiv(n, d, if(d^2>=n/2 && d^2<2*n, return(1))); 0 ; \\ A071562
apply(sigma, select(is, [1..200])) \\ Michel Marcus, Aug 19 2021
A117948
Sum of the divisors of pentagonal numbers.
Original entry on oeis.org
1, 6, 28, 36, 48, 72, 144, 168, 182, 180, 372, 576, 280, 336, 864, 720, 558, 702, 1120, 1080, 1024, 1008, 1296, 2016, 1178, 1344, 3600, 2016, 1320, 2160, 2304, 3720, 2736, 1836, 4704, 4212, 2736, 2280, 5040, 6048, 2604, 4992, 5588, 4752, 5304, 3312
Offset: 1
a(5) = 48 because the divisors of 5*(3*5-1)/2 = 35 are 1, 5, 7 and 35, having sum 48.
-
with(numtheory): seq(sigma(n*(3*n-1)/2),n=1..46); # Emeric Deutsch, Apr 15 2006
-
Table[DivisorSigma[1,(n(3n-1))/2],{n,50}] (* Harvey P. Dale, Jul 05 2015 *)
-
a(n) = sigma(n*(3*n-1)/2); \\ Amiram Eldar, Dec 14 2024
A347108
a(n) = Sum_{k=1..n} sigma(k)*sigma(2*k), where sigma(n) = A000203(n) is the sum of the divisors of n.
Original entry on oeis.org
3, 24, 72, 177, 285, 621, 813, 1278, 1785, 2541, 2973, 4653, 5241, 6585, 8313, 10266, 11238, 14787, 15987, 19767, 22839, 25863, 27591, 35031, 37914, 42030, 46830, 53550, 56250, 68346, 71418, 79419, 86331, 93135, 100047, 117792, 122124, 130524, 139932, 156672
Offset: 1
-
Accumulate[Table[DivisorSigma[1,k] * DivisorSigma[1,2*k], {k, 1, 100}]]
-
a(n) = sum(k=1, n, sigma(k)*sigma(2*k)); \\ Michel Marcus, Aug 18 2021
Showing 1-10 of 17 results.
Comments