A000295
Eulerian numbers (Euler's triangle: column k=2 of A008292, column k=1 of A173018).
Original entry on oeis.org
0, 0, 1, 4, 11, 26, 57, 120, 247, 502, 1013, 2036, 4083, 8178, 16369, 32752, 65519, 131054, 262125, 524268, 1048555, 2097130, 4194281, 8388584, 16777191, 33554406, 67108837, 134217700, 268435427, 536870882, 1073741793, 2147483616, 4294967263, 8589934558
Offset: 0
G.f. = x^2 + 4*x^3 + 11*x^4 + 26*x^5 + 57*x^6 + 120*x^7 + 247*x^8 + 502*x^9 + ...
- O. Bottema, Problem #562, Nieuw Archief voor Wiskunde, 28 (1980) 115.
- L. Comtet, "Permutations by Number of Rises; Eulerian Numbers." Section 6.5 in Advanced Combinatorics: The Art of Finite and Infinite Expansions, rev. enl. ed. Dordrecht, Netherlands: Reidel, pp. 51 and 240-246, 1974.
- F. N. David and D. E. Barton, Combinatorial Chance. Hafner, NY, 1962, p. 151.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990.
- D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 3, p. 34.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 215.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..500
- Joerg Arndt and N. J. A. Sloane, Counting Words that are in "Standard Order"
- Dillan Agrawal, Selena Ge, Jate Greene, Tanya Khovanova, Dohun Kim, Rajarshi Mandal, Tanish Parida, Anirudh Pulugurtha, Gordon Redwine, Soham Samanta, and Albert Xu, Chip-Firing on Infinite k-ary Trees, arXiv:2501.06675 [math.CO], 2025. See pp. 9, 17, 18.
- E. Banaian, S. Butler, C. Cox, J. Davis, J. Landgraf and S. Ponce A generalization of Eulerian numbers via rook placements, arXiv:1508.03673 [math.CO], 2015.
- Jean-Luc Baril and J. M. Pallo, The pruning-grafting lattice of binary trees, Theoretical Computer Science, 409, 2008, 382-393.
- Jean-Luc Baril and José L. Ramírez, Some distributions in increasing and flattened permutations, arXiv:2410.15434 [math.CO], 2024. See p. 7.
- Peter J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Peter J. Cameron, Maximilien Gadouleau, James D. Mitchell, and Yann Peresse, Chains of subsemigroups, arXiv preprint arXiv:1501.06394 [math.GR], 2015. See Table 4.
- Matteo Cervetti and Luca Ferrari, Pattern avoidance in the matching pattern poset, arXiv:2009.01024 [math.CO], 2020.
- Shelby Cox, Pratik Misra, and Pardis Semnani, Homaloidal Polynomials and Gaussian Models of Maximum Likelihood Degree One, arXiv:2402.06090 [math.AG], 2024.
- Benjamin Hellouin de Menibus and Yvan Le Borgne, Asymptotic behaviour of the one-dimensional "rock-paper-scissors" cyclic cellular automaton, arXiv:1903.12622 [math.PR], 2019.
- Karl Dilcher and Maciej Ulas, Arithmetic properties of polynomial solutions of the Diophantine equation P(x)x^(n+1)+Q(x)(x+1)^(n+1) = 1, arXiv:1909.11222 [math.NT], 2019.
- Filippo Disanto, Some Statistics on the Hypercubes of Catalan Permutations, Journal of Integer Sequences, Vol. 18 (2015), Article 15.2.2.
- J. M. Dusel, Balanced parabolic quotients and branching rules for Demazure crystals, J Algebr Comb (2016) 44: 363. DOI: 10.1007/s10801-016-0673-y.
- Pascal Floquet, Serge Domenech and Luc Pibouleau, Combinatorics of Sharp Separation System synthesis : Generating functions and Search Efficiency Criterion, Industrial Engineering and Chemistry Research, 33, pp. 440-443, 1994.
- Pascal Floquet, Serge Domenech, Luc Pibouleau and Said Aly, Some Complements in Combinatorics of Sharp Separation System Synthesis, American Institute of Chemical Engineering Journal, 39(6), pp. 975-978, 1993.
- E. T. Frankel, A calculus of figurate numbers and finite differences, American Mathematical Monthly, 57 (1950), 14-25. [Annotated scanned copy]
- Joël Gay, Representation of Monoids and Lattice Structures in the Combinatorics of Weyl Groups, Doctoral Thesis, Discrete Mathematics [cs.DM], Université Paris-Saclay, 2018.
- R. K. Guy, Letter to N. J. A. Sloane.
- Ryota Inagaki, Tanya Khovanova, and Austin Luo, On Chip-Firing on Undirected Binary Trees, Ann. Comb. (2025). See pp. 24-25.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 388.
- Wayne A. Johnson, An Euler operator approach to Ehrhart series, arXiv:2303.16991 [math.CO], 2023.
- Lucas Kang, Investigation of Rule 73 as Case Study of Class 4 Long-Distance Cellular Automata, arXiv preprint arXiv:1310.3311 [nlin.CG], 2013.
- Oliver Kullmann and Xishun Zhao, Bounds for variables with few occurrences in conjunctive normal forms, arXiv preprint arXiv:1408.0629 [math.CO], 2014.
- César Eliud Lozada, Centroids of Pascal triangles
- Candice A. Marshall, Construction of Pseudo-Involutions in the Riordan Group, Dissertation, Morgan State University, 2017.
- Peter Charles Mendenhall and Hal M. Switkay, Consecutively Halved Positional Voting: A Special Case of Geometric Voting, Social Sciences vol. 12 no. 2 (2023), 47-59.
- J. C. P. Miller, Letter to N. J. A. Sloane, Mar 26 1971
- J. W. Moon, A problem on arcs without bypasses in tournaments, J. Combinatorial Theory Ser. B 21 (1976), no. 1, 71--75. MR0427129(55 #165).
- Agustín Moreno Cañadas, Hernán Giraldo, and Gabriel Bravo Rios, On the Number of Sections in the Auslander-Reiten Quiver of Algebras of Dynkin Type, Far East Journal of Mathematical Sciences (FJMS), Vol. 101, No. 8 (2017), pp. 1631-1654.
- Nagatomo Nakamura, Pseudo-Normal Random Number Generation via the Eulerian Numbers, Josai Mathematical Monographs, vol 8, p 85-95, 2015.
- Emily Norton, Symplectic Reflection Algebras in Positive Characteristic as Ore Extensions, arXiv preprint arXiv:1302.5411 [math.RA], 2013.
- Ronald Orozco López, Solution of the Differential Equation y^(k)= e^(a*y), Special Values of Bell Polynomials and (k,a)-Autonomous Coefficients, Universidad de los Andes (Colombia 2021).
- J. M. Pallo, Weak associativity and restricted rotation, Information Processing Letters, 109, 2009, 514-517.
- P. A. Piza, Kummer numbers, Mathematics Magazine, 21 (1947/1948), 257-260.
- P. A. Piza, Kummer numbers, Mathematics Magazine, 21 (1947/1948), 257-260. [Annotated scanned copy]
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- J. Riordan, Review of Frankel (1950) [Annotated scanned copy]
- D. P. Roselle, Permutations by number of rises and successions, Proc. Amer. Math. Soc., 20 (1968), 8-16.
- D. P. Roselle, Permutations by number of rises and successions, Proc. Amer. Math. Soc., 19 (1968), 8-16. [Annotated scanned copy]
- Markus Sigg, Collatz iteration and Euler numbers?
- Eric Weisstein's World of Mathematics, Chromatic Invariant
- Eric Weisstein's World of Mathematics, Prism Graph
- Wikipedia, Reed's Law
- Robert G. Wilson v, Letter to N. J. A. Sloane, Apr. 1994
- Anssi Yli-Jyra, On Dependency Analysis via Contractions and Weighted FSTs, in Shall We Play the Festschrift Game?, Springer, 2012, pp. 133-158. - _N. J. A. Sloane_, Dec 25 2012
- Index entries for linear recurrences with constant coefficients, signature (4,-5,2).
Cf.
A008292 (classic version of Euler's triangle used by Comtet (1974)).
Cf.
A173018 (version of Euler's triangle used by Graham, Knuth and Patashnik in Concrete Math. (1990)).
-
a000295 n = 2^n - n - 1 -- Reinhard Zumkeller, Nov 25 2013
-
[2^n-n-1: n in [0..40]]; // Vincenzo Librandi, Jul 29 2015
-
[EulerianNumber(n, 1): n in [0..40]]; // G. C. Greubel, Oct 02 2024
-
[ seq(2^n-n-1, n=1..50) ];
A000295 := -z/(2*z-1)/(z-1)**2; # Simon Plouffe in his 1992 dissertation
# Grammar specification:
spec := [S, { B = Set(Z, 1 <= card), C = Sequence(B, 2 <= card), S = Prod(B, C) }, unlabeled]:
struct := n -> combstruct[count](spec, size = n+1);
seq(struct(n), n = 0..33); # Peter Luschny, Jul 22 2014
-
a[n_] = If[n==0, 0, n*(HypergeometricPFQ[{1, 1-n}, {2}, -1] - 1)];
Table[a[n], {n,0,40}] (* Olivier Gérard, Mar 29 2011 *)
LinearRecurrence[{4, -5, 2}, {0, 0, 1}, 40] (* Vincenzo Librandi, Jul 29 2015 *)
Table[2^n -n-1, {n,0,40}] (* Eric W. Weisstein, Nov 16 2017 *)
-
a(n)=2^n-n-1 \\ Charles R Greathouse IV, Jun 10 2011
-
[2^n -(n+1) for n in range(41)] # G. C. Greubel, Oct 02 2024
Original entry on oeis.org
1, 4, 20, 120, 840, 6720, 60480, 604800, 6652800, 79833600, 1037836800, 14529715200, 217945728000, 3487131648000, 59281238016000, 1067062284288000, 20274183401472000, 405483668029440000, 8515157028618240000, 187333454629601280000, 4308669456480829440000
Offset: 3
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 3..200
- Somaya Barati, Beáta Bényi, Abbas Jafarzadeh, and Daniel Yaqubi, Mixed restricted Stirling numbers, arXiv:1812.02955 [math.CO], 2018.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 263.
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), Article 00.2.4.
- D. S. Mitrinovic and R. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 77 1962, 77 pp.
- Alexsandar Petojevic, The Function vM_m(s; a; z) and Some Well-Known Sequences, Journal of Integer Sequences, Vol. 5 (2002), Article 02.1.7.
- A. N. Stokes, Continued fraction solutions of the Riccati equation, Bull. Austral. Math. Soc. Vol. 25 (1982), 207-214.
- Index entries for sequences related to factorial numbers.
- Index to divisibility sequences.
-
a001715 = (flip div 6) . a000142 -- Reinhard Zumkeller, Aug 31 2014
-
[Factorial(n)/6: n in [3..30]]; // Vincenzo Librandi, Jun 20 2011
-
f := proc(n) n!/6; end;
BB:= [S, {S = Prod(Z,Z,C), C = Union(B,Z,Z), B = Prod(Z,C)}, labelled]: seq(combstruct[count](BB, size=n)/12, n=3..20); # Zerinvary Lajos, Jun 19 2008
G(x):=1/(1-x)^4: f[0]:=G(x): for n from 1 to 18 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..16); # Zerinvary Lajos, Apr 01 2009
-
a[n_]:=n!/6; (*Vladimir Joseph Stephan Orlovsky, Dec 13 2008 *)
Range[3,30]!/6 (* Harvey P. Dale, Aug 12 2012 *)
-
a(n)=n!/6 \\ Charles R Greathouse IV, Jan 12 2012
A125128
a(n) = 2^(n+1) - n - 2, or partial sums of main diagonal of array A125127 of k-step Lucas numbers.
Original entry on oeis.org
1, 4, 11, 26, 57, 120, 247, 502, 1013, 2036, 4083, 8178, 16369, 32752, 65519, 131054, 262125, 524268, 1048555, 2097130, 4194281, 8388584, 16777191, 33554406, 67108837, 134217700, 268435427, 536870882, 1073741793, 2147483616, 4294967263, 8589934558
Offset: 1
a(1) = 1 because "1-step Lucas number"(1) = 1.
a(2) = 4 = a(1) + [2-step] Lucas number(2) = 1 + 3.
a(3) = 11 = a(2) + 3-step Lucas number(3) = 1 + 3 + 7.
a(4) = 26 = a(3) + 4-step Lucas number(4) = 1 + 3 + 7 + 15.
a(5) = 57 = a(4) + 5-step Lucas number(5) = 1 + 3 + 7 + 15 + 31.
a(6) = 120 = a(5) + 6-step Lucas number(6) = 1 + 3 + 7 + 15 + 31 + 63.
G.f. = x + 4*x^2 + 11*x^3 + 26*x^4 + 57*x^5 + 120*x^6 + 247*x^7 + 502*x^8 + ...
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Dillan Agrawal, Selena Ge, Jate Greene, Tanya Khovanova, Dohun Kim, Rajarshi Mandal, Tanish Parida, Anirudh Pulugurtha, Gordon Redwine, Soham Samanta, and Albert Xu, Chip-Firing on Infinite k-ary Trees, arXiv:2501.06675 [math.CO], 2025. See p. 18.
- Index entries for linear recurrences with constant coefficients, signature (4,-5,2).
-
List([1..40], n-> 2^(n+1) -n-2); # G. C. Greubel, Jul 26 2019
-
I:=[1, 4, 11]; [n le 3 select I[n] else 4*Self(n-1)-5*Self(n-2)+2*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Jun 28 2012
-
CoefficientList[Series[1/((1-x)^2*(1-2*x)),{x,0,40}],x] (* Vincenzo Librandi, Jun 28 2012 *)
LinearRecurrence[{4,-5,2},{1,4,11},40] (* Harvey P. Dale, Nov 16 2014 *)
a[ n_] := With[{m = n + 1}, If[ m < 0, 0, 2^m - (1 + m)]]; (* Michael Somos, Aug 17 2015 *)
-
A125128(n)=2<M. F. Hasler, Jul 30 2015
-
{a(n) = n++; if( n<0, 0, 2^n - (1+n))}; /* Michael Somos, Aug 17 2015 */
-
[2^(n+1) -n-2 for n in (1..40)] # G. C. Greubel, Jul 26 2019
A287870
The extended Wythoff array (the Wythoff array with two extra columns) read by antidiagonals downwards.
Original entry on oeis.org
0, 1, 1, 1, 3, 2, 2, 4, 4, 3, 3, 7, 6, 6, 4, 5, 11, 10, 9, 8, 5, 8, 18, 16, 15, 12, 9, 6, 13, 29, 26, 24, 20, 14, 11, 7, 21, 47, 42, 39, 32, 23, 17, 12, 8, 34, 76, 68, 63, 52, 37, 28, 19, 14, 9, 55, 123, 110, 102, 84, 60, 45, 31, 22, 16, 10, 89, 199, 178, 165, 136, 97, 73, 50, 36, 25, 17, 11
Offset: 1
The extended Wythoff array is the Wythoff array with two extra columns, giving the row number n and A000201(n), separated from the main array by a vertical bar:
0 1 | 1 2 3 5 8 13 21 34 55 89 144 ...
1 3 | 4 7 11 18 29 47 76 123 199 322 521 ...
2 4 | 6 10 16 26 42 68 110 178 288 466 754 ...
3 6 | 9 15 24 39 63 102 165 267 432 699 1131 ...
4 8 | 12 20 32 52 84 136 220 356 576 932 1508 ...
5 9 | 14 23 37 60 97 157 254 411 665 1076 1741 ...
6 11 | 17 28 45 73 118 191 309 500 809 1309 2118 ...
7 12 | 19 31 50 81 131 212 343 555 898 1453 2351 ...
8 14 | 22 36 58 94 152 246 398 644 1042 1686 2728 ...
9 16 | 25 41 66 107 173 280 453 733 1186 1919 3105 ...
10 17 | 27 44 71 115 186 301 487 788 1275 2063 3338 ...
11 19 | 30 49 79 ...
12 21 | 33 54 87 ...
13 22 | 35 57 92 ...
14 24 | 38 62 ...
15 25 | 40 65 ...
16 27 | 43 70 ...
17 29 | 46 75 ...
18 30 | 48 78 ...
19 32 | 51 83 ...
20 33 | 53 86 ...
21 35 | 56 91 ...
22 37 | 59 96 ...
23 38 | 61 99 ...
24 40 | 64 ...
25 42 | 67 ...
26 43 | 69 ...
27 45 | 72 ...
28 46 | 74 ...
29 48 | 77 ...
30 50 | 80 ...
31 51 | 82 ...
32 53 | 85 ...
33 55 | 88 ...
34 56 | 90 ...
35 58 | 93 ...
36 59 | 95 ...
37 61 | 98 ...
38 63 | ...
...
From _Peter Munn_, Sep 12 2022: (Start)
In the table below, the array terms are shown in the small box at the bottom right of the cells. At the top of each cell is shown a pattern of Fibonacci terms, with "*" indicating a Fibonacci term that appears below it. Those Fibonacci terms sum to the array term. The pattern never includes "**", which would indicate 2 consecutive Fibonacci terms. Note that a Fibonacci term shown as "1" in the 2nd column is F_1, so it may accompany "2", which is F_3. In other columns a Fibonacci term shown as "1" is F_2 and may not accompany "2".
+----------+-----------+------------+------------+------------+
| * | * | * | * | * |
| 0 __| 1 ___| 1 ___| 2 ___| 3 ___|
| |0 | | 1 | | 1 | | 2 | | 3 |
|----------+-----------+------------+------------+------------|
| * * | * * | * * | * * | * * |
| 0 __| 1 ___| 1 ___| 2 ___| 3 ___|
| 1 |1 | 2 | 3 | 3 | 4 | 5 | 7 | 8 |11 |
|----------+-----------+------------+------------+------------|
| * * | * * | * * | * * | * * |
| 2 0 __| 3 1 ___| 5 1 ___| 8 2 ___| 13 3 ___|
| |2 | | 4 | | 6 | |10 | |16 |
|----------+-----------+------------+------------+------------|
| * * | * * | * * | * * | * * |
| 0 __| 1 ___| 1 ___| 2 ___| 3 ___|
| 3 |3 | 5 | 6 | 8 | 9 | 13 |15 | 21 |24 |
|----------+-----------+------------+------------+------------|
| * * * | * * * | * * * | * * * | * * * |
| 0 | 1 | 1 | 2 | 3 |
| 1 __| 2 ___| 3 ___| 5 ___| 8 ___|
| 3 |4 | 5 | 8 | 8 |12 | 13 |20 | 21 |32 |
|----------+-----------+------------+------------+------------|
| * * | * * | * * | * * | * * |
| 0 __| 1 ___| 1 ___| 2 ___| 3 ___|
| 5 |5 | 8 | 9 | 13 |14 | 21 |23 | 34 |37 |
|----------+-----------+------------+------------+------------|
| * * * | * * * | * * * | * * * | * * * |
| 0 __| 1 ___| 1 ___| 2 ___| 3 ___|
| 5 1 |6 | 8 2 |11 | 13 3 |17 | 21 5 |28 | 34 8 |45 |
|----------+-----------+------------+------------+------------|
| * * * | * * * | * * * | * * * | * * * |
| 2 0 __| 3 1 ___| 5 1 ___| 8 2 ___| 13 3 ___|
| 5 |7 | 8 |12 | 13 |19 | 21 |31 | 34 |50 |
+----------+-----------+------------+------------+------------+
If we replace the Fibonacci terms 0, 1, 1, 2, 3, 5, ... in the main part of the cells with the powers of 2 (1, 2, 4, ...) the sums in the small boxes become the terms of A356875. From this may be seen a relationship to A054582.
- - - - -
Each row of the extended Wythoff array satisfies the Fibonacci recurrence, and may be further extended to the left using this recurrence backwards:
... -1 1 0 1 | 1 2 3 5 ...
... -1 2 1 3 | 4 7 11 18 ...
... 0 2 2 4 | 6 10 16 26 ...
... 0 3 3 6 | 9 15 24 39 ...
... 0 4 4 8 | 12 20 32 52 ...
... 1 4 5 9 | 14 23 37 60 ...
... 1 5 6 11 | 17 28 45 73 ...
... 2 5 7 12 | 19 31 50 81 ...
... 2 6 8 14 | 22 36 58 94 ...
...
... 5 10 15 25 | 40 65 105 170 ...
...
Note that multiples (*2, *3 and *4) of the top (Fibonacci sequence) row appear a little below, but shifted 2 columns to the left. Larger multiples appear further down and shifted further to the left, starting with row 15, where the terms are 5 times those in the top row and shifted 4 columns leftwards.
(End)
- Peter G. Anderson, More Properties of the Zeckendorf Array, Fib. Quart. 52-5 (2014), 15-21.
- John Conway and Alex Ryba, The extra Fibonacci series and the Empire State Building, Math. Intelligencer 38 (2016), no. 1, 41-48. See preview, at ResearchGate.
- Encyclopedia of Mathematics, Zeckendorf representation
- Clark Kimberling, The Zeckendorf array equals the Wythoff array, Fibonacci Quarterly, Vol. 33, No. 1 (1995), pp. 3-8.
See
A014417 for sequences related to Zeckendorf representation.
A330617
Triangle read by rows: T(n,k) is the number of paths from node 0 to k in a directed graph with n+1 vertices labeled 0, 1, ..., n and edges leading from i to i+1 for all i, and from i to i+2 for even i and from i to i-2 for odd i.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 4, 1, 3, 2, 4, 4, 4, 1, 3, 2, 4, 4, 4, 8, 1, 4, 2, 6, 4, 8, 8, 8, 1, 4, 2, 6, 4, 8, 8, 8, 16, 1, 5, 2, 8, 4, 12, 8, 16, 16, 16, 1, 5, 2, 8, 4, 12, 8, 16, 16, 16, 32, 1, 6, 2, 10, 4, 16, 8, 24, 16, 32, 32, 32, 1, 6, 2, 10, 4, 16, 8, 24, 16, 32, 32, 32, 64
Offset: 0
First few rows of the triangle are:
1;
1, 1;
1, 1, 2;
1, 2, 2, 2;
1, 2, 2, 2, 4;
1, 3, 2, 4, 4, 4;
1, 3, 2, 4, 4, 4, 8;
1, 4, 2, 6, 4, 8, 8, 8;
1, 4, 2, 6, 4, 8, 8, 8, 16;
1, 5, 2, 8, 4, 12, 8, 16, 16, 16;
1, 5, 2, 8, 4, 12, 8, 16, 16, 16, 32;
...
For n=6 and k=3, T(6,3)=4 is the number of paths from node 0 to node 3 along the directed network: {0,1,2,3}, {0,2,3}, {0,2,4,5,3}, {0,1,2,4,5,3}.
-
Table[If[EvenQ@ k, 2^(k/2), 2^((k - 1)/2)*(Ceiling[n/2] - (k - 1)/2)], {n, 0, 12}, {k, 0, n}] // Flatten (* Michael De Vlieger, Mar 23 2020 *)
-
T(n,k)={if(k%2, 2^(k\2)*((n+1)\2 - k\2), 2^(k/2))} \\ Andrew Howroyd, Mar 17 2020
A357213
Triangular array read by rows: T(n, k) = number of subsets s of {1, 2, ..., n} such max(s) - min(s) = k, for n >= 1, 0 <= k <= n-1.
Original entry on oeis.org
1, 2, 1, 3, 2, 2, 4, 3, 4, 4, 5, 4, 6, 8, 8, 6, 5, 8, 12, 16, 16, 7, 6, 10, 16, 24, 32, 32, 8, 7, 12, 20, 32, 48, 64, 64, 9, 8, 14, 24, 40, 64, 96, 128, 128, 10, 9, 16, 28, 48, 80, 128, 192, 256, 256, 11, 10, 18, 32, 56, 96, 160, 256, 384, 512, 512, 12, 11
Offset: 1
First 7 rows:
1
2 1
3 2 2
4 3 4 4
5 4 6 8 8
6 5 8 12 16 16
7 6 10 16 24 32 32
-
s[n_] := s[n] = Subsets[Range[n]]
u[n_, k_] := u[n, k] = Max[s[n][[k]]] - Min[s[n][[k]]]
v[n_] := Table[u[n, k], {k, 1, 2^n}];
t = Table[Count[v[n], i], {n, 1, 14}, {i, 0, n - 1}]
TableForm[t] (* A357213, array *)
Flatten[t] (* A357213, sequence *)
-
T(n, k) = my(nb=0); forsubset(n, s, if (#s && (vecmax(s)-vecmin(s) == k), nb++)); nb; \\ Michel Marcus, Sep 26 2022
A357316
A distension of the Wythoff array by inclusion of intermediate rows. Square array A(n,k), n >= 0, k >= 0, read by descending antidiagonals. If S is the set such that Sum_{i in S} F_i is the Zeckendorf representation of n then A(n,k) = Sum_{i in S} F_{i+k-2}.
Original entry on oeis.org
0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 2, 2, 2, 1, 0, 3, 3, 3, 3, 2, 0, 5, 5, 5, 4, 3, 2, 0, 8, 8, 8, 7, 5, 4, 3, 0, 13, 13, 13, 11, 8, 6, 4, 3, 0, 21, 21, 21, 18, 13, 10, 7, 5, 3, 0, 34, 34, 34, 29, 21, 16, 11, 8, 6, 4, 0, 55, 55, 55, 47, 34, 26, 18, 13, 9, 6, 4
Offset: 0
Example for n = 4, k = 3. The Zeckendorf representation of 4 is F_4 + F_2 = 3 + 1. So the values of i in the sums in the definition are 4 and 2; hence A(4,3) = Sum_{i = 2,4} F_{i+k-2} = F_{4+3-2} + F_{2+3-2} = F_5 + F_3 = 5 + 2 = 7.
Square array A(n,k) begins:
n\k| 0 1 2 3 4 5 6
----+--------------------------------
0 | 0 0 0 0 0 0 0 ...
1* | 0 1 1 2 3 5 8 ...
2 | 1 1 2 3 5 8 13 ...
3 | 1 2 3 5 8 13 21 ...
4* | 1 3 4 7 11 18 29 ...
5 | 2 3 5 8 13 21 34 ...
6* | 2 4 6 10 16 26 42 ...
7 | 3 4 7 11 18 29 47 ...
8 | 3 5 8 13 21 34 55 ...
9* | 3 6 9 15 24 39 63 ...
10 | 4 6 10 16 26 42 68 ...
11 | 4 7 11 18 29 47 76 ...
12* | 4 8 12 20 32 52 84 ...
...
The asterisked rows form the start of the extended Wythoff array (A287870).
-
A5206(m) = if(m>0,m-A5206(A5206(m-1)),0)
A(n,k) = if(k==2,n, if(k==1,A5206(n), if(k==0,n-A5206(n), A(n,k-2)+A(n,k-1)))) \\ simple encoding of formulas, not efficient
Showing 1-7 of 7 results.
Comments