cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A045943 Triangular matchstick numbers: a(n) = 3*n*(n+1)/2.

Original entry on oeis.org

0, 3, 9, 18, 30, 45, 63, 84, 108, 135, 165, 198, 234, 273, 315, 360, 408, 459, 513, 570, 630, 693, 759, 828, 900, 975, 1053, 1134, 1218, 1305, 1395, 1488, 1584, 1683, 1785, 1890, 1998, 2109, 2223, 2340, 2460, 2583, 2709, 2838, 2970, 3105, 3243, 3384, 3528
Offset: 0

Views

Author

Keywords

Comments

Also, 3 times triangular numbers, a(n) = 3*A000217(n).
In the 24-bit RGB color cube, the number of color-lattice-points in r+g+b = n planes at n < 256 equals the triangular numbers. For n = 256, ..., 765 the number of legitimate color partitions is less than A000217(n) because {r,g,b} components cannot exceed 255. For n = 256, ..., 511, the number of non-color partitions are computable with A045943(n-255), while for n = 512, ..., 765, the number of color points in r+g+b planes equals A000217(765-n). - Labos Elemer, Jun 20 2005
If a 3-set Y and an (n-3)-set Z are disjoint subsets of an n-set X then a(n-3) is the number of 3-subsets of X intersecting both Y and Z. - Milan Janjic, Sep 19 2007
a(n) is also the smallest number that may be written both as the sum of n-1 consecutive positive integers and n consecutive positive integers. - Claudio Meller, Oct 08 2010
For n >= 3, a(n) equals 4^(2+n)*Pi^(1 - n) times the coefficient of zeta(3) in the following integral with upper bound Pi/4 and lower bound 0: int x^(n+1) tan x dx. - John M. Campbell, Jul 17 2011
The difference a(n)-a(n-1) = 3*n, for n >= 1. - Stephen Balaban, Jul 25 2011 [Comment clarified by N. J. A. Sloane, Aug 01 2024]
Sequence found by reading the line from 0, in the direction 0, 3, ..., and the same line from 0, in the direction 0, 9, ..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. This is one of the orthogonal axes of the spiral; the other is A032528. - Omar E. Pol, Sep 08 2011
A005449(a(n)) = A000332(3n + 3) = C(3n + 3, 4), a second pentagonal number of triangular matchstick number index number. Additionally, a(n) - 2n is a pentagonal number (A000326). - Raphie Frank, Dec 31 2012
Sum of the numbers from n to 2n. - Wesley Ivan Hurt, Nov 24 2015
Number of orbits of Aut(Z^7) as function of the infinity norm (n+1) of the representative integer lattice point of the orbit, when the cardinality of the orbit is equal to 5376 or 17920 or 20160. - Philippe A.J.G. Chevalier, Dec 28 2015
Also the number of 4-cycles in the (n+4)-triangular honeycomb acute knight graph. - Eric W. Weisstein, Jul 27 2017
Number of terms less than 10^k, k=0,1,2,3,...: 1, 3, 8, 26, 82, 258, 816, 2582, 8165, 25820, 81650, 258199, 816497, 2581989, 8164966, ... - Muniru A Asiru, Jan 24 2018
Numbers of the form 3*m*(2*m + 1) for m = 0, -1, 1, -2, 2, -3, 3, ... - Bruno Berselli, Feb 26 2018
Partial sums of A008585. - Omar E. Pol, Jun 20 2018
Column 1 of A273464. (Number of ways to select a unit lozenge inside an isosceles triangle of side length n; all vertices on a hexagonal lattice.) - R. J. Mathar, Jul 10 2019
Total number of pips in the n-th suit of a double-n domino set. - Ivan N. Ianakiev, Aug 23 2020

Examples

			From _Stephen Balaban_, Jul 25 2011: (Start)
T(n), the triangular numbers = number of nodes,
a(n-1) = number of edges in the T(n) graph:
       o    (T(1) = 1, a(0) = 0)
       o
      / \   (T(2) = 3, a(1) = 3)
     o - o
       o
      / \
     o - o  (T(3) = 6, a(2) = 9)
    / \ / \
   o - o - o
... [Corrected by _N. J. A. Sloane_, Aug 01 2024] (End)
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 543.

Crossrefs

The generalized pentagonal numbers b*n+3*n*(n-1)/2, for b = 1 through 12, form sequences A000326, A005449, A045943, A115067, A140090, A140091, A059845, A140672, A140673, A140674, A140675, A151542.
A diagonal of A010027.
Orbits of Aut(Z^7) as function of the infinity norm A000579, A154286, A102860, A002412, A115067, A008585, A005843, A001477, A000217.
Cf. A027480 (partial sums).
Cf. A002378 (3-cycles in triangular honeycomb acute knight graph), A028896 (5-cycles), A152773 (6-cycles).
This sequence: Sum_{k = n..2*n} k.
Cf. A304993: Sum_{k = n..2*n} k*(k+1)/2.
Cf. A050409: Sum_{k = n..2*n} k^2.
Similar sequences are listed in A316466.

Programs

Formula

a(n) is the sum of n+1 integers starting from n, i.e., 1+2, 2+3+4, 3+4+5+6, 4+5+6+7+8, etc. - Jon Perry, Jan 15 2004
a(n) = A126890(n+1,n-1) for n>1. - Reinhard Zumkeller, Dec 30 2006
a(n) + A145919(3*n+3) = 0. - Matthew Vandermast, Oct 28 2008
a(n) = A000217(2*n) - A000217(n-1); A179213(n) <= a(n). - Reinhard Zumkeller, Jul 05 2010
a(n) = a(n-1)+3*n, n>0. - Vincenzo Librandi, Nov 18 2010
G.f.: 3*x/(1-x)^3. - Bruno Berselli, Jan 21 2011
a(n) = A005448(n+1) - 1. - Omar E. Pol, Oct 03 2011
a(n) = A001477(n)+A000290(n)+A000217(n). - J. M. Bergot, Dec 08 2012
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3) for n>2. - Wesley Ivan Hurt, Nov 24 2015
a(n) = A027480(n)-A027480(n-1). - Peter M. Chema, Jan 18 2017.
2*a(n)+1 = A003215(n). - Miquel Cerda, Jan 22 2018
a(n) = T(2*n) - T(n-1), where T(n) = A000217(n). In general, T(k)*T(n) = Sum_{i=0..k-1} (-1)^i*T((k-i)*(n-i)). - Charlie Marion, Dec 06 2020
E.g.f.: 3*exp(x)*x*(2 + x)/2. - Stefano Spezia, May 19 2021
From Amiram Eldar, Jan 10 2022: (Start)
Sum_{n>=1} 1/a(n) = 2/3.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*(2*log(2)-1)/3. (End)
Product_{n>=1} (1 - 1/a(n)) = -(3/(2*Pi))*cos(sqrt(11/3)*Pi/2). - Amiram Eldar, Feb 21 2023

A011781 Sextuple factorial numbers: a(n) = Product_{k=0..n-1} (6*k+3).

Original entry on oeis.org

1, 3, 27, 405, 8505, 229635, 7577955, 295540245, 13299311025, 678264862275, 38661097149675, 2435649120429525, 168059789309637225, 12604484198222791875, 1020963220056046141875, 88823800144876014343125, 8260613413473469333910625, 817800727933873464057151875
Offset: 0

Views

Author

Lee D. Killough (killough(AT)wagner.convex.com)

Keywords

Comments

Total number of Eulerian circuits in rooted labeled multigraphs with n edges. - Valery A. Liskovets, Apr 07 2002
Number of self-avoiding planar walks starting at (0,0), ending at (n,0), remaining in the east quadrant {(x,y): x >= |y|} and using steps (0,1), (0,-1), (1,1), (-1,-1), and (1,0). - Alois P. Heinz, Oct 13 2016

Examples

			G.f. = 1 + 3*x + 27*x^2 + 405*x^3 + 8505*x^4 + 229635*x^5 + 7577955*x^6 + ...
		

Crossrefs

Programs

  • GAP
    F:=Factorial;; List([0..20], n-> (3/2)^n*(F(2*n)/F(n)) ); # G. C. Greubel, Aug 20 2019
  • Magma
    [(3/2)^n*Factorial(2*n)/Factorial(n):n in [0..20]]; // Vincenzo Librandi, May 09 2012
    
  • Mathematica
    Table[Product[6k+3,{k,0,n-1}],{n,0,20}] (* or *) Table[6^(n-1) Pochhammer[ 1/2,n-1],{n,21}] (* Harvey P. Dale, May 09 2012 *)
    Table[6^n*Pochhammer[1/2, n], {n,0,20}] (* G. C. Greubel, Aug 20 2019 *)
  • PARI
    {a(n) = if( n<0, (-1)^n / a(-n), (3/2)^n * (2*n)! / n!)}; /* Michael Somos, Feb 10 2002, revised and extended Michael Somos, Jan 06 2017 */
    
  • Sage
    [6^n*rising_factorial(1/2, n) for n in (0..20)] # G. C. Greubel, Aug 20 2019
    

Formula

E.g.f.: (1-6*x)^(-1/2).
a(n) = 3^n*(2*n-1)!!.
G.f.: 1/(1-3*x/(1-6*x/(1-9*x/(1-12*x/(1-15*x/(1-18*x/(1-21*x/(1-24*x/(1-... (continued fraction). - Philippe Deléham, Jan 08 2012
a(n) = (-3)^n*Sum_{k=0..n} 2^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. [Mircea Merca, May 03 2012]
G.f.: T(0), where T(k) = 1 - 3*x*(k+1)/( 3*x*(k+1) - 1/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 24 2013
a(n) = 6^n * gamma(n + 1/2) / sqrt(Pi). - Daniel Suteu, Jan 06 2017
0 = a(n)*(+6*a(n+1) - a(n+2)) + a(n+1)*(+a(n+1)) and a(n) = (-1)^n / a(-n) for all n in Z. - Michael Somos, Jan 06 2017
D-finite with recurrence: a(n) +3*(-2*n+1)*a(n-1)=0. - R. J. Mathar, Jan 20 2018
From Amiram Eldar, Feb 11 2022: (Start)
Sum_{n>=0} 1/a(n) = 1 + exp(1/6)*sqrt(Pi/6)*erf(1/sqrt(6)), where erf is the error function.
Sum_{n>=0} (-1)^n/a(n) = 1 - exp(-1/6)*sqrt(Pi/6)*erfi(1/sqrt(6)), where erfi is the imaginary error function. (End)

A244996 Decimal expansion of the moment derivative W_3'(0) associated with the radial probability distribution of a 3-step uniform random walk.

Original entry on oeis.org

3, 2, 3, 0, 6, 5, 9, 4, 7, 2, 1, 9, 4, 5, 0, 5, 1, 4, 0, 9, 3, 6, 3, 6, 5, 1, 0, 7, 2, 3, 8, 0, 6, 3, 9, 4, 0, 7, 2, 2, 4, 1, 8, 4, 0, 7, 8, 0, 5, 8, 7, 0, 1, 6, 1, 3, 0, 8, 6, 8, 4, 7, 0, 3, 6, 1, 0, 1, 5, 1, 1, 2, 8, 0, 7, 2, 6, 9, 8, 4, 2, 0, 8, 3, 7, 8, 7, 6, 0, 9, 0, 8, 9, 3, 7, 1, 3, 9, 2, 0, 7, 3, 4, 8, 7
Offset: 0

Views

Author

Jean-François Alcover, Jul 09 2014

Keywords

Comments

This constant is also associated with the asymptotic number of lozenge tilings; see the references by Santos (2004, 2005). It is called the "maximum asymptotic normalized entropy of lozenge tilings of a planar region". Santos (2004, 2005) mentions that is computed in Cohn et al. (2000). For discussion of lozenge tilings, see for example the references for sequences A122722 and A273464. - Petros Hadjicostas, Sep 13 2019

Examples

			0.3230659472194505140936365107238063940722418407805870161308684703610151128...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003; see Section 3.10, Kneser-Mahler Polynomial Constants, p. 232.

Crossrefs

Programs

  • Mathematica
    Clausen2[x_] := Im[PolyLog[2, Exp[x*I]]]; RealDigits[(1/Pi)*Clausen2[Pi/3], 10, 105] // First
  • PARI
    imag(polylog(2,exp(Pi*I/3)))/Pi \\ Charles R Greathouse IV, Aug 27 2014

Formula

W_3'(0) = (1/Pi)*Cl2[Pi/3] = (3/(2*Pi))*Cl2[2*Pi/3], where Cl2 is the Clausen function.
W_3'(0) = integral_{y=1/6..5/6} log(2*sin(Pi*y)).
Also equals log(A242710).

A326367 Number of tilings of an equilateral triangle of side length n with unit triangles (of side length 1) and exactly two unit "lozenges" or "diamonds" (also of side length 1).

Original entry on oeis.org

0, 0, 24, 126, 387, 915, 1845, 3339, 5586, 8802, 13230, 19140, 26829, 36621, 48867, 63945, 82260, 104244, 130356, 161082, 196935, 238455, 286209, 340791, 402822, 472950, 551850, 640224, 738801, 848337, 969615, 1103445, 1250664, 1412136, 1588752, 1781430, 1991115
Offset: 1

Views

Author

Greg Dresden, Jul 01 2019

Keywords

Examples

			We can represent a unit triangle this way:
       o
      / \
     o - o
and a unit "lozenge" or "diamond" has these three orientations:
     o
    / \          o - o            o - o
   o   o  and   /   /   and also   \   \
    \ /        o - o                o - o
     o
and for n=3, here is one of the 24 different tiling of the triangle of side length 3 with exactly two lozenges:
          o
         / \
        o   o
       / \ / \
      o - o - o
     /   / \ / \
    o - o - o - o
		

Crossrefs

Programs

  • Mathematica
    Rest@ CoefficientList[Series[3 x^3*(4 - x) (2 + x)/(1 - x)^5, {x, 0, 37}], x] (* Michael De Vlieger, Jul 04 2019 *)
  • PARI
    concat([0,0], Vec(3*x^3*(4 - x)*(2 + x) / (1 - x)^5 + O(x^40))) \\ Colin Barker, Jul 01 2019

Formula

a(n) = (3/8)*(n-2)*(n-1)*(3*n^2 + 3*n - 4) (conjectured by R. J. Mathar, proved by Greg Dresden and E. Sijaric).
From Colin Barker, Jul 01 2019: (Start)
G.f.: 3*x^3*(4 - x)*(2 + x) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
(End)
E.g.f.: (3/8)*exp(x)*x^2*(32 + 24*x + 3*x^2). - Stefano Spezia, Jul 01 2019

A326368 Number of tilings of an equilateral triangle of side length n with unit triangles (of side length 1) and exactly three unit "lozenges" or "diamonds" (also of side length 1).

Original entry on oeis.org

0, 0, 18, 434, 2814, 11127, 33365, 83568, 184254, 369254, 686952, 1203930, 2009018, 3217749, 4977219, 7471352, 10926570, 15617868, 21875294, 30090834, 40725702, 54318035, 71490993, 92961264, 119547974, 152182002, 191915700, 239933018, 297560034, 366275889
Offset: 1

Views

Author

Greg Dresden, Jul 01 2019

Keywords

Examples

			We can represent a unit triangle this way:
       o
      / \
     o - o
and a unit "lozenge" or "diamond" has these three orientations:
     o
    / \          o - o            o - o
   o   o  and   /   /   and also   \   \
    \ /        o - o                o - o
     o
and for n=3, here is one of the 18 different tiling of the triangle of side length 3 with exactly three lozenges:
          o
         / \
        o   o
       / \ / \
      o - o   o
     /   / \ / \
    o - o - o - o
		

Crossrefs

Programs

  • Mathematica
    Rest@ CoefficientList[Series[x^3*(18 + 308 x + 154 x^2 - 87 x^3 + 10 x^4 + 2 x^5)/(1 - x)^7, {x, 0, 30}], x] (* Michael De Vlieger, Jul 07 2019 *)
  • PARI
    concat([0,0], Vec(x^3*(18 + 308*x + 154*x^2 - 87*x^3 + 10*x^4 + 2*x^5) / (1 - x)^7 + O(x^40))) \\ Colin Barker, Jul 02 2019

Formula

a(n) = (1/16)*(n-2)*(9*n^5 - 9*n^4 - 81*n^3 + 81*n^2 + 160*n - 192) for n >= 2 (proved by Greg Dresden and E. Sijaric).
From Colin Barker, Jul 02 2019: (Start)
G.f.: x^3*(18 + 308*x + 154*x^2 - 87*x^3 + 10*x^4 + 2*x^5) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>8.
(End)

A326369 Number of tilings of an equilateral triangle of side length n with unit triangles (of side length 1) and exactly four unit "lozenges" or "diamonds" (also of side length 1).

Original entry on oeis.org

0, 0, 0, 762, 12699, 90270, 417435, 1478160, 4354497, 11203269, 25970895, 55414395, 110505120, 208300257, 374375664, 645922095, 1075615380, 1736379630, 2727171042, 4179918384, 6267764745, 9214763640, 13307191065, 18906643602, 26465101179, 36542141595, 49824502425
Offset: 1

Views

Author

Greg Dresden, Jul 01 2019

Keywords

Examples

			We can represent a unit triangle this way:
       o
      / \
     o - o
and a unit "lozenge" or "diamond" has these three orientations:
     o
    / \          o - o            o - o
   o   o  and   /   /   and also   \   \
    \ /        o - o                o - o
     o
and for n=4, here is one of the 762 different tiling of the triangle of side length 4 with exactly four lozenges:
            o
           / \
          o - o
         / \ / \
        o - o   o
       /   / \ / \
      o - o - o - o
     /   / \ / \   \
    o - o - o - o - o
		

Crossrefs

Cf. A326367, A326368. Column 4 of A273464.

Programs

  • Mathematica
    Rest@ CoefficientList[Series[3 x^4*(254 + 1947 x + 1137 x^2 - 613 x^3 + 87 x^4 + 33 x^5 - 10 x^6)/(1 - x)^9, {x, 0, 27}], x] (* Michael De Vlieger, Jul 07 2019 *)
  • PARI
    concat([0,0,0], Vec(3*x^4*(254 + 1947*x + 1137*x^2 - 613*x^3 + 87*x^4 + 33*x^5 - 10*x^6) / (1 - x)^9 + O(x^40))) \\ Colin Barker, Jul 01 2019

Formula

a(n) = (3/128)*(n-3)*(n-2)*(9*n^6 + 9*n^5 - 135*n^4 - 81*n^3 + 670*n^2 + 104*n - 1216) for n >= 2 (proved by Greg Dresden and Eldin Sijaric).
From Colin Barker, Jul 01 2019: (Start)
G.f.: 3*x^4*(254 + 1947*x + 1137*x^2 - 613*x^3 + 87*x^4 + 33*x^5 - 10*x^6) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>10.
a(n) = (3/128)*(-7296 + 6704*n + 2284*n^2 - 3732*n^3 + 265*n^4 + 648*n^5 - 126*n^6 - 36*n^7 + 9*n^8) for n>1.
(End)

A122722 Number of triangulations of Delta^2 x Delta^(k-1).

Original entry on oeis.org

1, 6, 108, 4488, 376200, 58652640, 16119956160, 7519632382080, 5788821019685760, 7197150396467808000, 14206044114169232371200, 43903287397136367836697600, 210012592354755890839147008000, 1540026232221309103088828327116800, 17170286302440610680613970557956096000, 289015112280462271460535463614055526400000
Offset: 1

Views

Author

Jonathan Vos Post, Oct 22 2006

Keywords

Comments

The number of triangulations of Delta^2 x Delta^(k) is between alpha^(k^2) and beta*(k^2) where alpha = (27/16)^(1/4) ~ 1.13975 and beta = 6^(1/6) ~ 1.34800 [p. 10 of Santos's handwritten notes about "The Cayley trick"].
There are arithmetic errors in Santos's lecture notes "The Cayley trick". The same table gives lozenge tilings of k*Delta^2.
From Petros Hadjicostas, Sep 13 2019: (Start)
The first column (indexed by k) of the table on p. 9 in Santos' handwritten notes "The Cayley trick" is actually the sequence (A273464(k, k*(k-1)/2 + 1): k >= 1).
In later published papers, Santos (2004, 2005) mentions that the number of triangulations of Delta^2 x Delta^k grows as exp(A244996*k^2/2 + o(k^2)) as k -> infinity. Notice that exp(A244996 * k^2/2) = A242710^(k^2/2). [See Theorem 1 and Theorem 4.9. Probably Theorem 1, part (2), in Santos (2004) has a typo.]
Note that alpha = (27/16)^(1/4) ~ 1.13975 < A242710^(k^2/2) ~ 1.175311 < beta = 6^(1/6) ~ 1.34800 (where alpha and beta are given on the first paragraph of these comments).
The reason the name of the sequence has "Delta^2 x Delta^(k-1)" rather than "Delta^2 x Delta^k" is because (according to Santos) the number of triangulations of Delta^2 x Delta^(k-1) equals k! times the number of lozenge tilings of k*Delta^2. (End)

Examples

			a(1) = 1 * 1! = 1.
a(2) = 3 * 2! = 6.
a(3) = 18 * 3! = 108.
a(4) = "187 * 4! = 2244" [sic]; actually 187 * 4! = 4488.
a(5) = "3135 * 5! = 188100" [sic]; actually 3135 * 5! = 376200.
		

Crossrefs

Formula

Conjectures: a(n) = n! * A273464(n, n*(n+1)/2) for n >= 1; a(n) = A011555(n-1) for n >= 2. [A273464(n,k) is defined for n >= 1 and 0 <= k <= n*(n+1)/2.] - Petros Hadjicostas, Sep 12 2019

Extensions

More terms (using the references) from Petros Hadjicostas, Sep 12 2019

A011555 Number of vertices of secondary polytope for triangle X n-simplex.

Original entry on oeis.org

6, 108, 4488, 376200
Offset: 1

Views

Author

Keywords

References

  • Gelfand, Kapranov and Zelevinsky, Discriminants, Resultants and Multidimensional Determinants, Birkhäuser, 1994, pp. 243-250.

Crossrefs

A011556 Number of regular triangulations of triangle X n-simplex.

Original entry on oeis.org

1, 5, 35, 530
Offset: 1

Views

Author

Keywords

References

  • Gelfand, Kapranov and Zelevinsky, Discriminants, Resultants and Multidimensional Determinants, Birkhäuser, 1994, pp. 243-250.

Crossrefs

Showing 1-9 of 9 results.