cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 350 results. Next

A352361 Array read by ascending antidiagonals. A(n, k) = Fibonacci(k, n), where Fibonacci(n, x) are the Fibonacci polynomials.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 2, 2, 0, 0, 1, 3, 5, 3, 1, 0, 1, 4, 10, 12, 5, 0, 0, 1, 5, 17, 33, 29, 8, 1, 0, 1, 6, 26, 72, 109, 70, 13, 0, 0, 1, 7, 37, 135, 305, 360, 169, 21, 1, 0, 1, 8, 50, 228, 701, 1292, 1189, 408, 34, 0, 0, 1, 9, 65, 357, 1405, 3640, 5473, 3927, 985, 55, 1
Offset: 0

Views

Author

Peter Luschny, Mar 18 2022

Keywords

Comments

From Michael A. Allen, Mar 26 2023: (Start)
Row n is the n-metallonacci sequence for n>0.
A(n,k), for n > 0 and k > 0, is the number of tilings of a (k-1)-board (a board with dimensions (k-1) X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are n kinds of squares available. (End)

Examples

			Array, A(n,k), starts:
  n\k 0, 1, 2,  3,   4,    5,     6,      7,       8,        9, ...
  -------------------------------------------------------------------------
  [0] 0, 1, 0,  1,   0,    1,     0,      1,       0,        1, ... A000035;
  [1] 0, 1, 1,  2,   3,    5,     8,     13,      21,       34, ... A000045;
  [2] 0, 1, 2,  5,  12,   29,    70,    169,     408,      985, ... A000129;
  [3] 0, 1, 3, 10,  33,  109,   360,   1189,    3927,    12970, ... A006190;
  [4] 0, 1, 4, 17,  72,  305,  1292,   5473,   23184,    98209, ... A001076;
  [5] 0, 1, 5, 26, 135,  701,  3640,  18901,   98145,   509626, ... A052918;
  [6] 0, 1, 6, 37, 228, 1405,  8658,  53353,  328776,  2026009, ... A005668;
  [7] 0, 1, 7, 50, 357, 2549, 18200, 129949,  927843,  6624850, ... A054413;
  [8] 0, 1, 8, 65, 528, 4289, 34840, 283009, 2298912, 18674305, ... A041025;
  [9] 0, 1, 9, 82, 747, 6805, 61992, 564733, 5144589, 46866034, ... A099371;
      |  |  |  | A054602 |   A124152;
      |  |  |  A002522   A057721;
      |  |  A001477;
      |  A000012;
      A000004;
Antidiagonals, T(n, k), begin as:
  0;
  0, 1;
  0, 1, 0;
  0, 1, 1,  1;
  0, 1, 2,  2,   0;
  0, 1, 3,  5,   3,   1;
  0, 1, 4, 10,  12,   5,   0;
  0, 1, 5, 17,  33,  29,   8,   1;
  0, 1, 6, 26,  72, 109,  70,  13,  0;
  0, 1, 7, 37, 135, 305, 360, 169, 21, 1;
		

Crossrefs

Other versions of this array are A073133, A157103, A172236.
Rows n: A000035 (n=0), A000045 (n=1), A000129 (n=2), A006190 (n=3), A001076 (n=4), A052918 (n=5), A005668 (n=6), A054413 (n=7), A041025 (n=8), A099371 (n=9).
Columns k: A000004 (k=0), A000012 (k=1), A001477 (k=2), A002522 (k=3), A054602 (k=4), A057721 (k=5), A124152 (k=6).
Cf. A084844 (main diagonal), A352362 (Lucas polynomials), A350470 (Jacobsthal polynomials).
Sums include: A304357 (row sums), A304359.
Cf. A084845.

Programs

  • Magma
    A352361:= func< n, k | k le 1 select k else Evaluate(DicksonSecond(k-1, -1), n-k) >;
    [A352361(n, k): k in [0..n], n in [0..13]]; // G. C. Greubel, Sep 29 2024
    
  • Maple
    seq(seq(combinat:-fibonacci(k, n - k), k = 0..n), n = 0..11);
  • Mathematica
    Table[Fibonacci[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten
    (* or *)
    A[n_, k_] := With[{s = Sqrt[n^2 + 4]}, ((n + s)^k - (n - s)^k) / (2^k*s)];
    Table[Simplify[A[n, k]], {n, 0, 9}, {k, 0, 9}] // TableForm
  • PARI
    A(n, k) = ([1, k; 1, k-1]^n)[2, 1] ;
    export(A)
    for(k = 0, 9, print(parvector(10, n, A(n - 1, k))))
    
  • SageMath
    def A352361(n, k): return lucas_number1(k,n-k,-1)
    flatten([[A352361(n, k) for k in range(n+1)] for n in range(14)]) # G. C. Greubel, Sep 29 2024

Formula

A(n, k) = Sum_{j=0..floor((k-1)/2)} binomial(k-j-1, j)*n^(k-2*j-1).
A(n, k) = ((n + s)^k - (n - s)^k) / (2^k*s) where s = sqrt(n^2 + 4).
A(n, k) = [x^k] (x / (1 - n*x - x^2)).
A(n, k) = n^(k-1)*hypergeom([1 - k/2, 1/2 - k/2], [1 - k], -4/n^2) for n,k >= 1.
A(n, n) = T(2*n, n) = A084844(n).
From G. C. Greubel, Sep 29 2024: (Start)
T(n, k) = A(n-k, k) (antidiagonal triangle).
T(2*n+1, n+1) = A084845(n).
Sum_{k=0..n} T(n, k) = A304357(n) (row sums).
Sum_{k=0..n} (-1)^k*T(n, k) = (-1)*A304359(n). (End)

A081172 Tribonacci numbers: a(n) = a(n-1) + a(n-2) + a(n-3), with a(0) = 1, a(1) = 1, a(2) = 0.

Original entry on oeis.org

1, 1, 0, 2, 3, 5, 10, 18, 33, 61, 112, 206, 379, 697, 1282, 2358, 4337, 7977, 14672, 26986, 49635, 91293, 167914, 308842, 568049, 1044805, 1921696, 3534550, 6501051, 11957297, 21992898, 40451246, 74401441, 136845585, 251698272, 462945298, 851489155
Offset: 0

Views

Author

Harry J. Smith, Apr 19 2003

Keywords

Comments

The name "tribonacci number" is less well-defined than "Fibonacci number". The sequence A000073 (which begins 0, 0, 1) is probably the most important version, but the name has also been applied to A000213, A001590, and A081172. - N. J. A. Sloane, Jul 25 2024
Completes the set of tribonacci numbers starting with 0's and 1's in the first three terms:
0,0,0 A000004;
0,0,1 A000073;
0,1,0 A001590;
0,1,1 A000073 starting at a(1);
1,0,0 A000073 starting at a(-1);
1,0,1 A001590;
1,1,0 this sequence;
1,1,1 A000213.

Crossrefs

Programs

  • GAP
    a:=[1,1,0];; for n in [4..40] do a[n]:=a[n-1]+a[n-2]+a[n-3]; od; a; # G. C. Greubel, Apr 23 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-2*x^2)/(1-x-x^2-x^3) )); // G. C. Greubel, Apr 23 2019
    
  • Maple
    A081172 := proc(n)
        option remember;
        if n <= 2 then
            op(n+1,[1,1,0]) ;
        else
            add(procname(n-i),i=1..3) ;
        end if;
    end proc: # R. J. Mathar, Aug 09 2012
  • Mathematica
    LinearRecurrence[{1,1,1}, {1,1,0}, 40] (* Vladimir Joseph Stephan Orlovsky, Jun 07 2011 *)
  • PARI
    { a1=1; a2=1; a3=0; write("b081172.txt",0," ",a1); write("b081172.txt",1," ",a2); write("b081172.txt",2," ",a3); for(n=3,500, a=a1+a2+a3; a1=a2; a2=a3; a3=a; write("b081172.txt",n," ",a) ) } \\ Harry J. Smith, Mar 20 2009
    
  • PARI
    my(x='x+O('x^40)); Vec((1-2*x^2)/(1-x-x^2-x^3)) \\ G. C. Greubel, Apr 23 2019
    
  • Sage
    ((1-2*x^2)/(1-x-x^2-x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 23 2019
    

Formula

From R. J. Mathar, Mar 27 2009: (Start)
G.f.: (1-2*x^2)/(1 - x - x^2 - x^3).
a(n) = A000073(n+2) - 2*A000073(n). (End)

A002717 a(n) = floor(n(n+2)(2n+1)/8).

Original entry on oeis.org

0, 1, 5, 13, 27, 48, 78, 118, 170, 235, 315, 411, 525, 658, 812, 988, 1188, 1413, 1665, 1945, 2255, 2596, 2970, 3378, 3822, 4303, 4823, 5383, 5985, 6630, 7320, 8056, 8840, 9673, 10557, 11493, 12483, 13528, 14630, 15790, 17010, 18291, 19635, 21043, 22517, 24058
Offset: 0

Views

Author

Keywords

Comments

Number of triangles in triangular matchstick arrangement of side n, for n >= 1. Row sums of A085691.
We observe that the sequence is the transform of A006578 by the following transform T: T(u_0,u_1,u_2,u_3,...)=(u_0,u_0+u_1, u_0+u_1+u_2, u_0+u_1+u_2+u_3+u_4,...). In another terms v_p=sum(u_k,k=0..p) and the G.f phi_v of v is given by: phi_v=phi_u/(1-z). - Richard Choulet, Jan 28 2010
Row sums of A220053, for n > 0. - Reinhard Zumkeller, Dec 03 2012
a(n) has the expansion (1*0)+(1*1)+(4*1)+(4*2)+(7*2)+(7*3)+..., where the expansion stops when a(n) has n+1 number of terms. The expansion starts at (1*0), and progresses by alternating addition of 1 to the second number and 3 to the first number. - Arlu Genesis A. Padilla, Jun 04 2014
Taking the absolute values of each n-th difference and excluding the first n terms of each mentioned sequence, A002717 has the first difference A006578 (see formula of Michael Somos dated Jun 09 2014), the second difference A032766 (see 'partial sum' crossref), the third difference A000034, the fourth difference A000012, and the fifth to n-th difference A000004. - Arlu Genesis A. Padilla, Jun 12 2014

Examples

			f(3)=13 because the following figure contains 13 triangles if horizontal bars are added:
....... /\
...... /\/\
..... /\/\/\
G.f. = x + 5*x^2 + 13*x^3 + 27*x^4 + 48*x^5 + 78*x^6 + 118*x^7 + 170*x^8 + ...
		

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, p. 83.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000292 number of triangles with same orientation as largest triangle, A002623 number of triangles pointing in opposite direction to largest triangle, A085691 number of triangles of side k in arrangement of side n.
Bisections: A135712 (odd part), A135713 (even part).

Programs

  • Magma
    [Floor(n*(n+2)*(2*n+1)/8): n in [0..50]]; // Wesley Ivan Hurt, Jun 04 2014
  • Maple
    A002717:=n->floor(n*(n+2)*(2*n+1)/8); seq(A002717(n), n=0..100);
  • Mathematica
    Table[Floor[n(n+2)(2n+1)/8],{n,0,50}] (* or *) LinearRecurrence[{3,-2,-2,3,-1},{0,1,5,13,27},50] (* Harvey P. Dale, Jan 20 2013 *)
  • PARI
    {a(n) = n * (n+2) * (2*n+1) \ 8};
    

Formula

a(n) = (1/16)*[2n(2n+1)(n+2)+cos(Pi*n)-1]. - Justin C. Bozonier (justinb67(AT)excite.com), Dec 05 2000
a(m+1)-2a(m)+2a(m-2)-a(m-3) = 3. - Len Smiley, Oct 08 2001
a(n) = (2n(2n+1)(n+2)+(-1)^n-1)/16. - Wesley Petty (Wesley.Petty(AT)mail.tamucc.edu), Oct 25 2003
a(n) = A000292(n-1) + A002623(n-2). - Hugo Pfoertner, Mar 06 2004
a(n) = Sum_{k=0..n} (-1)^(n-k)*k*binomial(k+1,2).
G.f.: x(1+2x)/((1+x)(1-x)^4). - Simon Plouffe in his 1992 dissertation (with a different offset).
a(0)=0, a(1)=1, a(2)=5, a(3)=13, a(4)=27, a(n)=3*a(n-1)-2*a(n-2)-2*a(n-3)+ 3*a(n-4)- a(n-5). - Harvey P. Dale, Jan 20 2013
a(n) = a(n-1) + A016777(floor(0.5*n))*floor(0.5+0.5*n). - Arlu Genesis A. Padilla, Jun 04 2014
a(-n) = - A045947(n). a(n) = a(n-1) + A006578(n). - Michael Somos, Jun 09 2014
a(n) = Sum_{i=1..n} T(n-i+1)+T(n-2*i+1), where T(n)=n*(n+1)/2=A000217(n) if n>0 and 0 if n<=0. So we have a(n+2)-a(n)=(n+2)^2+(n+1)*(n+2)/2. - Maurice Mischler, Sep 08 2014
E.g.f.: (x*(2*x^2 + 11*x + 9)*cosh(x) + (2*x^3 + 11*x^2 + 9*x - 1)*sinh(x))/8. - Stefano Spezia, Jul 19 2022

A194447 Rank of the n-th region of the set of partitions of j, if 1<=n<=A000041(j).

Original entry on oeis.org

0, 0, 0, 1, -1, 2, -2, 1, 2, 2, -5, 2, 3, 3, -8, 1, 2, 2, 2, 4, 3, -14, 2, 3, 3, 3, 2, 4, 4, -21, 1, 2, 2, 2, 4, 3, 1, 3, 5, 5, 4, -32, 2, 3, 3, 3, 2, 4, 4, 1, 4, 3, 5, 6, 5, -45, 1, 2, 2, 2, 4, 3, 1, 3, 5, 5, 4, -2, 2, 4, 4, 5, 3, 6, 6, 5, -65
Offset: 1

Views

Author

Omar E. Pol, Dec 04 2011

Keywords

Comments

Here the rank of a "region" is defined to be the largest part minus the number of parts (the same idea as the Dyson's rank of a partition).
Also triangle read by rows: T(j,k) = rank of the k-th region of the last section of the set of partitions of j.
The sum of every row is equal to zero.
Note that in some rows there are several negative terms. - Omar E. Pol, Oct 27 2012
For the definition of "region" see A206437. See also A225600 and A225610. - Omar E. Pol, Aug 12 2013

Examples

			In the triangle T(j,k) for j = 6 the number of regions in the last section of the set of partitions of 6 is equal to 4. The first region given by [2] has rank 2-1 = 1. The second region given by [4,2] has rank 4-2 = 2. The third region given by [3] has rank 3-1 = 2. The fourth region given by [6,3,2,2,1,1,1,1,1,1,1] has rank 6-11 = -5 (see below):
From _Omar E. Pol_, Aug 12 2013: (Start)
---------------------------------------------------------
.    Regions       Illustration of ranks of the regions
---------------------------------------------------------
.    For J=6        k=1     k=2      k=3        k=4
.  _ _ _ _ _ _                              _ _ _ _ _ _
. |_ _ _      |                     _ _ _   .          |
. |_ _ _|_    |           _ _ _ _   * * .|    .        |
. |_ _    |   |     _ _   * * .  |              .      |
. |_ _|_ _|_  |     * .|        .|                .    |
.           | |                                     .  |
.           | |                                       .|
.           | |                                       *|
.           | |                                       *|
.           | |                                       *|
.           | |                                       *|
.           |_|                                       *|
.
So row 6 lists:     1       2         2              -5
(End)
Written as a triangle begins:
0;
0;
0;
1,-1;
2,-2;
1,2,2,-5;
2,3,3,-8;
1,2,2,2,4,3,-14;
2,3,3,3,2,4,4,-21;
1,2,2,2,4,3,1,3,5,5,4,-32;
2,3,3,3,2,4,4,1,4,3,5,6,5,-45;
1,2,2,2,4,3,1,3,5,5,4,-2,2,4,4,5,3,6,6,5,-65;
2,3,3,3,2,4,4,1,4,3,5,6,5,-3,3,5,5,4,5,4,7,7,6,-88;
		

Crossrefs

Row j has length A187219(j). The absolute value of the last term of row j is A000094(j+1). Row sums give A000004.

Formula

a(n) = A141285(n) - A194446(n). - Omar E. Pol, Dec 05 2011

A214292 Triangle read by rows: T(n,k) = T(n-1,k-1) + T(n-1,k), 0 < k < n with T(n,0) = n and T(n,n) = -n.

Original entry on oeis.org

0, 1, -1, 2, 0, -2, 3, 2, -2, -3, 4, 5, 0, -5, -4, 5, 9, 5, -5, -9, -5, 6, 14, 14, 0, -14, -14, -6, 7, 20, 28, 14, -14, -28, -20, -7, 8, 27, 48, 42, 0, -42, -48, -27, -8, 9, 35, 75, 90, 42, -42, -90, -75, -35, -9, 10, 44, 110, 165, 132, 0, -132, -165, -110, -44, -10
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 12 2012

Keywords

Examples

			The triangle begins:
    0:                              0
    1:                            1   -1
    2:                          2   0   -2
    3:                       3    2   -2   -3
    4:                     4    5   0   -5   -4
    5:                  5    9    5   -5   -9   -5
    6:                6   14   14   0  -14  -14   -6
    7:             7   20   28   14  -14  -28  -20   -7
    8:           8   27   48   42   0  -42  -48  -27   -8
    9:        9   35   75   90   42  -42  -90  -75  -35   -9
   10:     10   44  110  165  132   0 -132 -165 -110  -44  -10
   11:  11   54  154  275  297  132 -132 -297 -275 -154  -54  -11  .
		

Crossrefs

Programs

  • Haskell
    a214292 n k = a214292_tabl !! n !! k
    a214292_row n = a214292_tabl !! n
    a214292_tabl = map diff $ tail a007318_tabl
       where diff row = zipWith (-) (tail row) row
  • Mathematica
    row[n_] := Table[Binomial[n, k], {k, 0, n}] // Differences;
    T[n_, k_] := row[n + 1][[k + 1]];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 31 2018 *)

Formula

T(n,k) = A007318(n+1,k+1) - A007318(n+1,k), 0<=k<=n, i.e. first differences of rows in Pascal's triangle;
T(n,k) = -T(n,k);
row sums and central terms equal 0, cf. A000004;
sum of positive elements of n-th row = A014495(n+1);
T(n,0) = n;
T(n,1) = A000096(n-2) for n > 1; T(n,1) = - A080956(n) for n > 0;
T(n,2) = A005586(n-4) for n > 3; T(n,2) = A129936(n-2);
T(n,3) = A005587(n-6) for n > 5;
T(n,4) = A005557(n-9) for n > 8;
T(n,5) = A064059(n-11) for n > 10;
T(n,6) = A064061(n-13) for n > 12;
T(n,7) = A124087(n) for n > 14;
T(n,8) = A124088(n) for n > 16;
T(2*n+1,n) = T(2*n+2,n) = A000108(n+1), Catalan numbers;
T(2*n+3,n) = A000245(n+2);
T(2*n+4,n) = A002057(n+1);
T(2*n+5,n) = A000344(n+3);
T(2*n+6,n) = A003517(n+3);
T(2*n+7,n) = A000588(n+4);
T(2*n+8,n) = A003518(n+4);
T(2*n+9,n) = A001392(n+5);
T(2*n+10,n) = A003519(n+5);
T(2*n+11,n) = A000589(n+6);
T(2*n+12,n) = A090749(n+6);
T(2*n+13,n) = A000590(n+7).

A193356 If n is even then 0, otherwise n.

Original entry on oeis.org

1, 0, 3, 0, 5, 0, 7, 0, 9, 0, 11, 0, 13, 0, 15, 0, 17, 0, 19, 0, 21, 0, 23, 0, 25, 0, 27, 0, 29, 0, 31, 0, 33, 0, 35, 0, 37, 0, 39, 0, 41, 0, 43, 0, 45, 0, 47, 0, 49, 0, 51, 0, 53, 0, 55, 0, 57, 0, 59, 0, 61, 0, 63, 0, 65, 0, 67, 0, 69, 0, 71, 0, 73, 0, 75
Offset: 1

Views

Author

Keywords

Comments

Multiplicative with a(2^e)=0 if e>0 and a(p^e)=p^e for odd primes p. - R. J. Mathar, Aug 01 2011
A005408 and A000004 interleaved (the usual OEIS policy is not to include sequences like this where alternate terms are zero; this is an exception). - Omar E. Pol, Feb 02 2013
Row sums of A057211. - Omar E. Pol, Mar 05 2014
Column k=2 of triangle A196020. - Omar E. Pol, Aug 07 2015
a(n) is the determinant of the (n+2) X (n+2) circulant matrix with the first row [0,0,1,1,...,1]. This matrix is closely linked with the famous ménage problem (see also comments of Vladimir Shevelev in sequence A000179). Namely it defines the class of permutations p of 1,2,...,n+2 such that p(i)<>i and p(i)<>i+1 for i=1,2,...,n+1, and p(n+2)<>1,n+2. And a(n) is also the difference between the number of even and odd such permutations. - Dmitry Efimov, Feb 02 2016

References

  • Franz Lemmermeyer, Reciprocity Laws. From Euler to Eisenstein, Springer, 2000, p. 237, eq. (8.5).

Crossrefs

Programs

Formula

a(n) = n^k mod 2n, for any k>=2, also for k=n. [extended by Wolfdieter Lang, Dec 21 2011]
Dirichlet g.f.: (1-2^(1-s))*zeta(s-1). - R. J. Mathar, Aug 01 2011
G.f.: x*(1+x^2)/(1-x^2)^2. - Philippe Deléham, Feb 13 2012
a(n) = A027656(A042948(n-1)) = (1-(-1)^n)*n/2. - Bruno Berselli, Feb 19 2012
a(n) = n * (n mod 2). - Wesley Ivan Hurt, Jun 29 2013
G.f.: Sum_{n >= 1} A000010(n)*x^n/(1 + x^n). - Mircea Merca, Feb 22 2014
a(n) = 2*a(n-2)-a(n-4), for n>4. - Wesley Ivan Hurt, Aug 07 2015
E.g.f.: x*cosh(x). - Robert Israel, Feb 03 2016
a(n) = Product_{k=1..floor(n/2)}(sin(2*Pi*k/n))^2, for n >= 1 (with the empty product put to 1). Trivial for even n from the factor 0 for k = n/2. For odd n see, e.g., the Lemmermeyer reference, eq. (8.5) on p. 237. - Wolfdieter Lang, Aug 29 2016
a(n) = Sum_{k=1..n} (-1)^((n-k)*k). - Rick L. Shepherd, Sep 18 2020
a(n) = Sum_{k=1..n} (-1)^(1+gcd(k,n)) = Sum_{d | n} (-1)^(d+1)*phi(n/d), where phi(n) = A000010(n). - Peter Bala, Jan 14 2024
Dirichlet g.f.: DirichletLambda(s-1). - Michael Shamos, Jun 13 2025

A003817 a(0) = 0, a(n) = a(n-1) OR n.

Original entry on oeis.org

0, 1, 3, 3, 7, 7, 7, 7, 15, 15, 15, 15, 15, 15, 15, 15, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63
Offset: 0

Views

Author

Keywords

Comments

Also, 0+1+2+...+n in lunar arithmetic in base 2 written in base 10. - N. J. A. Sloane, Oct 02 2010
For n>0: replace all 0's with 1's in binary representation of n. - Reinhard Zumkeller, Jul 14 2003

Crossrefs

This is Guy Steele's sequence GS(6, 6) (see A135416).
Cf. A167832, A167878. - Reinhard Zumkeller, Nov 14 2009
Cf. A179526; subsequence of A007448. - Reinhard Zumkeller, Jul 18 2010
Cf. A265705.

Programs

  • Haskell
    import Data.Bits ((.|.))
    a003817 n = if n == 0 then 0 else 2 * a053644 n - 1
    a003817_list = scanl (.|.) 0 [1..] :: [Integer]
    -- Reinhard Zumkeller, Dec 08 2012, Jan 15 2012
    
  • Maple
    A003817 := n -> n + Bits:-Nand(n, n):
    seq(A003817(n), n=0..61); # Peter Luschny, Sep 23 2019
  • Mathematica
    a[0] = 0; a[n_] := a[n] = BitOr[ a[n-1], n]; Table[a[n], {n, 0, 61}] (* Jean-François Alcover, Dec 19 2011 *)
    nxt[{n_,a_}]:={n+1,BitOr[a,n+1]}; Transpose[NestList[nxt,{0,0},70]] [[2]] (* Harvey P. Dale, May 06 2016 *)
    2^BitLength[Range[0,100]]-1 (* Paolo Xausa, Feb 08 2024 *)
  • PARI
    a(n)=1<<(log(2*n+1)\log(2))-1 \\ Charles R Greathouse IV, Dec 08 2011
    
  • Python
    def a(n): return 0 if n==0 else 1 + 2*a(int(n/2)) # Indranil Ghosh, Apr 28 2017
    
  • Python
    def A003817(n): return (1<Chai Wah Wu, Jul 17 2024

Formula

a(n) = a(n-1) + n*(1-floor(a(n-1)/n)). If 2^(k-1) <= n < 2^k, a(n) = 2^k - 1. - Benoit Cloitre, Aug 25 2002
a(n) = 1 + 2*a(floor(n/2)) for n > 0. - Benoit Cloitre, Apr 04 2003
G.f.: (1/(1-x)) * Sum_{k>=0} 2^k*x^2^k. - Ralf Stephan, Apr 18 2003
a(n) = 2*A053644(n)-1 = A092323(n) + A053644(n). - Reinhard Zumkeller, Feb 15 2004; corrected by Anthony Browne, Jun 26 2016
a(n) = OR{k OR (n-k): 0<=k<=n}. - Reinhard Zumkeller, Jul 15 2008
For n>0: a(n+1) = A035327(n) + n = A035327(n) XOR n. - Reinhard Zumkeller, Nov 14 2009
A092323(n+1) = floor(a(n)/2). - Reinhard Zumkeller, Jul 18 2010
a(n) = A265705(n,0) = A265705(n,n). - Reinhard Zumkeller, Dec 15 2015
a(n) = A062383(n) - 1.
G.f. A(x) satisfies: A(x) = 2*A(x^2)*(1 + x) + x/(1 - x). - Ilya Gutkovskiy, Aug 31 2019
a(n) >= A175039(n) - Austin Shapiro, Dec 29 2022

A145153 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where sequence a_k of column k is the expansion of x/((1 - x - x^4)*(1 - x)^(k - 1)).

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 1, 3, 3, 1, 1, 0, 1, 4, 6, 4, 2, 1, 0, 1, 5, 10, 10, 6, 3, 1, 0, 1, 6, 15, 20, 16, 9, 4, 1, 0, 1, 7, 21, 35, 36, 25, 13, 5, 2, 0, 1, 8, 28, 56, 71, 61, 38, 18, 7, 3, 0, 1, 9, 36, 84, 127, 132, 99, 56, 25, 10, 4, 0, 1, 10, 45, 120, 211, 259, 231, 155, 81, 35, 14, 5
Offset: 0

Views

Author

Alois P. Heinz, Oct 03 2008

Keywords

Comments

Each row sequence a_n (for n > 0) is produced by a polynomial of degree n-1, whose (rational) coefficients are given in row n of A145140/A145141. The coefficients *(n-1)! are given in A145142.
Each column sequence a_k is produced by a recursion, whose coefficients are given by row k of A145152.

Examples

			Square array A(n,k) begins:
  0, 0, 0,  0,  0,  0,   0, ...
  1, 1, 1,  1,  1,  1,   1, ...
  0, 1, 2,  3,  4,  5,   6, ...
  0, 1, 3,  6, 10, 15,  21, ...
  0, 1, 4, 10, 20, 35,  56, ...
  1, 2, 6, 16, 36, 71, 127, ...
		

Crossrefs

Columns 0-9 give: A017898(n-1) for n>0, A003269, A098578, A145131, A145132, A145133, A145134, A145135, A145136, A145137.
Main diagonal gives: A145138.
Antidiaginal sums give: A145139.
Numerators/denominators of polynomials for rows give: A145140/A145141.

Programs

  • Maple
    A:= proc(n, k) coeftayl (x/ (1-x-x^4)/ (1-x)^(k-1), x=0, n) end:
    seq(seq(A(n, d-n), n=0..d), d=0..13);
  • Mathematica
    a[n_, k_] := SeriesCoefficient[x/(1 - x - x^4)/(1 - x)^(k - 1), {x, 0, n}]; Table[a[n - k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 05 2013 *)

Formula

G.f. of column k: x/((1-x-x^4)*(1-x)^(k-1)).

A053032 Odd primes p with one zero in Fibonacci numbers mod p.

Original entry on oeis.org

11, 19, 29, 31, 59, 71, 79, 101, 131, 139, 151, 179, 181, 191, 199, 211, 229, 239, 251, 271, 311, 331, 349, 359, 379, 419, 431, 439, 461, 479, 491, 499, 509, 521, 541, 571, 599, 619, 631, 659, 691, 709, 719, 739, 751, 809, 811, 839, 859, 911, 919, 941, 971
Offset: 1

Views

Author

Henry Bottomley, Feb 23 2000

Keywords

Comments

Also, odd primes that divide Lucas numbers of odd index. - T. D. Noe, Jul 25 2003
From Charles R Greathouse IV, Dec 14 2016: (Start)
It seems that this sequence contains about 1/3 of the primes. In particular, members of this sequence constitute:
35 of the first 10^2 primes
330 of the first 10^3 primes
3328 of the first 10^4 primes
33371 of the first 10^5 primes
333329 of the first 10^6 primes
3333720 of the first 10^7 primes
33333463 of the first 10^8 primes
etc. (End)
Of the Fibonacci-like sequences modulo a prime p that are not A000004, one of them has a period length less than A001175(p) if and only if p = 5 or p is in this sequence. - Isaac Saffold, Dec 18 2018
Odd primes in A053031. - Jianing Song, Jun 19 2019

Examples

			From _Michael B. Porter_, Jan 25 2019: (Start)
The Fibonacci numbers (mod 7) repeat the pattern 0, 1, 1, 2, 3, 5, 1, 6, 0, 6, 6, 5, 4, 2, 6, 1. Since there are two zeros, 7 is not in the sequence.
The Fibonacci numbers (mod 11) repeat the pattern 0, 1, 1, 2, 3, 5, 8, 2, 10, 1 which has only one zero, so 11 is in the sequence.
(End)
		

Crossrefs

Cf. A001175, A001177. See A112860 for another version.
Cf. A000204 (Lucas numbers), A001602 (index of the smallest Fibonacci number divisible by prime(n)).
Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = m*x(n+1) + x(n). Let w(k) be the number of zeros in a fundamental period of {x(n)} modulo k.
| m=1 | m=2 | m=3
-----------------------------+------------+---------+---------
The sequence {x(n)} | A000045 | A000129 | A006190
The sequence {w(k)} | A001176 | A214027 | A322906
Primes p such that w(p) = 1 | A112860* | A309580 | A309586
Primes p such that w(p) = 2 | A053027** | A309581 | A309587
Primes p such that w(p) = 4 | A053028*** | A261580 | A309588
Numbers k such that w(k) = 1 | A053031 | A309583 | A309591
Numbers k such that w(k) = 2 | A053030 | A309584 | A309592
Numbers k such that w(k) = 4 | A053029 | A309585 | A309593
* and also this sequence U {2}
** also primes dividing Lucas numbers of even index
*** also primes dividing no Lucas number

Programs

  • Mathematica
    Prime@ Rest@ Position[Table[Count[Drop[NestWhile[Append[#, Mod[Total@ Take[#, -2], n]] &, {1, 1}, If[Length@ # < 3, True, Take[#, -2] != {1, 1}] &], -2], 0], {n, Prime@ Range@ 168}], 1][[All, 1]] (* Michael De Vlieger, Aug 08 2018 *)
  • PARI
    fibmod(n,m)=(Mod([1, 1; 1, 0], m)^n)[1, 2]
    is(n)=my(k=n+[0, -1, 1, 1, -1][n%5+1]); k>>=valuation(k,2)-1; fibmod(k,n)==0 && fibmod(k/2,n) && isprime(n) \\ Charles R Greathouse IV, Dec 14 2016

Formula

A prime p = prime(i) is in this sequence if p > 2 and A001602(i)/2 is odd. - T. D. Noe, Jul 25 2003

A185651 A(n,k) = Sum_{d|n} phi(d)*k^(n/d); square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 3, 6, 3, 0, 0, 4, 12, 12, 4, 0, 0, 5, 20, 33, 24, 5, 0, 0, 6, 30, 72, 96, 40, 6, 0, 0, 7, 42, 135, 280, 255, 84, 7, 0, 0, 8, 56, 228, 660, 1040, 780, 140, 8, 0, 0, 9, 72, 357, 1344, 3145, 4200, 2205, 288, 9, 0
Offset: 0

Views

Author

Alois P. Heinz, Aug 29 2013

Keywords

Comments

Dirichlet convolution of phi(n) and k^n. - Richard L. Ollerton, May 07 2021

Examples

			Square array A(n,k) begins:
  0, 0,  0,   0,    0,     0,     0, ...
  0, 1,  2,   3,    4,     5,     6, ...
  0, 2,  6,  12,   20,    30,    42, ...
  0, 3, 12,  33,   72,   135,   228, ...
  0, 4, 24,  96,  280,   660,  1344, ...
  0, 5, 40, 255, 1040,  3145,  7800, ...
  0, 6, 84, 780, 4200, 15810, 46956, ...
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    A:= (n, k)-> add(phi(d)*k^(n/d), d=divisors(n)):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    a[, 0] = a[0, ] = 0; a[n_, k_] := Sum[EulerPhi[d]*k^(n/d), {d, Divisors[n]}]; Table[a[n - k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 06 2013 *)

Formula

A(n,k) = Sum_{d|n} phi(d)*k^(n/d).
A(n,k) = Sum_{i=0..min(n,k)} C(k,i) * i! * A258170(n,i). - Alois P. Heinz, May 22 2015
G.f. for column k: Sum_{n>=1} phi(n)*k*x^n/(1-k*x^n) for k >= 0. - Petros Hadjicostas, Nov 06 2017
From Richard L. Ollerton, May 07 2021: (Start)
A(n,k) = Sum_{i=1..n} k^gcd(n,i).
A(n,k) = Sum_{i=1..n} k^(n/gcd(n,i))*phi(gcd(n,i))/phi(n/gcd(n,i)).
A(n,k) = A075195(n,k)*n for n >= 1, k >= 1. (End)
Previous Showing 21-30 of 350 results. Next