cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 263 results. Next

A060821 Triangle read by rows. T(n, k) are the coefficients of the Hermite polynomial of order n, for 0 <= k <= n.

Original entry on oeis.org

1, 0, 2, -2, 0, 4, 0, -12, 0, 8, 12, 0, -48, 0, 16, 0, 120, 0, -160, 0, 32, -120, 0, 720, 0, -480, 0, 64, 0, -1680, 0, 3360, 0, -1344, 0, 128, 1680, 0, -13440, 0, 13440, 0, -3584, 0, 256, 0, 30240, 0, -80640, 0, 48384, 0, -9216, 0, 512, -30240, 0, 302400, 0, -403200, 0, 161280, 0, -23040, 0, 1024
Offset: 0

Views

Author

Vladeta Jovovic, Apr 30 2001

Keywords

Comments

Exponential Riordan array [exp(-x^2), 2x]. - Paul Barry, Jan 22 2009

Examples

			[1], [0, 2], [ -2, 0, 4], [0, -12, 0, 8], [12, 0, -48, 0, 16], [0, 120, 0, -160, 0, 32], ... .
Thus H_0(x) = 1, H_1(x) = 2*x, H_2(x) = -2 + 4*x^2, H_3(x) = -12*x + 8*x^3, H_4(x) = 12 - 48*x^2 + 16*x^4, ...
Triangle starts:
     1;
     0,     2;
    -2,     0,      4;
     0,   -12,      0,      8;
    12,     0,    -48,      0,      16;
     0,   120,      0,   -160,       0,    32;
  -120,     0,    720,      0,    -480,     0,     64;
     0, -1680,      0,   3360,       0, -1344,      0,   128;
  1680,     0, -13440,      0,   13440,     0,  -3584,     0,    256;
     0, 30240,      0, -80640,       0, 48384,      0, -9216,      0, 512;
-30240,     0, 302400,      0, -403200,     0, 161280,     0, -23040,   0, 1024;
		

References

  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 24, equations 24:4:1 - 24:4:8 at page 219.

Crossrefs

Cf. A001814, A001816, A000321, A062267 (row sums).
Without initial zeros, same as A059343.

Programs

  • Maple
    with(orthopoly):for n from 0 to 10 do H(n,x):od;
    T := proc(n,m) if n-m >= 0 and n-m mod 2 = 0 then ((-1)^((n-m)/2))*(2^m)*n!/(m!*((n-m)/2)!) else 0 fi; end;
    # Alternative:
    T := proc(n,k) option remember; if k > n then 0 elif n = k then 2^n else
    (T(n, k+2)*(k+2)*(k+1))/(2*(k-n)) fi end:
    seq(print(seq(T(n, k), k = 0..n)), n = 0..10); # Peter Luschny, Jan 08 2023
  • Mathematica
    Flatten[ Table[ CoefficientList[ HermiteH[n, x], x], {n, 0, 10}]] (* Jean-François Alcover, Jan 18 2012 *)
  • PARI
    for(n=0,9,v=Vec(polhermite(n));forstep(i=n+1,1,-1,print1(v[i]", "))) \\ Charles R Greathouse IV, Jun 20 2012
    
  • Python
    from sympy import hermite, Poly, symbols
    x = symbols('x')
    def a(n): return Poly(hermite(n, x), x).all_coeffs()[::-1]
    for n in range(21): print(a(n)) # Indranil Ghosh, May 26 2017
    
  • Python
    def Trow(n: int) -> list[int]:
        row: list[int] = [0] * (n + 1); row[n] = 2**n
        for k in range(n - 2, -1, -2):
            row[k] = -(row[k + 2] * (k + 2) * (k + 1)) // (2 * (n - k))
        return row  # Peter Luschny, Jan 08 2023

Formula

T(n, k) = ((-1)^((n-k)/2))*(2^k)*n!/(k!*((n-k)/2)!) if n-k is even and >= 0, else 0.
E.g.f.: exp(-y^2 + 2*y*x).
From Paul Barry, Aug 28 2005: (Start)
T(n, k) = n!/(k!*2^((n-k)/2)((n-k)/2)!)2^((n+k)/2)cos(Pi*(n-k)/2)(1 + (-1)^(n+k))/2;
T(n, k) = A001498((n+k)/2, (n-k)/2)*cos(Pi*(n-k)/2)2^((n+k)/2)(1 + (-1)^(n+k))/2.
(End)
Row sums: A062267. - Derek Orr, Mar 12 2015
a(n*(n+3)/2) = a(A000096(n)) = 2^n. - Derek Orr, Mar 12 2015
Recurrence for fixed n: T(n, k) = -(k+2)*(k+1)/(2*(n-k)) * T(n, k+2), starting with T(n, n) = 2^n. - Ralf Stephan, Mar 26 2016
The m-th row consecutive nonzero entries in increasing order are (-1)^(c/2)*(c+b)!/(c/2)!b!*2^b with c = m, m-2, ..., 0 and b = m-c if m is even and with c = m-1, m-3, ..., 0 with b = m-c if m is odd. For the 10th row starting at a(55) the 6 consecutive nonzero entries in order are -30240,302400,-403200,161280,-23040,1024 given by c = 10,8,6,4,2,0 and b = 0,2,4,6,8,10. - Richard Turk, Aug 20 2017

A142463 a(n) = 2*n^2 + 2*n - 1.

Original entry on oeis.org

-1, 3, 11, 23, 39, 59, 83, 111, 143, 179, 219, 263, 311, 363, 419, 479, 543, 611, 683, 759, 839, 923, 1011, 1103, 1199, 1299, 1403, 1511, 1623, 1739, 1859, 1983, 2111, 2243, 2379, 2519, 2663, 2811, 2963, 3119, 3279, 3443, 3611, 3783, 3959, 4139, 4323, 4511, 4703, 4899, 5099
Offset: 0

Views

Author

Roger L. Bagula, Sep 19 2008

Keywords

Comments

Essentially the same as A132209.
From Vincenzo Librandi, Nov 25 2010: (Start)
Numbers k such that 2*k + 3 is a square.
First diagonal of A144562. (End)
The terms a(n) give the values for c of indefinite binary quadratic forms [a, b, c] = [2, 4n+2, a(n)] of discriminant D = 12, where a and c can be switched. The positive numbers represented by these forms are given in A084917. - Klaus Purath, Aug 31 2023

Crossrefs

Programs

Formula

a(n) = a(n-1) + 4*n.
From Paul Barry, Nov 03 2009: (Start)
G.f.: (1 - 6*x + x^2)/(1-x)^3.
a(n) = 4*C(n+1,2) - 1. (End)
a(n) = -A188653(2*n+1). - Reinhard Zumkeller, Apr 13 2011
a(n) = 3*( Sum_{k=1..n} k^5 )/( Sum_{k=1..n} k^3 ), n > 0. - Gary Detlefs, Oct 18 2011
a(n) = (A005408(n)^2 - 3)/2. - Zhandos Mambetaliyev, Feb 11 2017
E.g.f.: (-1 + 4*x + 2*x^2)*exp(x). - G. C. Greubel, Mar 01 2021
From Leo Tavares, Nov 22 2021: (Start)
a(n) = 2*A005563(n) - A005408(n). See Hexagonic Diamonds illustration.
a(n) = A016945(n-1) + A001105(n-1). See Hexagonic Rectangles illustration.
a(n) = A004767(n-1) + A046092(n-1). See Hexagonic Crosses illustration.
a(n) = A002378(n) + A028387(n-1). See Hexagonic Columns illustration. (End)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Wesley Ivan Hurt, Dec 03 2021
Sum_{n>=0} 1/a(n) = tan(sqrt(3)*Pi/2)*Pi/(2*sqrt(3)). - Amiram Eldar, Sep 16 2022

Extensions

Edited by the Associate Editors of the OEIS, Sep 02 2009

A056000 a(n) = n*(n+9)/2.

Original entry on oeis.org

0, 5, 11, 18, 26, 35, 45, 56, 68, 81, 95, 110, 126, 143, 161, 180, 200, 221, 243, 266, 290, 315, 341, 368, 396, 425, 455, 486, 518, 551, 585, 620, 656, 693, 731, 770, 810, 851, 893, 936, 980, 1025, 1071, 1118, 1166, 1215, 1265, 1316, 1368, 1421, 1475
Offset: 0

Views

Author

Barry E. Williams, Jun 16 2000

Keywords

Comments

Numbers m >= 0 such that 8m+81 is a square. - Bruce J. Nicholson, Jul 29 2017

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, p. 193.

Crossrefs

Column m=2 of (1, 5)-Pascal triangle A096940.
Cf. numbers of the form n*(d*n+10-d)/2 indexed in A140090.

Programs

  • Mathematica
    Table[n (n + 9)/2, {n, 0, 50}] (* or *)
    FoldList[#1 + #2 + 4 &, Range[0, 50]] (* or *)
    Table[PolygonalNumber[n + 4] - 10, {n, 0, 50}] (* or *)
    CoefficientList[Series[x (5 - 4 x)/(1 - x)^3, {x, 0, 50}], x] (* Michael De Vlieger, Jul 30 2017 *)
  • PARI
    a(n)=n*(n+9)/2 \\ Charles R Greathouse IV, Sep 24 2015

Formula

a(n) = A000217(n+4) - 10.
G.f.: x(5-4x)/(1-x)^3.
From Zerinvary Lajos, Oct 01 2006: (Start)
a(n) = A000096(n) + 3*n.
a(n) = A055999(n) + n.
a(n) = A056115(n) - n.
(End)
a(n) = binomial(n,2) - 4*n, n >= 9. - Zerinvary Lajos, Nov 25 2006
a(n) = A126890(n,4) for n > 3. - Reinhard Zumkeller, Dec 30 2006
a(n) = A028569(n)/2. - Zerinvary Lajos, Feb 12 2007
If we define f(n,i,a) = Sum_{k=0..(n-i)} binomial(n,k)*stirling1(n-k,i)*Product_{j=0..k-1} (-a-j), then a(n) = -f(n,n-1,5), for n >= 1. - Milan Janjic, Dec 20 2008
a(n) = n + a(n-1) + 4. - Vincenzo Librandi, Aug 07 2010
a(n) = Sum_{k=1..n} (k+4). - Gary Detlefs, Aug 10 2010
Sum_{n>=1} 1/a(n) = 7129/11340. - R. J. Mathar, Jul 14 2012
a(n) = 5n - floor(n/2) + floor(n^2/2). - Wesley Ivan Hurt, Jun 15 2013
E.g.f.: (1/2)*(x^2 + 10*x)*exp(x). - G. C. Greubel, Jul 17 2017
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/9 - 1879/11340. - Amiram Eldar, Jul 03 2020
a(n) = A000217(n+1) + A008585(n) - 1. - Leo Tavares, Sep 22 2022
From Amiram Eldar, Feb 12 2024: (Start)
Product_{n>=1} (1 - 1/a(n)) = -567*cos(sqrt(89)*Pi/2)/(220*Pi).
Product_{n>=1} (1 + 1/a(n)) = 35*cos(sqrt(73)*Pi/2)/(4*Pi). (End)

Extensions

More terms from James Sellers, Jul 04 2000

A140091 a(n) = 3*n*(n + 3)/2.

Original entry on oeis.org

0, 6, 15, 27, 42, 60, 81, 105, 132, 162, 195, 231, 270, 312, 357, 405, 456, 510, 567, 627, 690, 756, 825, 897, 972, 1050, 1131, 1215, 1302, 1392, 1485, 1581, 1680, 1782, 1887, 1995, 2106, 2220, 2337, 2457, 2580, 2706, 2835, 2967
Offset: 0

Views

Author

Omar E. Pol, May 22 2008

Keywords

Comments

a(n) is also the dimension of the irreducible representation of the Lie algebra sl(3) with the highest weight 2*L_1+n*(L_1+L_2). - Leonid Bedratyuk, Jan 04 2010
Number of edges in the hexagonal triangle, T(n) (see the He et al. reference). - Emeric Deutsch, Nov 14 2014
a(n) = twice the area of a triangle having vertices at binomials (C(n,3),C(n+3,3)), (C(n+1,3),C(n+4,3)), and (C(n+2,3),C(n+5,3)) with n>=2. - J. M. Bergot, Mar 01 2018

References

  • W. Fulton, J. Harris, Representation theory: a first course. (1991). page 224, Exercise 15.19. - Leonid Bedratyuk, Jan 04 2010

Crossrefs

The generalized pentagonal numbers b*n+3*n*(n-1)/2, for b = 1 through 12, form sequences A000326, A005449, A045943, A115067, A140090, this sequence, A059845, A140672, A140673, A140674, A140675, A151542.

Programs

Formula

a(n) = A000096(n)*3 = (3*n^2 + 9*n)/2 = n*(3*n+9)/2.
a(n) = a(n-1) + 3*n + 3 with n>0, a(0)=0. - Vincenzo Librandi, Nov 24 2010
G.f.: 3*x*(2 - x)/(1 - x)^3. - Arkadiusz Wesolowski, Dec 24 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2. - Harvey P. Dale, Aug 15 2015
E.g.f.: (1/2)*(3*x^2 + 12*x)*exp(x). - G. C. Greubel, Jul 17 2017
From Amiram Eldar, Feb 25 2022: (Start)
Sum_{n>=1} 1/a(n) = 11/27.
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/9 - 5/27. (End)

A086810 Triangle obtained by adding a leading diagonal 1,0,0,0,... to A033282.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 1, 5, 5, 0, 1, 9, 21, 14, 0, 1, 14, 56, 84, 42, 0, 1, 20, 120, 300, 330, 132, 0, 1, 27, 225, 825, 1485, 1287, 429, 0, 1, 35, 385, 1925, 5005, 7007, 5005, 1430, 0, 1, 44, 616, 4004, 14014, 28028, 32032, 19448, 4862, 0, 1, 54, 936, 7644, 34398, 91728
Offset: 0

Views

Author

Philippe Deléham, Aug 05 2003

Keywords

Comments

Mirror image of triangle A133336. - Philippe Deléham, Dec 10 2008
From Tom Copeland, Oct 09 2011: (Start)
With polynomials
P(0,t) = 0
P(1,t) = 1
P(2,t) = t
P(3,t) = t + 2 t^2
P(4,t) = t + 5 t^2 + 5 t^3
P(5,t) = t + 9 t^2 + 21 t^3 + 14 t^4
The o.g.f. A(x,t) = {1+x-sqrt[(1-x)^2-4xt]}/[2(1+t)] (see Drake et al.).
B(x,t)= x-t x^2/(1-x)= x-t(x^2+x^3+x^4+...) is the comp. inverse in x.
Let h(x,t) = 1/(dB/dx) = (1-x)^2/(1+(1+t)*x*(x-2)) = 1/(1-t(2x+3x^2+4x^3+...)), an o.g.f. in x for row polynomials in t of A181289. Then P(n,t) is given by (1/n!)(h(x,t)*d/dx)^n x, evaluated at x=0, A = exp(x*h(y,t)*d/dy) y, eval. at y=0, and dA/dx = h(A(x,t),t). These results are a special case of A133437 with u(x,t) = B(x,t), i.e., u_1=1 and (u_n)=-t for n > 1. See A001003 for t = 1. (End)
Let U(x,t) = [A(x,t)-x]/t, then U(x,0) = -dB(x,t)/dt and U satisfies dU/dt = UdU/dx, the inviscid Burgers' equation (Wikipedia), also called the Hopf equation (see Buchstaber et al.). Also U(x,t) = U(A(x,t),0) = U(x+tU,0) since U(x,0) = [x-B(x,t)]/t. - Tom Copeland, Mar 12 2012
Diagonals of A132081 are essentially rows of this sequence. - Tom Copeland, May 08 2012
T(r, s) is the number of [0,r]-covering hierarchies with s segments (see Kreweras). - Michel Marcus, Nov 22 2014
From Yu Hin Au, Dec 07 2019: (Start)
T(n,k) is the number of small Schröder n-paths (lattice paths from (0,0) to (2n,0) using steps U=(1,1), F=(2,0), D=(1,-1) with no F step on the x-axis) that has exactly k U steps.
T(n,k) is the number of Schröder trees (plane rooted tree where each internal node has at least two children) with exactly n+1 leaves and k internal nodes. (End)

Examples

			Triangle starts:
  1;
  0,  1;
  0,  1,  2;
  0,  1,  5,  5;
  0,  1,  9, 21, 14;
  ...
		

Crossrefs

The diagonals (except for A000007) are also the diagonals of A033282.
Row sums: A001003 (Schroeder numbers).

Programs

  • Mathematica
    Table[Boole[n == 2] + If[# == -1, 0, Binomial[n - 3, #] Binomial[n + # - 1, #]/(# + 1)] &[k - 1], {n, 2, 12}, {k, 0, n - 2}] // Flatten (* after Jean-François Alcover at A033282, or *)
    Table[If[n == 0, 1, Binomial[n, k] Binomial[n + k, k - 1]/n], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Aug 22 2016 *)
  • PARI
    t(n, k) = if (n==0, 1, binomial(n, k)*binomial(n+k, k-1)/n);
    tabl(nn) = {for (n=0, nn, for (k=0, n, print1(t(n,k), ", ");); print(););} \\ Michel Marcus, Nov 22 2014

Formula

Triangle T(n, k) read by rows; given by [0, 1, 0, 1, 0, 1, ...] DELTA [1, 1, 1, 1, 1, 1, 1, 1, 1, ...] where DELTA is Deléham's operator defined in A084938.
For k>0, T(n, k) = binomial(n-1, k-1)*binomial(n+k, k)/(n+1); T(0, 0) = 1 and T(n, 0) = 0 if n > 0. [corrected by Marko Riedel, May 04 2023]
Sum_{k>=0} T(n, k)*2^k = A107841(n). - Philippe Deléham, May 26 2005
Sum_{k>=0} T(n-k, k) = A005043(n). - Philippe Deléham, May 30 2005
T(n, k) = A108263(n+k, k). - Philippe Deléham, May 30 2005
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A001003(n), A107841(n), A131763(n), A131765(n), A131846(n), A131926(n), A131869(n), A131927(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, respectively. - Philippe Deléham, Nov 05 2007
Sum_{k=0..n} T(n,k)*5^k*(-2)^(n-k) = A152601(n). - Philippe Deléham, Dec 10 2008
Sum_{k=0..n} T(n,k)*(-1)^k*3^(n-k) = A154825(n). - Philippe Deléham, Jan 17 2009
Umbrally, P(n,t) = Lah[n-1,-t*a.]/n! = (1/n)*Sum_{k=1..n-1} binomial(n-2,k-1)a_k t^k/k!, where (a.)^k = a_k = (n-1+k)!/(n-1)!, the rising factorial, and Lah(n,t) = n!*Laguerre(n,-1,t) are the Lah polynomials A008297 related to the Laguerre polynomials of order -1. - Tom Copeland, Oct 04 2014
T(n, k) = binomial(n, k)*binomial(n+k, k-1)/n, for k >= 0; T(0, 0) = 1 (see Kreweras, p. 21). - Michel Marcus, Nov 22 2014
P(n,t) = Lah[n-1,-:Dt:]/n! t^(n-1) with (:Dt:)^k = (d/dt)^k t^k = k! Laguerre(k,0,-:tD:) with (:tD:)^j = t^j D^j. The normalized Laguerre polynomials of 0 order are given in A021009. - Tom Copeland, Aug 22 2016

Extensions

Typo in a(60) corrected by Michael De Vlieger, Nov 21 2019

A067687 Expansion of 1/( 1 - x / Product_{n>=1} (1-x^n) ).

Original entry on oeis.org

1, 1, 2, 5, 12, 29, 69, 165, 393, 937, 2233, 5322, 12683, 30227, 72037, 171680, 409151, 975097, 2323870, 5538294, 13198973, 31456058, 74966710, 178662171, 425791279, 1014754341, 2418382956, 5763538903, 13735781840, 32735391558, 78015643589
Offset: 0

Views

Author

Alford Arnold, Feb 05 2002

Keywords

Comments

Previous name was: Invert transform of right-shifted partition function (A000041).
Sums of the antidiagonals of the array formed by sequences A000007, A000041, A000712, A000716, ... or its transpose A000012, A000027, A000096, A006503, A006504, ....
Row sums of triangle A143866 = (1, 2, 5, 12, 29, 69, 165, ...) and right border of A143866 = (1, 1, 2, 5, 12, ...). - Gary W. Adamson, Sep 04 2008
Starting with offset 1 = A137682 / A000041; i.e. (1, 3, 7, 17, 40, 96, ...) / (1, 2, 3, 5, 7, 11, ...). - Gary W. Adamson, May 01 2009
From L. Edson Jeffery, Mar 16 2011: (Start)
Another approach is the following. Let T be the infinite lower triangular matrix with columns C_k (k=0,1,2,...) such that C_0=A000041 and, for k > 0, such that C_k is the sequence giving the number of partitions of n into parts of k+1 kinds (successive self-convolutions of A000041 yielding A000712, A000716, ...) and shifted down by k rows. Then T begins (ignoring trailing zero entries in the rows)
(1, 0, ... )
(1, 1, 0, ... )
(2, 2, 1, 0, ... )
(3, 5, 3, 1, 0, ... )
(5, 10, 9, 4, 1, 0, ...)
etc., and a(n) is the sum of entries in row n of T. (End)

Examples

			The array begins:
  1,  1,  1,   1,   1,  1,  1, 1, ...
  0,  1,  2,   3,   4,  5,  6, 7, ...
  0,  2,  5,   9,  14, 20, 27, ...
  0,  3, 10,  22,  40, 65, ...
  0,  5, 20,  51, 105, ...
  0,  7, 36, 108, ...
  0, 11, 65, ...
		

Crossrefs

Cf. table A060850.
Antidiagonal sums of A144064.

Programs

  • PARI
    N=66; x='x+O('x^N); et=eta(x); Vec( sum(n=0,N, x^n/et^n ) ) \\ Joerg Arndt, May 08 2009

Formula

a(n) = Sum_{k=1..n} A000041(k-1)*a(n-k). - Vladeta Jovovic, Apr 07 2003
O.g.f.: 1/(1-x*P(x)), P(x) - o.g.f. for number of partitions (A000041). - Vladimir Kruchinin, Aug 10 2010
a(n) ~ c / r^n, where r = A347968 = 0.419600352598356478498775753566700025318... is the root of the equation QPochhammer(r) = r and c = 0.3777957165566422058901624844315414446044096308877617181754... = Log[r]/(Log[(1 - r)*r] + QPolyGamma[1, r] - Log[r]*Derivative[0, 1][QPochhammer][r, r]). - Vaclav Kotesovec, Feb 16 2017, updated Mar 31 2018

Extensions

More terms from Vladeta Jovovic, Apr 07 2003
More terms and better definition from Franklin T. Adams-Watters, Mar 14 2006
New name (using g.f. by Vladimir Kruchinin), Joerg Arndt, Feb 19 2014

A056126 a(n) = n*(n + 17)/2.

Original entry on oeis.org

0, 9, 19, 30, 42, 55, 69, 84, 100, 117, 135, 154, 174, 195, 217, 240, 264, 289, 315, 342, 370, 399, 429, 460, 492, 525, 559, 594, 630, 667, 705, 744, 784, 825, 867, 910, 954, 999, 1045, 1092, 1140, 1189, 1239, 1290, 1342, 1395, 1449, 1504, 1560, 1617, 1675
Offset: 0

Views

Author

Barry E. Williams, Jul 07 2000

Keywords

Crossrefs

Programs

Formula

G.f.: x*(9-8*x)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = A126890(n,8) for n>7. - Reinhard Zumkeller, Dec 30 2006
If we define f(n,i,a) = Sum_{k=0..n-i} binomial(n,k)*stirling1(n-k,i)* Product_{j=0..k-1} (-a-j), then a(n) = -f(n,n-1,9), for n>=1. - Milan Janjic, Dec 20 2008
a(n) = a(n-1) + n + 8 (with a(0)=0). - Vincenzo Librandi, Aug 07 2010
a(n) = 9*n - floor(n/2) + floor(n^2/2). - Wesley Ivan Hurt, Jun 15 2013
E.g.f.: x*(18 + x)*exp(x)/2. - G. C. Greubel, Jan 19 2020
From Amiram Eldar, Jan 10 2021: (Start)
Sum_{n>=1} 1/a(n) = 2*A001008(17)/(17*A002805(17)) = 42142223/104144040.
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/17 - 1768477/20828808. (End)

A226488 a(n) = n*(13*n - 9)/2.

Original entry on oeis.org

0, 2, 17, 45, 86, 140, 207, 287, 380, 486, 605, 737, 882, 1040, 1211, 1395, 1592, 1802, 2025, 2261, 2510, 2772, 3047, 3335, 3636, 3950, 4277, 4617, 4970, 5336, 5715, 6107, 6512, 6930, 7361, 7805, 8262, 8732, 9215, 9711, 10220, 10742, 11277, 11825, 12386, 12960
Offset: 0

Views

Author

Bruno Berselli, Jun 09 2013

Keywords

Comments

Sum of n-th octagonal number and n-th 9-gonal (nonagonal) number.
Sum of reciprocals of a(n), for n>0: 0.629618994194109711163742089971688...

Crossrefs

Cf. A000567, A001106, A153080 (first differences).
Cf. numbers of the form n*(n*k-k+4)/2 listed in A005843 (k=0), A000096 (k=1), A002378 (k=2), A005449 (k=3), A001105 (k=4), A005476 (k=5), A049450 (k=6), A218471 (k=7), A002939 (k=8), A062708 (k=9), A135706 (k=10), A180223 (k=11), A139267 (n=12), this sequence (k=13), A139268 (k=14), A226489 (k=15), A139271 (k=16), A180232 (k=17), A152995 (k=18), A226490 (k=19), A152965 (k=20), A226491 (k=21), A152997 (k=22).

Programs

  • GAP
    List([0..50], n-> n*(13*n-9)/2); # G. C. Greubel, Aug 30 2019
  • Magma
    [n*(13*n-9)/2: n in [0..50]];
    
  • Magma
    I:=[0,2,17]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2) +Self(n-3): n in [1..50]]; // Vincenzo Librandi, Aug 18 2013
    
  • Maple
    A226488:=n->n*(13*n - 9)/2; seq(A226488(n), n=0..50); # Wesley Ivan Hurt, Feb 25 2014
  • Mathematica
    Table[n(13n-9)/2, {n, 0, 50}]
    LinearRecurrence[{3, -3, 1}, {0, 2, 17}, 50] (* Harvey P. Dale, Jun 19 2013 *)
    CoefficientList[Series[x(2+11x)/(1-x)^3, {x, 0, 45}], x] (* Vincenzo Librandi, Aug 18 2013 *)
  • PARI
    a(n)=n*(13*n-9)/2 \\ Charles R Greathouse IV, Sep 24 2015
    
  • Sage
    [n*(13*n-9)/2 for n in (0..50)] # G. C. Greubel, Aug 30 2019
    

Formula

G.f.: x*(2+11*x)/(1-x)^3.
a(n) + a(-n) = A152742(n).
a(0)=0, a(1)=2, a(2)=17; for n>2, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Jun 19 2013
E.g.f.: x*(4 + 13*x)*exp(x)/2. - G. C. Greubel, Aug 30 2019
a(n) = A000567(n) + A001106(n). - Michel Marcus, Aug 31 2019

A047072 Array A read by diagonals: A(h,k)=number of paths consisting of steps from (0,0) to (h,k) such that each step has length 1 directed up or right and no step touches the line y=x unless x=0 or x=h.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 3, 2, 2, 3, 1, 1, 4, 5, 4, 5, 4, 1, 1, 5, 9, 5, 5, 9, 5, 1, 1, 6, 14, 14, 10, 14, 14, 6, 1, 1, 7, 20, 28, 14, 14, 28, 20, 7, 1, 1, 8, 27, 48, 42, 28, 42, 48, 27, 8, 1, 1, 9, 35, 75, 90, 42, 42, 90, 75, 35, 9, 1
Offset: 0

Views

Author

Keywords

Examples

			Array, A(n, k), begins as:
  1, 1,  1,  1,  1,   1,   1,   1, ...;
  1, 2,  1,  2,  3,   4,   5,   6, ...;
  1, 1,  2,  2,  5,   9,  14,  20, ...;
  1, 2,  2,  4,  5,  14,  28,  48, ...;
  1, 3,  5,  5, 10,  14,  42,  90, ...;
  1, 4,  9, 14, 14,  28,  42, 132, ...;
  1, 5, 14, 28, 42,  42,  84, 132, ...;
  1, 6, 20, 48, 90, 132, 132, 264, ...;
Antidiagonals, T(n, k), begins as:
  1;
  1,  1;
  1,  2,  1;
  1,  1,  1,  1;
  1,  2,  2,  2,  1;
  1,  3,  2,  2,  3,  1;
  1,  4,  5,  4,  5,  4,  1;
  1,  5,  9,  5,  5,  9,  5,  1;
  1,  6, 14, 14, 10, 14, 14,  6,  1;
		

Crossrefs

The following are all versions of (essentially) the same Catalan triangle: A009766, A030237, A033184, A059365, A099039, A106566, A130020, A047072.

Programs

  • Magma
    b:= func< n | n eq 0 select 1 else 2*Catalan(n-1) >;
    function A(n,k)
      if k eq n then return b(n);
      elif k gt n then return Binomial(n+k-1, n) - Binomial(n+k-1, n-1);
      else return Binomial(n+k-1, k) - Binomial(n+k-1, k-1);
      end if; return A;
    end function;
    // [[A(n,k): k in [0..12]]: n in [0..12]];
    T:= func< n,k | A(n-k, k) >;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 13 2022
    
  • Mathematica
    A[, 0]= 1; A[0, ]= 1; A[h_, k_]:= A[h, k]= If[(k-1>h || k-1Jean-François Alcover, Mar 06 2019 *)
  • SageMath
    def A(n,k):
        if (k==n): return 2*catalan_number(n-1) + 2*int(n==0)
        elif (k>n): return binomial(n+k-1, n) - binomial(n+k-1, n-1)
        else: return binomial(n+k-1, k) - binomial(n+k-1, k-1)
    def T(n,k): return A(n-k, k)
    # [[A(n,k) for k in range(12)] for n in range(12)]
    flatten([[T(n,k) for k in range(n+1)] for n in range(12)]) # G. C. Greubel, Oct 13 2022

Formula

A(n, n) = 2*[n=0] - A002420(n),
A(n, n+1) = 2*A000108(n-1), n >= 1.
From G. C. Greubel, Oct 13 2022: (Start)
T(n, n-1) = A000027(n-2) + 2*[n<3], n >= 1.
T(n, n-2) = A000096(n-4) + 2*[n<5], n >= 2.
T(n, n-3) = A005586(n-6) + 4*[n<7] - 2*[n=3], n >= 3.
T(2*n, n) = 2*A000108(n-1) + 3*[n=0].
T(2*n-1, n-1) = T(2*n+1, n+1) = A000180(n).
T(3*n, n) = A025174(n) + [n=0]
Sum_{k=0..n} T(n, k) = 2*A063886(n-2) + [n=0] - 2*[n=1]
Sum_{k=0..n} (-1)^k * T(n, k) = A000007(n).
Sum_{k=0..floor(n/2)} T(n, k) = A047079(n). (End)

A064808 a(n) is the (n+1)st (n+2)-gonal number.

Original entry on oeis.org

1, 3, 9, 22, 45, 81, 133, 204, 297, 415, 561, 738, 949, 1197, 1485, 1816, 2193, 2619, 3097, 3630, 4221, 4873, 5589, 6372, 7225, 8151, 9153, 10234, 11397, 12645, 13981, 15408, 16929, 18547, 20265, 22086, 24013, 26049, 28197, 30460, 32841, 35343, 37969, 40722
Offset: 0

Views

Author

Floor van Lamoen, Oct 22 2001

Keywords

Comments

Sum of n terms of the arithmetic progression with first term 1 and common difference n-1. - Amarnath Murthy, Aug 04 2005
a(n) is the sum of (n+1)-th row terms of triangle A144693. - Gary W. Adamson, Sep 19 2008
See also A131685(k) = smallest positive number m such that c(i) = m*(i^1 + 1)*(i^2 + 2)* ... *(i^k+ k) / k! takes integral values for all i>=0: For k=2, A131685(k)=1, which implies that this is a well-defined integer sequence. - Alexander R. Povolotsky, Apr 24 2015

Crossrefs

Main diagonal of A057145.
Row sums of A076110.
Cf. A144693. - Gary W. Adamson, Sep 19 2008

Programs

Formula

a(n) = (n+1)*(n^2 + 2)/2.
From Paul Barry, Nov 18 2005: (Start)
a(n) = Sum_{k=0..n} Sum_{j=0..n} (k-(k-1)*C(0, j-k)).
a(n) = A006002(n) - A000096(n-2). (End)
G.f.: (1 - x + 3x^2)/(1 - x)^4. - R. J. Mathar, Jul 07 2009
a(n) = A006003(n+1) - A002378(n). - Rick L. Shepherd, Feb 21 2015
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Wesley Ivan Hurt, Feb 21 2015
a(n) = A057145(n+2,n+1). - R. J. Mathar, Jul 28 2016
Previous Showing 41-50 of 263 results. Next