cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 3324 results. Next

A240088 The number of ways of writing n as an ordered sum of a triangular number (A000217), a square (A000290) and a pentagonal number (A000326).

Original entry on oeis.org

1, 3, 3, 2, 3, 4, 4, 4, 3, 3, 5, 5, 5, 3, 3, 7, 7, 5, 2, 6, 5, 4, 8, 5, 6, 4, 8, 7, 5, 7, 4, 9, 6, 5, 4, 3, 9, 12, 9, 4, 7, 9, 8, 4, 6, 8, 7, 8, 4, 8, 9, 10, 9, 6, 10, 6, 7, 10, 9, 8, 7, 11, 7, 4, 10, 8, 10, 10, 7, 5, 10, 14, 11, 7, 6, 11, 10, 10, 4, 11, 10, 10, 13, 8, 7, 7, 13, 12, 8, 8, 6, 10, 17, 8, 10, 7, 16, 10, 3, 12, 9
Offset: 0

Views

Author

Robert G. Wilson v, Mar 31 2014

Keywords

Comments

0 and 1 are triangular numbers, square numbers and pentagonal numbers.
It is conjectured that a(n) is always positive - this is one of the conjectures in Conjecture 1.1 of Sun (2009). - N. J. A. Sloane, Apr 01 2014
Note that both the conjecture in A160325 and the conjecture in A160324 imply that a(n) is always positive. - Zhi-Wei Sun, Apr 01 2014
a(n) > 0 for all n < 10^10. - Robert G. Wilson v, Aug 20 2016
Least number to be represented k ways, k >= 1: 0, 3, 1, 5, 10, 19, 15, 22, 31, 51, 61, 37, 82, 71, 126, 96, 92, 136, 162, 187, 206, 276, 191, 261, 236, 247, 317, 302, 401, 292, 422, 547, 456, 544, 551, 612, 591, 577, 521, 666, 742, 726, 682, 877, 796, 1052, 961, 1046, 1171, 1027, ..., . A275999.
Greatest number (conjectured) to be represented k ways, k >= 1: 0, 18, 168, 78, 243, 130, 553, 455, 515, 658, 865, 945, 633, 1918, 2258, 1385, 1583, 2828, 2135, 2335, 2785, 4533, 3168, 3478, 2790, 3868, 4193, 7328, 4953, 5278, 6390, 8148, 8015, 4585, 9160, 10485, 7613, 12333, 12025, 10178, 9923, 9720, 12558, 11340, 17420, 11753, 14893, 16155, 16415, 14343, ..., .
Conjectured lists of numbers that are represented in k >= 1 ways:
1: 0;
2: 3, 18;
3: 1, 2, 4, 8, 9, 13, 14, 35, 98, 168;
4: 5, 6, 7, 21, 25, 30, 34, 39, 43, 48, 63, 78;
5: 10, 11, 12, 17, 20, 23, 28, 33, 69, 193, 203, 230, 243;
6: 19, 24, 32, 44, 53, 55, 74, 90, 111, 130;
7: 15, 16, 27, 29, 40, 46, 56, 60, 62, 68, 73, 84, 85, 95, 108, 113, 123, 135, 139, 163, 165, 273, 553;
8: 22, 26, 42, 45, 47, 49, 59, 65, 83, 88, 89, 93, 112, 119, 125, 134, 140, 144, 186, 205, 233, 244, 320, 405, 455;
9: 31, 36, 38, 41, 50, 52, 58, 100, 109, 124, 160, 214, 249, 308, 358, 515; ..., .

Crossrefs

Programs

  • Maple
    # requires Maple 17 and up
    with(SignalProcessing):
    N:= 10000;  # to get terms up to a(N)
    A:= Array(0..N,datatype=float);
    B:= Array(0..N,datatype=float);
    C:= Array(0..N,datatype=float);
    for i from 0 to floor(sqrt(N)) do A[i^2]:= 1 od:
    for i from 0 to floor((1+sqrt(1+8*N))/2) do B[i*(i-1)/2]:= 1 od:
    for i from 0 to floor((1+sqrt(1+24*N))/6) do C[i*(3*i-1)/2]:= 1 od:
    R:= Convolution(Convolution(A,B),C);
    R:= evalhf(map(round,R));
    # Note that a(i) = R[i+1] for i from 0 to N
    # Robert Israel, Apr 01 2014
  • Mathematica
    p = Table[n (3n - 1)/2, {n, 0, 26}]; s = Table[n^2, {n, 0, 32}]; t = Table[n (n + 1)/2, {n, 0, 45}]; a = Sort@ Flatten@ Table[ p[[i]] + s[[j]] + t[[k]], {i, 26}, {j, 32}, {k, 45}]; Table[ Count[a, n], {n, 0, 105}]

A014134 Numbers that are not the sum of a square (A000290) and a triangular number (A000217).

Original entry on oeis.org

8, 13, 18, 20, 23, 27, 33, 34, 38, 41, 43, 47, 48, 58, 60, 62, 63, 68, 69, 73, 76, 83, 86, 88, 89, 90, 93, 97, 98, 99, 108, 111, 112, 113, 118, 123, 125, 132, 133, 134, 135, 138, 139, 143, 146, 148, 151, 158, 160, 163, 164, 167, 168, 173, 174
Offset: 1

Views

Author

Keywords

Comments

n is in the sequence if for some prime p == 5 or 7 (mod 8), 8*n+1 is divisible by p but not by p^2. The first member of the sequence that does not have this property is 16078. - Robert Israel, Mar 17 2015

Crossrefs

Cf. A140867.

Programs

  • Maple
    N:= 1000: # to generate all terms <= N
    {$1 .. N} minus {seq(seq(x*(x+1)/2 + y^2, y = 0 .. floor(sqrt(N - x*(x+1)/2))),
    x = 0 .. floor((sqrt(8*N+1)-1)/2))};
    # if using Maple 11 or earlier, uncomment the next line
    # sort(convert(%,list)); # Robert Israel, Mar 17 2015
  • Mathematica
    fQ[n_] := Block[{k = 0, lmt = 1 + Floor@ Sqrt@ n}, While[k < lmt && !IntegerQ@ Sqrt[ 8(n - k^2) + 1], k++]; k == lmt]; Select[ Range@ 175, fQ@# &] (* Robert G. Wilson v, Nov 29 2015 *)
  • PARI
    is_A014134(n)=for(k=0,sqrtint(n*2),issquare(n-k*(k+1)/2)&return);1 /* M. F. Hasler, Jan 05 2009 */

A033452 "STIRLING" transform of squares A000290.

Original entry on oeis.org

0, 1, 5, 22, 99, 471, 2386, 12867, 73681, 446620, 2856457, 19217243, 135610448, 1001159901, 7714225057, 61904585510, 516347066551, 4468588592739, 40058673825258, 371421499686007, 3556976106133821, 35138574378189700, 357654857584636597, 3746672593640388775
Offset: 0

Views

Author

Keywords

Comments

If an integer N is squarefree and has n+2 distinct prime factors then a(n) is the number of product signs needed to write the factorizations of N, so a(n)=A076277(N). - Floor van Lamoen, Oct 17 2002
Convolved with powers of 2 = A058681: (1, 7, 36, 171, 813, ...). Cf. triangle A180338. - Gary W. Adamson, Aug 28 2010

Examples

			G.f. = x + 5*x^2 + 22*x^3 + 99*x^4 + 471*x^5 + 2386*x^6 + 12867*x^7 + 73681*x^8 + ...
		

Crossrefs

Partial sums of A005494.
Cf. A180338.

Programs

  • Maple
    a := n -> add(Stirling2(n, j)*j^2, j=0..n): seq(a(n), n=0..20); # Zerinvary Lajos, Apr 18 2007
    # second Maple program:
    b:= proc(n, m) option remember;
         `if`(n=0, m^2, m*b(n-1, m)+b(n-1, m+1))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..23);  # Alois P. Heinz, Aug 04 2021
  • Mathematica
    max = 20; Clear[g]; g[max + 2] = 1; g[k_] := g[k] = 2 - 1/(1 - k*x)/(1 - x/(x - 1/g[k + 1])); gf = 1/x + 1/x^2 - g[0]/x^2; CoefficientList[ Series[gf, {x, 0, max}], x] (* Jean-François Alcover, Jan 24 2013, after Sergei N. Gladkovskii *)
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff( (exp(x + x * O(x^n)) - 1) * exp( exp(x + x * O(x^n)) - 1 + x), n))}; /* Michael Somos, Mar 28 2012 */

Formula

Representation as an infinite series: a(n) = (Sum_{k>=1} k^n*k*(k-2)/k!)/exp(1), n >= 1. This is a Dobinski-type summation formula. - Karol A. Penson, Mar 21 2002
a(n) = A005493(n) - A000110(n+1). - Floor van Lamoen and Christian Bower, Oct 16 2002. (n^2 has e.g.f.: e^x * (x^2+x), a(n) thus has e.g.f: e^(e^x-1) * ( (e^x-1)^2 + (e^x-1) ) which simplifies to e^(e^x-1) * (e^2x - e^x). A005493 has e.g.f.: e^(e^x+2x-1), A000110 has e.g.f.: e^(e^x-1), A000110(n+1) has as e.g.f.: derivative of A000110 which is e^(e^x+x-1).) [corrected by Georg Fischer, Jun 17 2020]
a(n) = Bell(n+2) - 2*Bell(n+1). - Vladeta Jovovic, Jul 28 2003
G.f.: sum{k>=0, k^2*x^k/prod[l=1..k, 1-lx]}. - Ralf Stephan, Apr 18 2004
E.g.f.: exp( exp(x) - 1 + x) * (exp(x) - 1). - Michael Somos, Mar 28 2012
a(n) = A123158(n,3). - Philippe Deléham, Oct 06 2006
G.f.: G(0)/x -1/x, where G(k) = 1 - x^2*(k+1)/( x^2*(k+1) - (2*x+x*k-1)*(3*x+x*k-1)/G(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Feb 25 2014

A046172 Indices of pentagonal numbers (A000326) that are also squares (A000290).

Original entry on oeis.org

1, 81, 7921, 776161, 76055841, 7452696241, 730288175761, 71560788528321, 7012226987599681, 687126683996240401, 67331402804643959601, 6597790348171111800481, 646516122717964312487521, 63351982236012331511976561, 6207847743006490523861215441
Offset: 1

Views

Author

Keywords

Comments

if P_x = y^2 is a pentagonal number that is also a square, the least both pentagonal and square number that is greater as P_x, is P_(49*x + 40*y - 8) = (60*x + 49*y - 10)^2 (in fact, P_(49*x + 40*y - 8) - (60*x + 49*y - 10)^2 = (3/2)*x^2 - (1/2)*x - y^2). - Richard Choulet, Apr 28 2009
a(n)*(3*a(n)-1)/2 = m^2 is equivalent to the Pell equation (6*a(n)-1)^2 - 6*(2*m)^2 = 1 or x(n)^2 - 6*y(n)^2 = 1. - Paul Weisenhorn, May 15 2009
As n increases, this sequence is approximately geometric with common ratio r = lim_{n -> oo} a(n)/a(n-1) = (sqrt(2) + sqrt(3))^4 = 49 + 20*sqrt(6). - Ant King, Nov 07 2011
Numbers k such that the k-th pentagonal number is equal to the sum of two consecutive triangular numbers. - Colin Barker, Dec 11 2014
Indices of pentagonal numbers (A000326) that are also centered octagonal numbers (A016754). - Colin Barker, Jan 11 2015

References

  • Muniru A. Asiru, All square chiliagonal numbers, International Journal of Mathematical Education in Science and Technology, Volume 47, 2016 - Issue 7; http://dx.doi.org/10.1080/0020739X.2016.1164346

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{99, -99, 1}, {1, 81, 7921}, 13] (* Ant King, Nov 07 2011 *)
    Table[Round[(1 + x^(2*n+1))^2 / (12*x^(2*n+1)) /. x->5+2*Sqrt@6],{n,0,99}] (* Federico Provvedi, Apr 24 2023 *)

Formula

a(n) = 98*a(n-1) - a(n-2) - 16; g.f.: x*(1 - 18*x + x^2)/((1-x)*(1 - 98*x + x^2)). - Warut Roonguthai Jan 05 2001 - Corrected by Colin Barker, Jan 11 2015
a(n+1) = 49*a(n) - 8 + 10*sqrt(8*(3*a(n)^2 - a(n))) with a(1) = 1. - Richard Choulet, Apr 28 2009
a(n) = 1/6+((5 + 2*sqrt(6))^(2*n+1)/12) + ((5 - 2*sqrt(6))^(2*n+1)/12) for n >= 0. - Richard Choulet, Apr 29 2009
From Paul Weisenhorn, May 15 2009: (Start)
x(n+2) = 98*x(n+1) - x(n) with x(1)=5, x(2)=485;
y(n+2) = 98*y(n+1) - y(n) with y(n)=A046173(n)*2;
m(n+2) = 98*m(n+1) - m(n) with m(n)=A046173(n);
a(n) = A072256(n)^2.
(End)
a(n) = b(n)*b(n), b(n) = 10*b(n-1)- b(n-2), b(1)=1, b(2)=9, b(n)=((5 + sqrt(24))^n - (5 - sqrt(24))^n)/(2*sqrt(24)). - Sture Sjöstedt, Sep 21 2009
From Ant King, Nov 07 2011: (Start)
a(n) = 99*a(n-1) - 99*a(n-2) + a(n-3).
a(n) = ceiling((1/12)*(sqrt(3) + sqrt(2))^(4*n-2)).
(End)
a(n) = (1 + x^(2n+1))^2 / (12*x^(2*n+1)), with x = 5 + 2*sqrt(6). - Federico Provvedi, Apr 24 2023

A113257 Ascending descending base exponent transform of squares (A000290).

Original entry on oeis.org

1, 5, 266, 268722, 4682453347, 2978988815561863, 722638800922610642480852, 22529984108212742763058965679103268, 57286470055793196612331429228839529219232484069
Offset: 1

Views

Author

Jonathan Vos Post, Jan 07 2006

Keywords

Comments

A003101 is the ascending descending base exponent transform of natural numbers A000027. The ascending descending base exponent transform applied to the Fibonacci numbers is A113122; applied to the tribonacci numbers is A113153; applied to the Lucas numbers is A113154. The smallest prime in this sequence is a(2) = 5. What is the next prime? What is the first square value after 1?

Examples

			a(1) = 1 because (1^2)^(1^2) = 1^1 = 1.
a(2) = 5 because (1^2)^(4^1) + (4^1)^(1^4) = 1^4 + 4^1 = 5.
a(3) = 266 = 1^9 + 4^4 + 9^1.
a(4) = 268722 = 1^16 + 4^9 + 9^4 + 16^1.
a(5) = 4682453347 = 1^25 + 4^16 + 9^9 + 16^4 + 25^1.
a(6) = 2978988815561863 = 1^36 + 4^25 + 9^16 + 16^9 + 25^4 + 36^1.
a(7) = 722638800922610642480852 = 1^49 + 4^36 + 9^25 + 16^16 + 25^9 + 36^4 + 49^1.
a(8) = 22529984108212742763058965679103268 = 1^64 + 4^49 + 9^36 + 16^25 + 25^16 + 36^9 + 49^4 + 64^1.
a(9) = 57286470055793196612331429228839529219232484069 = 1^81 + 4^64 + 9^49 + 16^36 + 25^25 + 36^16 + 49^9 + 64^4 + 81^1.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[(k^2)^((n - k + 1)^2), {k, 1, n}], {n, 1, 10}] (* G. C. Greubel, May 18 2017 *)
  • PARI
    for(n=1,10, print1(sum(k=1,n, (k^2)^((n-k+1)^2) ), ", ")) \\ G. C. Greubel, May 18 2017

Formula

a(n) = Sum_{i=1..n} (i^2)^((n-i+1)^2).
a(n) = Sum_{i=1..n} (A000290(i))^(A000290(n-i+1)).
log(a(n)) ~ n^2 * (-1 + 2*LambertW(exp(1/2)*n/2))^3 / (4*LambertW(exp(1/2)*n/2)^2). - Vaclav Kotesovec, Jun 07 2025

Extensions

a(4) and a(5) corrected by Giovanni Resta, Jun 13 2016

A165517 Indices of the least triangular numbers (A000217) for which three consecutive triangular numbers sum to a perfect square (A000290).

Original entry on oeis.org

0, 5, 14, 63, 152, 637, 1518, 6319, 15040, 62565, 148894, 619343, 1473912, 6130877, 14590238, 60689439, 144428480, 600763525, 1429694574, 5946945823, 14152517272, 58868694717, 140095478158, 582740001359, 1386802264320
Offset: 1

Views

Author

Ant King, Sep 25 2009, Oct 01 2009

Keywords

Comments

Those perfect squares that can be expressed as the sum of three consecutive triangular numbers correspond to integer solutions of the equation T(k)+T(k+1)+T(k+2)=s^2, or equivalently to 3k^2 + 9k + 8 = 2s^2. Hence solutions occur whenever (3k^2 + 9k + 8)/2 is a perfect square, or equivalently when s>=2 and sqrt(24s^2 - 15) is congruent to 3 mod 6. This sequence returns the index of the smallest of the 3 triangular numbers, the values of s^2 are given in A165516 and, with the exception of the first term, the values of s are in A129445.

Examples

			The fourth perfect square that can be expressed as the sum of three consecutive triangular numbers is 6241 = T(63) + T(64) + T(65). Hence a(4)=63.
		

Crossrefs

Programs

  • Magma
    I:=[0, 5, 14, 63, 152]; [n le 5 select I[n] else Self(n-1) + 10*Self(n-2) - 10*Self(n-3) - Self(n-4) + Self(n-5): n in [1..50]]; // G. C. Greubel, Oct 21 2018
  • Mathematica
    TriangularNumber[ n_ ]:=1/2 n (n+1);Select[ Range[ 0,10^7 ], IntegerQ[ Sqrt[ TriangularNumber[ # ]+TriangularNumber[ #+1 ]+TriangularNumber[ #+2 ] ] ] & ]
    CoefficientList[Series[x*(x^3 + x^2 - 9*x - 5)/((x - 1)*(x^4 - 10*x^2 + 1)), {x,0,50}], x] (* or *) LinearRecurrence[{1,10,-10,-1,1}, {0, 5, 14, 63, 152}, 50] (* G. C. Greubel, Feb 17 2017 *)
  • PARI
    x='x+O('x^50); concat([0], Vec(x*(x^3 + x^2 - 9*x - 5)/((x - 1)*(x^4 - 10*x^2 + 1)))) \\ G. C. Greubel, Feb 17 2017
    

Formula

a(n) = a(n-1) + 10*a(n-2) - 10*a(n-3) - a(n-4) + a(n-5).
G.f.: x(x^3 + x^2 - 9x - 5)/((x-1)(x^4 - 10x^2 + 1)).
a(n) = 10*a(n-2) - a(n-4) + 12. - Zak Seidov, Sep 25 2009

Extensions

a(1) = 0 added by N. J. A. Sloane, Sep 28 2009, at the suggestion of Alexander R. Povolotsky
More terms from Zak Seidov, Sep 25 2009

A046177 Squares (A000290) which are also hexagonal numbers (A000384).

Original entry on oeis.org

1, 1225, 1413721, 1631432881, 1882672131025, 2172602007770041, 2507180834294496361, 2893284510173841030625, 3338847817559778254844961, 3853027488179473932250054441, 4446390382511295358038307980025, 5131130648390546663702275158894481
Offset: 1

Views

Author

Keywords

Comments

Also, odd square-triangular numbers (or bisection of A001110 = {0, 1, 36, 1225, 41616, 1413721, 48024900, 1631432881, ...} = Numbers that are both triangular and square: a(n) = 34a(n-1) - a(n-2) + 2). - Alexander Adamchuk, Nov 06 2007
Let y^2 = x*(2*x-1) = H_x (x>=1). The least both hexagonal and square number which is greater than y^2 is given by the relation (24*x+17*y-6)^2 = H_{17*x+12*y-4}. - Richard Choulet, May 01 2009
As n increases, this sequence is approximately geometric with common ratio r = lim(n -> Infinity, a(n)/a(n-1)) = ( 1+ sqrt(2))^8 = 577 + 408 * sqrt(2). - Ant King Nov 08 2011
Also centered octagonal numbers (A016754) which are also triangular numbers (A000217). - Colin Barker, Jan 16 2015
Also hexagonal numbers (A000384) which are also centered octagonal numbers (A016754). - Colin Barker, Jan 25 2015

References

  • M. Rignaux, Query 2175, L'Intermédiaire des Mathématiciens, 24 (1917), 80.

Crossrefs

Cf. A001110 (Numbers that are both triangular and square).

Programs

  • Mathematica
    LinearRecurrence[{1155, -1155, 1}, {1, 1225, 1413721}, 11] (* Ant King, Nov 08 2011 *)
  • PARI
    Vec(x*(1+70*x+x^2)/((1-x)*(1-1154*x+x^2)) + O(x^100)) \\ Colin Barker, Jan 16 2015

Formula

a(n) = A001110(2n-1). - Alexander Adamchuk, Nov 06 2007
a(n+1) = 577*a(n)+36+204*(8*a(n)^2+a(n))^0.5 for n>=1 (a(0)=1). - Richard Choulet, May 01 2009
a(n+2) = 1154*a(n+1) - a(n) + 72 for n>=0. - Richard Choulet, May 01 2009
From Ant King, Nov 07 2011: (Start)
a(n) = 1155*a(n-1) - 1155*a(n-2) + a(n-3).
a(n) = 1/32*((1 + sqrt(2))^(8*n - 4) + (1 - sqrt(2))^(8*n-4) - 2).
a(n) = floor(1/32*(1 + sqrt(2))^(8*n - 4)).
a(n) = 1/32*((tan(3*Pi/8))^(8*n-4) + (tan(Pi/8))^(8*n-4) - 2).
a(n) = floor(1/32*(tan(3*Pi/8))^(8*n-4)).
G.f.: x*(1 + 70*x + x^2)/((1 - x)*(1 - 1154*x + x^2)).
(End)
a(n) = A096979(4*n - 3). - Ivan N. Ianakiev, Sep 05 2016
a(n) = (1/2) * (A002315(n))^2 * ((A002315(n))^2 + 1) = ((2*x + 1)*sqrt(x^2 + (x+1)^2))^2, where x = (1/2)*(A002315(n)-1). - Ivan N. Ianakiev, Sep 05 2016

A176744 The squares A000290 and the integers which cannot be represented as a sum of two earlier terms of the sequence.

Original entry on oeis.org

0, 1, 3, 4, 9, 11, 16, 21, 23, 25, 31, 33, 36, 38, 43, 49, 51, 64, 77, 81, 83, 91, 96, 100, 118, 121, 135, 144, 150, 163, 169, 176, 189, 196, 203, 211, 213, 223, 225, 230, 237, 243, 256, 278, 283, 289, 291, 315, 324, 350, 361, 390, 395, 400, 408, 430, 437, 441, 484, 497, 510
Offset: 0

Views

Author

Vladimir Shevelev, Apr 25 2010

Keywords

Examples

			3 is the smallest number which is not a sum of 2 numbers of {0,1}. Therefore 3 in the sequence.
4 is a square, and included as such.
5 can be represented by 1+4 (both already in the sequence) and is not included; 6=3+3, 7=3+4, 8=4+4 are also sums of earlier terms: not included.
11 is the smallest number which is not a sum of 2 numbers of {0, 1, 3, 4, 9}. Therefore 11 in the sequence.
		

Crossrefs

Cf. A000290.

Programs

  • Maple
    A176744 := proc(n) option remember; if n <=1 then n; else for a from procname(n-1)+1 do
    if issqr(a) then return a; end if; isrep := false; for i from 1 to n-1 do for j from i to n-1 do if procname(i)+procname(j) = a then isrep := true; end if; end do: end do: if not isrep then return a; end if; end do:
    end if; end proc: seq(A176744(n),n=0..60) ; # R. J. Mathar, Oct 29 2010
  • Mathematica
    a[n_] := a[n] = Module[{tt, k}, If[n == 0, 0, tt = Total /@ Tuples[Array[a, n-1], {2}]; For[k = a[n-1]+1, True, k++, If[IntegerQ@Sqrt@k, Return[k], If[FreeQ[tt, k], Return[k]]]]]];
    Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Aug 02 2022 *)

Extensions

Definition rephrased, more examples added, and sequence extended beyond 51 by R. J. Mathar, Oct 29 2010

A001922 Numbers k such that 3*k^2 - 3*k + 1 is both a square (A000290) and a centered hexagonal number (A003215).

Original entry on oeis.org

1, 8, 105, 1456, 20273, 282360, 3932761, 54776288, 762935265, 10626317416, 148005508553, 2061450802320, 28712305723921, 399910829332568, 5570039304932025, 77580639439715776, 1080558912851088833, 15050244140475527880, 209622859053806301481
Offset: 0

Views

Author

Keywords

Comments

Also larger of two consecutive integers whose cubes differ by a square. Defined by a(n)^3 - (a(n) - 1)^3 = square.
Let m be the n-th ratio 2/1, 7/4, 26/15, 97/56, 362/209, ... Then a(n) = m*(2-m)/(m^2-3). The numerators 2, 7, 26, ... of m are A001075. The denominators 1, 4, 15, ... of m are A001353.
From Colin Barker, Jan 06 2015: (Start)
Also indices of centered triangular numbers (A005448) which are also centered square numbers (A001844).
Also indices of centered hexagonal numbers (A003215) which are also centered octagonal numbers (A016754).
Also positive integers x in the solutions to 3*x^2 - 4*y^2 - 3*x + 4*y = 0, the corresponding values of y being A156712.
(End)

Examples

			8 is in the sequence because 3*8^2 - 3*8 + 1 = 169 is a square and also a centered hexagonal number. - _Colin Barker_, Jan 07 2015
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    I:=[1, 8, 105]; [n le 3 select I[n] else 15*Self(n-1)-15*Self(n-2)+Self(n-3): n in [1..20]]; // Vincenzo Librandi, Apr 16 2012
    
  • Maple
    seq(simplify((1 +ChebyshevU(n,7) +ChebyshevU(n-1,7))/2), n=0..30); # G. C. Greubel, Oct 07 2022
  • Mathematica
    With[{s1=3+2Sqrt[3],s2=3-2Sqrt[3],t1=7+4Sqrt[3],t2=7-4Sqrt[3]}, Simplify[ Table[(s1 t1^n+s2 t2^n+6)/12,{n,0,20}]]] (* or *) LinearRecurrence[ {15,-15,1},{1,8,105},21] (* Harvey P. Dale, Aug 14 2011 *)
    CoefficientList[Series[(1-7*x)/(1-15*x+15*x^2-x^3),{x,0,30}],x] (* Vincenzo Librandi, Apr 16 2012 *)
  • PARI
    Vec((1-7*x)/(1-15*x+15*x^2-x^3) + O(x^100)) \\ Colin Barker, Jan 06 2015
    
  • SageMath
    [(1+chebyshev_U(n,7) +chebyshev_U(n-1,7))/2 for n in range(30)] # G. C. Greubel, Oct 07 2022

Formula

a(n) = 15*a(n-1) - 15*a(n-2) + a(n-3).
a(n) = (s1*t1^n + s2*t2^n + 6)/12 where s1 = 3 + 2*sqrt(3), s2 = 3 - 2*sqrt(3), t1 = 7 + 4*sqrt(3), t2 = 7 - 4*sqrt(3).
a(n) = A001075(n)*A001353(n+1).
G.f.: (1-7*x)/((1-x)*(1-14*x+x^2)). - Simon Plouffe (in his 1992 dissertation) and Colin Barker, Jan 01 2012
a(n) = A076139(n+1) - 7*A076139(n). - R. J. Mathar, Jul 14 2015
a(n) = (1/2)*(1 + ChebyshevU(n, 7) + ChebyshevU(n-1, 7)). G. C. Greubel, Oct 07 2022
a(n) = 1 - a(-1-n) = 1 + A001921(n) for all integers n. - Michael Somos, Jul 10 2025

Extensions

Additional comments from James R. Buddenhagen, Mar 04 2001
Name improved by Colin Barker, Jan 07 2015
Edited by Robert Israel, Feb 20 2017

A046195 Indices of heptagonal numbers (A000566) which are also squares (A000290).

Original entry on oeis.org

1, 6, 49, 961, 8214, 70225, 1385329, 11844150, 101263969, 1997643025, 17079255654, 146022572641, 2880599856289, 24628274808486, 210564448483921, 4153822995125281, 35513955194580726, 303633788691241009, 5989809878370798481, 51211098762310597974
Offset: 1

Views

Author

Keywords

Comments

(10 * a(n) - 3)^2 - 40 * (A046196(n))^2 = 9. - Ant King, Nov 12 2011
Also numbers n such that the n-th heptagonal number is equal to the sum of two consecutive triangular numbers. - Colin Barker, Dec 11 2014
Also indices of heptagonal numbers (A000566) which are also centered octagonal numbers (A016754). - Colin Barker, Jan 19 2015
Also nonnegative integers y in the solutions to 2*x^2-5*y^2+4*x+3*y+2+2 = 0, the corresponding values of x being A251927. - Colin Barker, Dec 11 2014

Crossrefs

Programs

  • Maple
    for n from 1 to 10000 do m:=sqrt((5*n^2-3*n)/2):
    if (trunc(m)=m) then print(n,m): end if: end do: # Paul Weisenhorn, May 01 2009
  • Mathematica
    LinearRecurrence[{1 ,0, 1442, -1442, 0, -1, 1}, {1, 6, 49, 961, 8214, 70225, 1385329}, 17] (* Ant King, Nov 12 2011 *)

Formula

From Paul Weisenhorn, May 01 2009: (Start)
Pell equations: r^2-10*s^2=1 with solution (19,6)
(10*n-3)^2-10*(2*m)^2=9; basic solutions: (7,-2); (7,+2)((57,18);
with x=10*n-3; y=2*m; A=(19+6*sqrt(10))^2; B=(19-6*sqrt(10))^2 one get
x(3*k)+sqrt(10)*y(3*k)=(7-2*sqrt(10))*A^k;
x(3*k+1)+sqrt(10)*y(3*k+1)=(7+2*sqrt(10))*A^k;
x(3*k+2)+sqrt(10)*y(3*k+2)=(57+18*sqrt(10))*A^k;
with the eigenvalues A=721+228*sqrt(10); B=721-228*sqrt(10)
one get the recurrences with 1442=4*19*19-2
x(k+6)=1442*x(k+3)-x(k); y(k+6)=1442*y(k+3)-y(k);
m(k+6)=1442*m(k+3)-m(k); n(k+6)=1442*n(k+3)-n(k)-432;
and the explicit formulas
x(3*k+1)=(7*(A^k+B^k)+2*sqrt(10)*(A^k-B^k))/2;
x(3*k+2)=(57*(A^k+B^k)+18*sqrt(10)*(A^k-B^k))/2;
x(3*k)=(7*(A^k+B^k)-2*sqrt(10)*(A^k-B^k))/2;
y(3*k+1)=(7*(A^k-B^k)/sqrt(10)+2*(A^k+B^k)/2;
y(3*k+2)=(57*(A^k-B^k)/sqrt(10)+18*(A^k+B^k))/2;
y(3*k)=(7*(A^k-B^k)/sqrt(10)-2*(A^k+B^k))/2;
n(k)=(x(k)+3)/10; m(k)=y(k)/2;
(End)
a(n) = +a(n-1) +1442*a(n-3) -1442*a(n-4) -a(n-6) +a(n-7). G.f.: -x*(1+5*x+43*x^2-530*x^3+43*x^4+5*x^5+x^6) / ( (x-1)*(x^6-1442*x^3+1) ). - R. J. Mathar, Aug 01 2010
a(n) = 1442*a(n-3) - a(n-6) - 432. - Ant King, Nov 12 2011

Extensions

More terms from Colin Barker, Dec 11 2014
Previous Showing 11-20 of 3324 results. Next