cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 79 results. Next

A000168 a(n) = 2*3^n*(2*n)!/(n!*(n+2)!).

Original entry on oeis.org

1, 2, 9, 54, 378, 2916, 24057, 208494, 1876446, 17399772, 165297834, 1602117468, 15792300756, 157923007560, 1598970451545, 16365932856990, 169114639522230, 1762352559231660, 18504701871932430, 195621134074714260, 2080697516976506220, 22254416920705240440, 239234981897581334730, 2583737804493878415084
Offset: 0

Views

Author

Keywords

Comments

Number of rooted planar maps with n edges. - Don Knuth, Nov 24 2013
Number of rooted 4-regular planar maps with n vertices.
Also, number of doodles with n crossings, irrespective of the number of loops.
From Karol A. Penson, Sep 02 2010: (Start)
Integral representation as n-th moment of a positive function on the (0,12) segment of the x axis. This representation is unique as it is the solution of the Hausdorff moment problem.
a(n) = Integral_{x=0..12} ((x^n*(4/9)*(1 - x/12)^(3/2)) / (Pi*sqrt(x/3))). (End)
Also, the number of distinct underlying shapes of closed normal linear lambda terms of a given size, where the shape of a lambda term abstracts away from its variable binding. [N. Zeilberger, 2015] - N. J. A. Sloane, Sep 18 2016
The September 2018 talk by Noam Zeilberger (see link to video) connects three topics (planar maps, Tamari lattices, lambda calculus) and eight sequences: A000168, A000260, A000309, A000698, A000699, A002005, A062980, A267827. - N. J. A. Sloane, Sep 17 2018
Number of well-labeled trees (Bona, 2015). - N. J. A. Sloane, Dec 25 2018

Examples

			G.f. = 1 + 2*x + 9*x^2 + 54*x^3 + 378*x^4 + 2916*x^5 + 24057*x^6 + 208494*x^7 + ...
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, pages 319, 353.
  • E. R. Canfield, Calculating the number of rooted maps on a surface, Congr. Numerantium, 76 (1990), 21-34.
  • J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 714.
  • V. A. Liskovets, A census of nonisomorphic planar maps, in Algebraic Methods in Graph Theory, Vol. II, ed. L. Lovasz and V. T. Sos, North-Holland, 1981.
  • V. A. Liskovets, Enumeration of nonisomorphic planar maps, Selecta Math. Sovietica, 4 (No. 4, 1985), 303-323.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Sequences mentioned in the Noam Zeilberger 2018 video: A000168, A000260, A000309, A000698, A000699, A002005, A062980, A267827.
First row of array A101486.
Cf. A005470.
Rooted maps with n edges of genus g for 0 <= g <= 10: this sequence, A006300, A006301, A104742, A215402, A238355, A238356, A238357, A238358, A238359, A238360.

Programs

  • Magma
    [(2*Catalan(n)*3^n)/(n+2): n in [1..30]]; // Vincenzo Librandi, Sep 04 2014
  • Maple
    A000168:=n->2*3^n*(2*n)!/(n!*(n+2)!);
  • Mathematica
    Table[(2*3^n*(2n)!)/(n!(n+2)!),{n,0,20}] (* Harvey P. Dale, Jul 25 2011 *)
    a[ n_] := If[ n < 0, 0, 2 3^n (2 n)!/(n! (n + 2)!)] (* Michael Somos, Nov 25 2013 *)
    a[ n_] := SeriesCoefficient[ Hypergeometric2F1[ 1/2, 1, 3, 12 x], {x, 0, n}] (* Michael Somos, Nov 25 2013 *)
  • PARI
    {a(n) = if( n<0, 0, 2 * 3^n * (2*n)! / (n! * (n+2)!))}; /* Michael Somos, Nov 25 2013 */
    

Formula

G.f. A(z) satisfies A(z) = 1 - 16*z + 18*z*A(z) - 27*z^2*A(z)^2.
G.f.: F(1/2,1;3;12x). - Paul Barry, Feb 04 2009
a(n) = 2*3^n*A000108(n)/(n+2). - Paul Barry, Feb 04 2009
D-finite with recurrence: (n + 1) a(n) = (12 n - 18) a(n - 1). - Simon Plouffe, Feb 09 2012
G.f.: 1/54*(-1+18*x+(-(12*x-1)^3)^(1/2))/x^2. - Simon Plouffe, Feb 09 2012
0 = a(n)*(+144*a(n+1) - 42*a(n+2)) + a(n+1)*(+18*a(n+1) + a(n+2)) if n>=0. - Michael Somos, Jan 31 2014
a(n) ~ 2*(12^n)/((n^2+3*n)*sqrt(Pi*n)). - Peter Luschny, Nov 25 2015
E.g.f.: exp(6*x)*(12*x*BesselI(0,6*x) - (1 + 12*x)*BesselI(1,6*x))/(9*x). - Ilya Gutkovskiy, Feb 01 2017
From Amiram Eldar, Jan 08 2023: (Start)
Sum_{n>=0} 1/a(n) = 1887/1331 + 3240*arccosec(2*sqrt(3))/(1331*sqrt(11)).
Sum_{n>=0} (-1)^n/a(n) = 1563/2197 - 3240*arccosech(2*sqrt(3))/(2197*sqrt(13)). (End)

Extensions

More terms from Joerg Arndt, Feb 26 2014

A003436 Number of inequivalent labeled Hamiltonian circuits on n-octahedron. Interlacing chords joining 2n points on circle.

Original entry on oeis.org

1, 0, 1, 4, 31, 293, 3326, 44189, 673471, 11588884, 222304897, 4704612119, 108897613826, 2737023412199, 74236203425281, 2161288643251828, 67228358271588991, 2225173863019549229, 78087247031912850686, 2896042595237791161749, 113184512236563589997407
Offset: 0

Views

Author

Keywords

Comments

Also called the relaxed ménage problem (cf. A000179).
a(n) can be seen as a subset of the unordered pairings of the first 2n integers (A001147) with forbidden pairs (1,2n) and (i,i+1) for all i in [1,2n-1] (all adjacent integers modulo 2n). The linear version of this constraint is A000806. - Olivier Gérard, Feb 08 2011
Number of perfect matchings in the complement of C_{2n} where C_{2n} is the cycle graph on 2n vertices. - Andrew Howroyd, Mar 15 2016
Also the number of 2-uniform set partitions of {1...2n} containing no two cyclically successive vertices in the same block. - Gus Wiseman, Feb 27 2019

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A003435, A129348. A003437 gives unlabeled case.
First differences of A000806.
Column k=2 of A324428.

Programs

  • Maple
    A003436 := proc(n) local k;
          if n = 0 then 1
        elif n = 1 then 0
        else add( (-1)^k*binomial(n,k)*2*n/(2*n-k)*2^k*(2*n-k)!/2^n/n!,k=0..n) ;
        end if;
    end proc: # R. J. Mathar, Dec 11 2013
    A003436 := n-> `if`(n<2, 1-n, (-1)^n*2*hypergeom([n, -n], [], 1/2)):
    seq(simplify(A003436(n)), n=0..18); # Peter Luschny, Nov 10 2016
  • Mathematica
    a[n_] := (2*n-1)!! * Hypergeometric1F1[-n, 1-2*n, -2]; a[1] = 0;
    Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Apr 05 2013 *)
    twounifll[{}]:={{}};twounifll[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@twounifll[Complement[set,s]]]/@Table[{i,j},{j,If[i==1,Select[set,2<#i+1&]]}];
    Table[Length[twounifll[Range[n]]],{n,0,14,2}] (* Gus Wiseman, Feb 27 2019 *)

Formula

a(n) = A003435(n)/(n!*2^n).
a(n) = 2*n*a(n-1)-2*(n-3)*a(n-2)-a(n-3) for n>4. [Corrected by Vasu Tewari, Apr 11 2010, and by R. J. Mathar, Oct 02 2013]
G.f.: x + ((1-x)/(1+x)) * Sum_{n>=0} A001147(n)*(x/(1+x)^2)^n. - Vladeta Jovovic, Jun 27 2007
a(n) ~ 2^(n+1/2)*n^n/exp(n+1). - Vaclav Kotesovec, Aug 13 2013
a(n) = (-1)^n*2*hypergeom([n, -n], [], 1/2) for n >= 2. - Peter Luschny, Nov 10 2016

Extensions

a(0)=1 prepended by Gus Wiseman, Feb 27 2019

A278990 Number of loopless linear chord diagrams with n chords.

Original entry on oeis.org

1, 0, 1, 5, 36, 329, 3655, 47844, 721315, 12310199, 234615096, 4939227215, 113836841041, 2850860253240, 77087063678521, 2238375706930349, 69466733978519340, 2294640596998068569, 80381887628910919255, 2976424482866702081004, 116160936719430292078411
Offset: 0

Views

Author

N. J. A. Sloane, Dec 07 2016

Keywords

Comments

See the signed version of these numbers, A000806, for much more information about these numbers.
From Gus Wiseman, Feb 27 2019: (Start)
Also the number of 2-uniform set partitions of {1..2n} containing no two successive vertices in the same block. For example, the a(3) = 5 set partitions are:
{{1,3},{2,5},{4,6}}
{{1,4},{2,5},{3,6}}
{{1,4},{2,6},{3,5}}
{{1,5},{2,4},{3,6}}
{{1,6},{2,4},{3,5}}
(End)
From Gus Wiseman, Jul 05 2020: (Start)
Also the number of permutations of the multiset {1,1,2,2,...,n,n} with no two consecutive terms equal and where the first i appears before the first j for i < j. For example, the a(3) = 5 permutations are the following.
(1,2,3,1,2,3)
(1,2,3,1,3,2)
(1,2,3,2,1,3)
(1,2,3,2,3,1)
(1,2,1,3,2,3)
(End)

Crossrefs

Column k=0 of A079267.
Column k=2 of A293157.
Row n=2 of A322013.
Cf. A000110, A000699 (topologically connected 2-uniform), A000806, A001147 (2-uniform), A003436 (cyclical version), A005493, A170941, A190823 (distance 3+ version), A322402, A324011, A324172.
Anti-run compositions are A003242.
Separable partitions are A325534.
Other sequences involving the multiset {1,1,2,2,...,n,n}: A001147, A007717, A020555, A094574, A316972.

Programs

  • Magma
    [n le 2 select 2-n else (2*n-3)*Self(n-1) + Self(n-2): n in [1..30]]; // G. C. Greubel, Sep 26 2023
    
  • Mathematica
    RecurrenceTable[{a[n]== (2n-1)a[n-1] +a[n-2], a[0]==1, a[1]==0}, a, {n,0,20}] (* Vaclav Kotesovec, Sep 15 2017 *)
    FullSimplify[Table[-I*(BesselI[1/2+n,-1] BesselK[3/2,1] - BesselI[3/2,-1] BesselK[1/2+ n,1]), {n,0,20}]] (* Vaclav Kotesovec, Sep 15 2017 *)
    Table[(2 n-1)!! Hypergeometric1F1[-n,-2 n,-2], {n,0,20}] (* Eric W. Weisstein, Nov 14 2018 *)
    Table[Sqrt[2/Pi]/E ((-1)^n Pi BesselI[1/2+n,1] +BesselK[1/2+n,1]), {n,0,20}] // FunctionExpand // FullSimplify (* Eric W. Weisstein, Nov 14 2018 *)
    twouniflin[{}]:={{}};twouniflin[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@twouniflin[Complement[set,s]]]/@Table[{i,j},{j,Select[set,#>i+1&]}];
    Table[Length[twouniflin[Range[n]]],{n,0,14,2}] (* Gus Wiseman, Feb 27 2019 *)
  • PARI
    seq(N) = {
      my(a = vector(N)); a[1] = 0; a[2] = 1;
      for (n = 3, N, a[n] = (2*n-1)*a[n-1] + a[n-2]);
      concat(1, a);
    };
    seq(20) \\ Gheorghe Coserea, Dec 09 2016
    
  • SageMath
    def A278990_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( exp(-1+sqrt(1-2*x))/sqrt(1-2*x) ).egf_to_ogf().list()
    A278990_list(30) # G. C. Greubel, Sep 26 2023

Formula

From Gheorghe Coserea, Dec 09 2016: (Start)
D-finite with recurrence a(n) = (2*n-1)*a(n-1) + a(n-2), with a(0) = 1, a(1) = 0.
E.g.f. y satisfies: 0 = (1-2*x)*y'' - 3*y' - y.
a(n) - a(n-1) = A003436(n) for all n >= 2. (End)
From Vaclav Kotesovec, Sep 15 2017: (Start)
a(n) = sqrt(2)*exp(-1)*(BesselK(1/2 + n, 1)/sqrt(Pi) - i*sqrt(Pi)*BesselI(1/2 + n, -1)), where i is the imaginary unit.
a(n) ~ 2^(n+1/2) * n^n / exp(n+1). (End)
a(n) = A114938(n)/n! - Gus Wiseman, Jul 05 2020 (from Alexander Burstein's formula at A114938).
From G. C. Greubel, Sep 26 2023: (Start)
a(n) = (-1)^n * (i/e)*Sqrt(2/Pi) * BesselK(n + 1/2, -1).
G.f.: sqrt(Pi/(2*x)) * exp(-(1+x)^2/(2*x)) * Erfi((1+x)/sqrt(2*x)).
E.g.f.: exp(-1 + sqrt(1-2*x))/sqrt(1-2*x). (End)

Extensions

a(0)=1 prepended by Gheorghe Coserea, Dec 09 2016

A062980 a(0) = 1, a(1) = 5; for n > 1, a(n) = 6*n*a(n-1) + Sum_{k=1..n-2} a(k)*a(n-k-1).

Original entry on oeis.org

1, 5, 60, 1105, 27120, 828250, 30220800, 1282031525, 61999046400, 3366961243750, 202903221120000, 13437880555850250, 970217083619328000, 75849500508999712500, 6383483988812390400000, 575440151532675686278125, 55318762960656722780160000
Offset: 0

Views

Author

Michael Praehofer (praehofer(AT)ma.tum.de), Jul 24 2001

Keywords

Comments

Number of rooted unlabeled connected triangular maps on a compact closed oriented surface with 2n faces (and thus 3n edges). [Vidal]
Equivalently, the number of pair of permutations (sigma,tau) up to simultaneous conjugacy on a pointed set of size 6*n with sigma^3=tau^2=1, acting transitively and with no fixed point. [Vidal]
Also, the asymptotic expansion of the Airy function Ai'(x)/Ai(x) = -sqrt(x) - 1/(4x) + Sum_{n>=2} (-1)^n a(n) (4x)^ (1/2-3n/2). [Praehofer]
Maple 6 gives the wrong asymptotics of Ai'(x)=AiryAi(1,x) as x->oo apart from the 3rd term. Therefore asympt(AiryAi(1,x/4)/AiryAi(x/4),x); reproduces only the value a(1)=1 correctly.
Number of closed linear lambda terms (see [Bodini, Gardy, Jacquot, 2013] and [N. Zeilberger, 2015] references). - Pierre Lescanne, Feb 26 2017
Proved (bijection) by O. Bodini, D. Gardy, A. Jacquot (2013). - Olivier Bodini, Mar 30 2018
The September 2018 talk by Noam Zeilberger (see link to video) connects three topics (planar maps, Tamari lattices, lambda calculus) and eight sequences: A000168, A000260, A000309, A000698, A000699, A002005, A062980, A267827. - N. J. A. Sloane, Sep 17 2018

Examples

			1 + 5*x + 60*x^2 + 1105*x^3 + 27120*x^4 + 828250*x^5 + 30220800*x^6 + ...
		

Crossrefs

Sequences mentioned in the Noam Zeilberger 2018 video: A000168, A000260, A000309, A000698, A000699, A002005, A062980, A267827.
With interspersed zeros column 3 of A380622.
Pointed version of A129114.
Connected pointed version of A129115.

Programs

  • Haskell
    a062980 n = a062980_list !! n
    a062980_list = 1 : 5 : f 2 [5,1] where
       f u vs'@(v:vs) = w : f (u + 1) (w : vs') where
         w = 6 * u * v + sum (zipWith (*) vs_ $ reverse vs_)
         vs_ = init vs
    -- Reinhard Zumkeller, Jun 03 2013
    
  • Maple
    a:= proc(n) option remember; `if`(n<2, 4*n+1,
          6*n*a(n-1) +add(a(k)*a(n-k-1), k=1..n-2))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Mar 31 2017
  • Mathematica
    max = 16; f[y_] := -Sqrt[x] - 1/(4*x) + Sum[(-1)^n*a[n]*(4*x)^(1/2 - 3*(n/2)), {n, 2, max}] /. x -> 1/y^2; s[y_] := Normal[ Series[ AiryAiPrime[x] / AiryAi[x], {x, Infinity, max + 7}]] /. x -> 1/y^2; sol = SolveAlways[ Simplify[ f[y] == s[y], y > 0], y] // First; Join[{1, 5}, Table[a[n], {n, 3, max}] /. sol] (* Jean-François Alcover, Oct 09 2012, from Airy function asymptotics *)
    a[0] = 1; a[n_] := a[n] = (6*(n-1)+4)*a[n-1] + Sum[a[i]*a[n-i-1], {i, 0, n-1}]; Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Nov 29 2013, after Vladimir Reshetnikov *)
  • PARI
    {a(n) = local(A); n++; if( n<1, 0, A = vector(n); A[1] = 1; for( k=2, n, A[k] = (6*k - 8) * A[k-1] + sum( j=1, k-1, A[j] * A[k-j])); A[n])} /* Michael Somos, Jul 24 2011 */
    
  • Python
    from sympy.core.cache import cacheit
    @cacheit
    def a(n): return n*4 + 1 if n<2 else 6*n*a(n - 1) + sum(a(k)*a(n - k - 1) for k in range(1, n - 1))
    print([a(n) for n in range(21)]) # Indranil Ghosh, Aug 09 2017

Formula

With offset 1, then a(1) = 1 and, for n > 1, a(n) = (6*n-8)*a(n-1) + Sum_{k=1..n-1} a(k)*a(n-k) [Praehofer] [Martin and Kearney].
a(n) = (6/Pi^2)*Integral_{x=0..oo} ((4*x)^(3*n/2)/(Ai(x)^2 + Bi(x)^2)) dt. - Vladimir Reshetnikov, Sep 24 2013
a(n) ~ 3 * 6^n * n! / Pi. - Vaclav Kotesovec, Jan 19 2015
0 = 6*x^2*y' + x*y^2 + (4*x-1)*y + 1, where y(x) = Sum_{n>=0} a(n)*x^n. - Gheorghe Coserea, Apr 02 2017
From Peter Bala, May 21 2017: (Start)
G.f. as an S-fraction: A(x) = 1/(1 - 5*x/(1 - 7*x/(1 - 11*x/(1 - 13*x/(1 - ... - (6*n - 1)*x/(1 - (6*n + 1)*x/(1 - .... See Stokes.
x*A(x) = B(x)/(1 + 2*B(x)), where B(x) = x + 7*x^2 + 84*x^3 + 1463*x^4 + ... is the o.g.f. of A172455.
A(x) = 1/(1 + 2*x - 7*x/(1 - 5*x/(1 - 13*x/(1 - 11*x/(1 - ... - (6*n + 1)*x/(1 - (6*n - 1)*x/(1 - .... (End)

Extensions

Entry revised by N. J. A. Sloane based on comments from Samuel A. Vidal, Mar 30 2007

A136653 G.f.: A(x) satisfies: coefficient of x^n in A(x)^(n+1)/(n+1) = 2^(n*(n-1)/2).

Original entry on oeis.org

1, 1, 1, 4, 39, 748, 27162, 1880872, 252273611, 66358216668, 34506398937158, 35644762692112792, 73356520492898454022, 301274559225693420690360, 2471654510727312089903896948, 40527708183358718551543295827536, 1328579216048284168977214446788083699
Offset: 0

Views

Author

Paul D. Hanna, Jan 15 2008

Keywords

Comments

a(n) is the number of graphs on vertices 1,...,n such that, when these vertices are arranged counterclockwise around a circle and edges are drawn as straight line segments, the resulting diagram is connected. - Jonathan Novak (j2novak(AT)math.uwaterloo.ca), Apr 30 2010
In this interpretation, both intersecting (set theoretically) and crossing (topologically) edges are considered connected. - Gus Wiseman, Feb 23 2019

Examples

			G.f.: A(x) = 1 + x + x^2 + 4*x^3 + 39*x^4 + 748*x^5 + 27162*x^6 +...
Let F(x) = 1 + x + 2*x^2 + 8*x^3 + 64*x^4 + 1024*x^5 +...+ 2^(n*(n-1)/2)*x^n +..
then A(x) = F(x/A(x)), A(x*F(x)) = F(x).
Coefficient of x^n in A(x)^(n+1)/(n+1) = 2^(n*(n-1)/2),
as can be seen by the main diagonal in the array of
coefficients in the initial powers of A(x):
A^1: [(1), 1, 1, 4, 39, 748, 27162, 1880872, 252273611,...;
A^2: [1, (2), 3, 10, 87, 1582, 55914, 3817876, 508370795,...;
A^3: [1, 3, (6), 19, 147, 2517, 86398, 5813550, 768378627,...;
A^4: [1, 4, 10, (32), 223, 3572, 118778, 7870640, 1032387787,...;
A^5: [1, 5, 15, 50, (320), 4771, 153245, 9992130, 1300492845,...;
A^6: [1, 6, 21, 74, 444, (6144), 190023, 12181278, 1572792585,...;
A^7: [1, 7, 28, 105, 602, 7728, (229376), 14441659, 1849390375,...;
A^8: [1, 8, 36, 144, 802, 9568, 271616, (16777216), 2130394591,...;
A^9: [1, 9, 45, 192, 1053, 11718, 317112, 19192320, (2415919104),...;
dividing each diagonal term in row n by (n+1) gives 2^(n*(n-1)/2).
The diagonal above the main diagonal gives coefficients of l.g.f.:
log(F(x)) = x + 3*x^2/2 + 19*x^3/3 + 223*x^4/4 + 4771*x^5/5 +...
		

Crossrefs

Programs

  • Mathematica
    max = 15; s = x*Sum[2^(k*(k-1)/2)*x^k, {k, 0, max}] + O[x]^(max+2); x/InverseSeries[s] + O[x]^(max+1) // CoefficientList[#, x]& (* Jean-François Alcover, Sep 03 2017 *)
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    bicmpts[stn_]:=csm[Union[Subsets[stn,{1}],Select[Subsets[stn,{2}],Intersection@@#!={}&],Select[Subsets[stn,{2}],croXQ]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],And[Union@@#==Range[n],Length[bicmpts[#]]<=1]&]],{n,0,5}] (* Gus Wiseman, Feb 23 2019 *)
  • PARI
    a(n)=polcoeff(x/serreverse(x*sum(k=0,n,2^(k*(k-1)/2)*x^k +x*O(x^n))),n)

Formula

G.f.: A(x) = x/Series_Reversion( x*Sum_{k=0..n} 2^(k(k-1)/2)*x^k ).
Equals the free cumulant sequence corresponding to A006125. - Jonathan Novak (j2novak(AT)math.uwaterloo.ca), Apr 30 2010

Extensions

Name changed and part of prior name moved to formula section by Paul D. Hanna, Sep 19 2013

A000309 Number of rooted planar bridgeless cubic maps with 2n nodes.

Original entry on oeis.org

1, 1, 4, 24, 176, 1456, 13056, 124032, 1230592, 12629760, 133186560, 1436098560, 15774990336, 176028860416, 1990947110912, 22783499599872, 263411369705472, 3073132646563840, 36143187370967040, 428157758086840320, 5105072641718353920, 61228492804372561920
Offset: 0

Views

Author

Keywords

Comments

Also counts rooted planar non-separable triangulations with 3n edges. - Valery A. Liskovets, Dec 01 2003
Equivalently, rooted planar loopless triangulations with 2n triangles. - Noam Zeilberger, Oct 06 2016
Description trees of type (2,2) with n edges. (A description tree of type (a,b) is a rooted plane tree where every internal node is labeled by an integer between a and [b + sum of labels of its children], every leaf is labeled a, and the root is labeled [b + sum of labels of its children]. See Definition 1 and Section 5.2 of Cori and Schaeffer 2003.) - Noam Zeilberger, Oct 08 2017
The September 2018 talk by Noam Zeilberger (see link to video) connects three topics (planar maps, Tamari lattices, lambda calculus) and eight sequences: A000168, A000260, A000309, A000698, A000699, A002005, A062980, A267827. - N. J. A. Sloane, Sep 17 2018

References

  • C. F. Earl and L. J. March, Architectural applications of graph theory, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Sequences mentioned in the Noam Zeilberger 2018 video: A000168, A000260, A000309, A000698, A000699, A002005, A062980, A267827.

Programs

  • GAP
    List([0..20], n -> 2^(n+1)*Factorial(3*n)/(Factorial(n)* Factorial(2*n+2))); # G. C. Greubel, Nov 29 2018
  • Magma
    [2^(n+1)*Factorial(3*n)/(Factorial(n)*Factorial(2*n+2)): n in [0..20]]; // Vincenzo Librandi, Aug 10 2014
    
  • Maple
    a := n -> 2^(n+1)*(3*n)!/(n!*(2*n+2)!);
    A000309 := n -> -(-2)^(n-1)*(3*n+2)*hypergeom([-3*(n+1),-n,-n+1/3], [-n-1,-n-2/3], 1): seq(simplify(A000309(n)), n = 0..21); # Peter Luschny, Oct 28 2022
  • Mathematica
    f[n_] := 2^n(3n)!/((n + 1)!(2n + 1)!); Table[f[n], {n, 0, 19}] (* Robert G. Wilson v, Sep 21 2004 *)
    Join[{1},RecurrenceTable[{a[1]==1,a[n]==4a[n-1] Binomial[3n,3]/ Binomial[2n+2,3]}, a[n],{n,20}]] (* Harvey P. Dale, May 11 2011 *)
  • PARI
    a(n) = 2^(n+1)*(3*n)!/(n!*(2*n+2)!); \\ Michel Marcus, Aug 09 2014
    
  • Sage
    [2^n*factorial(3*n)/(factorial(n+1)*factorial(2*n+1))for n in range(20)] # G. C. Greubel Nov 29 2018
    

Formula

a(n) = 2^(n-1) * A000139(n) for n > 0.
a(n) = 4*a(n-1)*binomial(3*n, 3) / binomial(2*n+2, 3).
a(n) = 2^n*(3*n)!/ ( (n+1)!*(2*n+1)! ).
G.f.: (1/(6*x)) * (hypergeom([ -2/3, -1/3],[1/2],(27/2)*x)-1). - Mark van Hoeij, Nov 02 2009
a(n) ~ 3^(3*n+1/2)/(sqrt(Pi)*2^(n+2)*n^(5/2)). - Ilya Gutkovskiy, Oct 06 2016
D-finite with recurrence (n+1)*(2*n+1)*a(n) -3*(3*n-1)*(3*n-2)*a(n-1)=0. - R. J. Mathar, Nov 02 2018
a(n) = -(-2)^(n-1)*(3*n+2)*hypergeom([-3*(n+1),-n,-n+1/3], [-n-1,-n-2/3], 1). The a(n) are values of the polynomials A358091. - Peter Luschny, Oct 28 2022
From Karol A. Penson, Feb 24 2025: (Start)
G.f.: hypergeom([1/3, 2/3, 1], [3/2, 2], (27*z)/2).
G.f. A(z) satisfies: - 1 + 27*z + (-36*z + 1)*A(z) + 8*z*A(z)^2 + 16*z^2*A(z)^3 = 0.
G.f.: ((4*sqrt(4 - 54*z) + 12*i*sqrt(6)*sqrt(z))^(1/3)*(sqrt(z*(4 - 54*z)) - 9*i*sqrt(6)*z) + (4*sqrt(4 - 54*z) - 12*i*sqrt(6)*sqrt(z))^(1/3)*(9*i*sqrt(6)*z + sqrt(z*(4 - 54*z))) - 8*sqrt(z))/(48*z^(3/2)), where i = sqrt(-1) is the imaginary unit.
a(n) = Integral_{x=0..27/2} x^n*W(x), where W(x) = (6^(1/3)*(9 + sqrt(81 - 6*x))^(2/3)*(9*sqrt(3) - sqrt(27 - 2*x)) - 2^(2/3)*3^(1/6)*(27 + sqrt(81 - 6*x))*x^(1/3))/(48*Pi*(9 + sqrt(81 - 6*x))^(1/3)*x^(2/3)).
This integral representation is unique as W(x) is the solution of the Hausdorff power moment problem for x on (0, 27/2). Using only the definition of a(n), W(x) can be proven to be positive. W(x) is singular at x = 0, with singularity x^(-2/3), and for x > 0 is monotonically decreasing to zero at x = 27/2. (End)

Extensions

Definition clarified by Michael Albert, Oct 24 2008

A326293 Number of non-nesting, topologically connected simple graphs with vertices {1..n}.

Original entry on oeis.org

1, 1, 2, 4, 8, 27, 192, 1750
Offset: 0

Views

Author

Gus Wiseman, Jun 29 2019

Keywords

Comments

Two edges {a,b}, {c,d} are crossing if a < c < b < d or c < a < d < b, and nesting if a < c < d < b or c < a < b < d. A graph with positive integer vertices is topologically connected if the graph whose vertices are the edges and whose edges are crossing pairs of edges is connected.

Crossrefs

The inverse binomial transform is the covering case A326349.
Topologically connected simple graphs are A324328.
Non-crossing simple graphs are A054726.
Topologically connected set partitions are A099947.

Programs

  • Mathematica
    croXQ[eds_]:=MatchQ[eds,{_,{x_,y_},_,{z_,t_},_}/;x_,{x_,y_},_,{z_,t_},_}/;x0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],!nesXQ[#]&&Length[csm[Union[Subsets[#,{1}],Select[Subsets[#,{2}],croXQ]]]]<=1&]],{n,0,5}]

A267827 Number of closed indecomposable linear lambda terms with 2n+1 applications and abstractions.

Original entry on oeis.org

1, 2, 20, 352, 8624, 266784, 9896448, 426577920, 20918138624, 1149216540160, 69911382901760, 4665553152081920, 338942971881472000, 26631920159494995968, 2250690001888540950528, 203595258621775065120768, 19629810220331494121865216
Offset: 0

Views

Author

Noam Zeilberger, Jan 21 2016

Keywords

Comments

A linear lambda term is indecomposable if it has no closed proper subterm.
Equivalently, number of closed bridgeless rooted trivalent maps (on compact oriented surfaces of arbitrary genus) with 2n+1 trivalent vertices (and 1 univalent vertex).
The September 2018 talk by Noam Zeilberger (see link to video) connects three topics (planar maps, Tamari lattices, lambda calculus) and eight sequences: A000168, A000260, A000309, A000698, A000699, A002005, A062980, A267827. - N. J. A. Sloane, Sep 17 2018

Examples

			A(x) = 1 + 2*x + 20*x^2 + 352*x^3 + 8624*x^4 + 266784*x^5 + ...
		

Crossrefs

Sequences mentioned in the Noam Zeilberger 2018 video: A000168, A000260, A000309, A000698, A000699, A002005, A062980, A267827.

Programs

  • Mathematica
    a[0] = 1; a[1] = 2; a[n_] := a[n] = (6n-2) a[n-1] + Sum[(6k+2) a[k] a[n-1-k], {k, 1, n-2}];
    Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Oct 16 2018, after Gheorghe Coserea *)
  • PARI
    seq(N) = {
      my(a = vector(N)); a[1] = 2;
      for(n=2, N,
        a[n] = (6*n-2)*a[n-1] + sum(k=1, n-2, (6*k+2)*a[k]*a[n-1-k]));
      concat(1,a);
    };
    seq(16)
    \\ test 1: y = x^2*subst(Ser(seq(201)),'x,-'x^6); 0 == x^5*y*y' + y - x^2
    \\ test 2: y = Ser(seq(201)); 0 == 6*y*y'*x^2 + 2*y^2*x - y + 1
    \\ Gheorghe Coserea, Nov 10 2017
    F(N) = {
      my(x='x+O('x^N), t='t, F0=x, F1=0, n=1);
      while(n++,
        F1 = t + x*(F0 - subst(F0,t,0))^2 + x*deriv(F0,t);
        if (F1 == F0, break()); F0 = F1;);
      F0;
    };
    seq(N) = my(v=Vec(subst(F(2*N+2),'t,0))); vector((#v+1)\2, n, v[2*n-1]);
    seq(16) \\ Gheorghe Coserea, Apr 01 2017

Formula

The o.g.f. f(z) = z + 2*z^3 + 20*z^5 + 352*z^7 + ... can be defined using a catalytic variable as f(z) = F(z,0), where F(z,x) satisfies the functional-differential equation F(z,x) = x + z*(F(z,x) - F(z,0))^2 + z*(d/dx)F(z,x).
From Gheorghe Coserea, Nov 10 2017: (Start)
0 = x^5*y*y' + y - x^2, where y(x) = x^2*A(-x^6).
0 = 6*y*y'*x^2 + 2*y^2*x - y + 1, where y(x) = A(x).
a(n) = (6*n-2)*a(n-1) + Sum_{k=1..n-2} (6*k+2)*a(k)*a(n-1-k), for n >= 2.
(End)
a(n) = A291843(3*n+1, 2*n), n >= 1. - Danny Rorabaugh, Nov 10 2017

A324327 Number of topologically connected chord graphs covering {1,...,n}.

Original entry on oeis.org

1, 0, 1, 0, 1, 11, 257
Offset: 0

Views

Author

Gus Wiseman, Feb 22 2019

Keywords

Comments

A graph is topologically connected if the graph whose vertices are the edges and whose edges are crossing pairs of edges is connected, where two edges cross each other if they are of the form {{x,y},{z,t}} with x < z < y < t or z < x < t < y.
Covering means there are no isolated vertices.

Examples

			The a(0) = 1 through a(5) = 11 graphs:
  {}  {{12}}  {{13}{24}}  {{13}{14}{25}}
                          {{13}{24}{25}}
                          {{13}{24}{35}}
                          {{14}{24}{35}}
                          {{14}{25}{35}}
                          {{13}{14}{24}{25}}
                          {{13}{14}{24}{35}}
                          {{13}{14}{25}{35}}
                          {{13}{24}{25}{35}}
                          {{14}{24}{25}{35}}
                          {{13}{14}{24}{25}{35}}
		

Crossrefs

Cf. A000108, A000699 (the case with disjoint edges), A001764, A002061, A007297, A016098, A054726, A099947, A136653 (the case with set-theoretical connectedness also), A268814.
Cf. A324167, A324169 (non-crossing covers), A324172, A324173, A324323, A324328 (non-covering case).

Programs

  • Mathematica
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    crosscmpts[stn_]:=csm[Union[Subsets[stn,{1}],Select[Subsets[stn,{2}],croXQ]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],And[Union@@#==Range[n],Length[crosscmpts[#]]<=1]&]],{n,0,5}]

Formula

Inverse binomial transform of A324328.

A002005 Number of rooted planar cubic maps with 2n vertices.

Original entry on oeis.org

1, 4, 32, 336, 4096, 54912, 786432, 11824384, 184549376, 2966845440, 48855252992, 820675092480, 14018773254144, 242919827374080, 4261707069259776, 75576645116559360, 1353050213048123392, 24428493151359467520, 444370175232646840320, 8138178004138611179520
Offset: 0

Views

Author

Keywords

Comments

Equivalently, number of rooted planar triangulations with 2n faces.
The September 2018 talk by Noam Zeilberger (see link to video) connects three topics (planar maps, Tamari lattices, lambda calculus) and eight sequences: A000168, A000260, A000309, A000698, A000699, A002005, A062980, A267827. - N. J. A. Sloane, Sep 17 2018

References

  • R. C. Mullin, E. Nemeth and P. J. Schellenberg, The enumeration of almost cubic maps, pp. 281-295 in Proceedings of the Louisiana Conference on Combinatorics, Graph Theory and Computer Science. Vol. 1, edited R. C. Mullin et al., 1970.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Sequences mentioned in the Noam Zeilberger 2018 video: A000168, A000260, A000309, A000698, A000699, A002005, A062980, A267827.
Column k=0 of A266240.

Programs

  • Maple
    seq(2*8^n*binomial(n*3/2, n)/((n + 2)*(n + 1)), n = 0..19); # Peter Luschny, Nov 14 2022
  • Mathematica
    Table[2^(2 n + 1) (3 n)!!/((n + 2)! n!!), {n, 0, 20}] (* Vincenzo Librandi, Dec 28 2015 *)
    CoefficientList[Series[(-1 + 96 z + Hypergeometric2F1[-2/3,-1/3,1/2,432z^2]- 96 z Hypergeometric2F1[-1/6,1/6,3/2,432z^2])/(192 z^2), {z, 0, 10}], z] (* Benedict W. J. Irwin, Aug 07 2016 *)
  • PARI
    factorial2(n) = my(x = (2^(n\2)*(n\2)!)); if (n%2, n!/x, x);
    a(n) = 2^(2*n+1)*factorial2(3*n)/((n+2)!*factorial2(n));
    vector(20, i, a(i-1))
    \\ test: y = Ser(vector(201, n, a(n-1))); x*(1-432*x^2)*y' == 64*x^2*y^2 + (288*x^2 - 64*x - 1)*y + 72*x + 1
    \\ Gheorghe Coserea, Jun 13 2017

Formula

a(n) = 2^(2*n+1)*(3*n)!!/((n+2)!*n!!). - Sean A. Irvine, May 19 2013
a(n) ~ sqrt(6/Pi) * n^(-5/2) * (12*sqrt(3))^n. - Gheorghe Coserea, Feb 25 2016
G.f.: (96*x - 1 + 2F1(-2/3, -1/3; 1/2; 432*x^2) - 96*x*2F1(-1/6, 1/6; 3/2; 432*x^2))/(192*x^2). - Benedict W. J. Irwin, Aug 07 2016
From Gheorghe Coserea, Jun 13 2017: (Start)
G.f. y(x) satisfies:
x*(1-432*x^2)*deriv(y,x) = 64*x^2*y^2 + (288*x^2 - 64*x - 1)*y + 72*x + 1.
0 = 64*x^3*y^3 + x*(1-96*x)*y^2 + (30*x-1)*y - 27*x + 1.
(End).
D-finite with recurrence (n+2)*(n+1)*a(n) -48*(3*n-2)*(3*n-4)*a(n-2)=0. - R. J. Mathar, Feb 08 2021
From Karol A. Penson and Katarzyna Gorska (katarzyna.gorska@ifj.edu.pl), Nov 02 2022: (Start)
a(n) = Integral_{x=0..12*sqrt(3)} x^n*W(x), where
W(x) = (T1(x) + T2(x)) / T3(x), and
T1(x) = -x^(2/3) * (108 + sqrt(3) * sqrt(432 - x^2));
T2(x) = 3^(1/6)*(36+sqrt(3)*sqrt(432-x^2))^(2/3) * (-432+x^2+36*sqrt(3)* sqrt(432-x^2)) / sqrt(432-x^2);
T3(x) = (128*3^(5/6)*Pi*x^(1/3)*(36+sqrt(3)*sqrt(432-x^2))^(1/3)).
This integral representation is unique as W(x) is the solution of the Hausdorff power moment problem. Using only the definition of a(n), W(x) can be proven to be positive. W(x) is singular at x = 0, with the singularity x^(-1/3), and for x > 0 is monotonically decreasing to zero at x = 12*sqrt(3). (End)
a(n) = 2^(3*n + 1)*binomial(n*3/2, n)/((n + 1)*(n + 2)) = A358367(n) / A000217(n + 1). - Peter Luschny, Nov 14 2022

Extensions

More terms from Sean A. Irvine, May 19 2013
Previous Showing 11-20 of 79 results. Next