cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 126 results. Next

A270469 Number of ordered ways to write n = x^3 + y*(y+1) + z*(3*z+2), where x and y are nonnegative integers and z is a nonzero integer.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 3, 2, 1, 3, 1, 2, 2, 3, 2, 2, 3, 2, 1, 4, 4, 2, 2, 2, 2, 1, 5, 4, 2, 2, 2, 3, 4, 4, 5, 2, 2, 3, 3, 5, 2, 5, 3, 2, 4, 5, 4, 2, 3, 3, 3, 3, 4, 3, 1, 2, 5, 3, 4, 3, 4, 4, 4, 5, 4, 3, 4, 4, 3, 6, 5, 5, 3, 3, 3, 6, 6, 2, 4
Offset: 1

Views

Author

Zhi-Wei Sun, Mar 17 2016

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 0, and a(n) = 1 only for n = 1, 2, 3, 4, 5, 6, 10, 12, 20, 27, 56, 101.
(ii) Each nonnegative integer can be written as x^3 + P(y,z) with x >= 0 and y and z integers, provided that P(y,z) is among y^2+z(3z+1), y(2y+1)+z(3z+1), y(2y+1)+z(3z+2), y(2y+1)+z(5z+2), y(2y+1)+z(5z+3), y(2y+1)+2z(3z+1), y(2y+1)+ 2z(3z+2), y(2y+1)+z(6z+5), y(2y+1)+z(7z+2), y(2y+1)+z(7z+6), y(3y+1)+z(4z+1), y(3y+1)+z(7z+2), y(3y+2)+z(4z+1).
(iii) Every n = 0,1,2,... can be expressed as f(x,y,z) with x >= 0 and y and z integers, provided that f(x,y,z) is among 2x^3+y^2+z(3z+1), 2x^3+y(y+1)+z(3z+2), 3x^3+y(y+1)+z(3z+2), 2x^3+y(2y+1)+z(3z+1), 2x^3+y(2y+1)+z(3z+2), 2x^3+y(2y+1)+z(5z+4), 2x^3+y(3y+1)+z(3z+2), 2x^3+y(3y+2)+z(4z+3).
Note that those y(2y+1) with y integral are just triangular numbers.
See also A262813 for a similar conjecture.

Examples

			a(10) = 1 since 10 = 0^3 + 1*2 + (-2)(3*(-2)+2).
a(12) = 1 since 12 = 1^3 + 2*3 + 1*(3*1+2).
a(20) = 1 since 20 = 0^3 + 3*4 + (-2)*(3*(-2)+2).
a(27) = 1 since 27 = 0^3 + 2*3 + (-3)*(3*(-3)+2).
a(56) = 1 since 56 = 0^3 + 0*1 + 4*(3*4+2).
a(101) = 1 since 101 = 2^3 + 8*9 + (-3)*(3*(-3)+2).
		

Crossrefs

Programs

  • Mathematica
    pQ[x_]:=pQ[x]=x>0&&IntegerQ[Sqrt[3x+1]]
    Do[r=0;Do[If[pQ[n-x^3-y(y+1)],r=r+1],{x,0,n^(1/3)},{y,0,(Sqrt[4(n-x^3)+1]-1)/2}];Print[n," ",r];Continue,{n,1,80}]

A017569 a(n) = 12*n + 4.

Original entry on oeis.org

4, 16, 28, 40, 52, 64, 76, 88, 100, 112, 124, 136, 148, 160, 172, 184, 196, 208, 220, 232, 244, 256, 268, 280, 292, 304, 316, 328, 340, 352, 364, 376, 388, 400, 412, 424, 436, 448, 460, 472, 484, 496, 508, 520, 532, 544, 556, 568, 580, 592, 604, 616, 628
Offset: 0

Views

Author

Keywords

Comments

Apart from initial term(s), dimension of the space of weight 2n cusp forms for Gamma_0(46).
Number of 6 X n 0-1 matrices avoiding simultaneously the right angled numbered polyomino patterns (ranpp) (00;1), (01;0), (11;0) and (01;1). An occurrence of a ranpp (xy;z) in a matrix A=(a(i,j)) is a triple (a(i1,j1), a(i1,j2), a(i2,j1)) where i1A008574; m=3: A016933; m=4: A022144; m=5: A017293. - Sergey Kitaev, Nov 13 2004
Except for 4, exponents e such that x^e - x^2 + 1 is reducible.
If Y and Z are 2-blocks of a (3n+1)-set X then a(n-1) is the number of 3-subsets of X intersecting both Y and Z. - Milan Janjic, Oct 28 2007
Terms are perfect squares iff n is a generalized octagonal number (A001082), then n = k*(3*k-2) and a(n) = (2*(3*k-1))^2. - Bernard Schott, Feb 26 2023

Crossrefs

Programs

Formula

A089911(a(n)) = 3. - Reinhard Zumkeller, Jul 05 2013
Sum_{n>=0} (-1)^n/a(n) = sqrt(3)*Pi/36 + log(2)/12. - Amiram Eldar, Dec 12 2021
From Stefano Spezia, Feb 25 2023: (Start)
O.g.f.: 4*(1 + 2*x)/(1 - x)^2.
E.g.f.: 4*exp(x)*(1 + 3*x). (End)
From Elmo R. Oliveira, Apr 10 2025: (Start)
a(n) = 2*a(n-1) - a(n-2).
a(n) = 2*A016933(n) = 4*A016777(n) = A016777(4*n+1). (End)

A036666 Numbers k such that 5*k + 1 is a square.

Original entry on oeis.org

0, 3, 7, 16, 24, 39, 51, 72, 88, 115, 135, 168, 192, 231, 259, 304, 336, 387, 423, 480, 520, 583, 627, 696, 744, 819, 871, 952, 1008, 1095, 1155, 1248, 1312, 1411, 1479, 1584, 1656, 1767, 1843, 1960, 2040, 2163, 2247, 2376, 2464, 2599, 2691
Offset: 1

Views

Author

N. J. A. Sloane, Dec 11 1999

Keywords

Comments

Third differences are 4, -6, 8, -10, 12, -14, 16, -18, 20, -22, 24, -26, 28, ...
X values of solutions to the equation 5*X^3 + X^2 = Y^2. - Mohamed Bouhamida, Nov 06 2007
Also, numbers 5*i^2 + 2*i for integer i. The characteristic function is A205633(n). - Jason Kimberley, Nov 15 2012
From Gary W. Adamson, Sep 22 2019: (Start)
Match the values a(n) with the squares 5k + 1 as follows:
3,....7,....16,....24,... .a, a, a, a,...
16,...36,....81,...121,... (base).
Then 1/5 in the matching base is equal to .a, a, a,...
Example: 1/5 in base 36 is equal to .7, 7, 7, 7...
Check: 7/36 + 7/36^2 = 259/1296 = .199845...; close to 1/5.
(End)

Crossrefs

Programs

Formula

G.f.: x*(3 + 4*x + 3*x^2) / ((1 - x)*(1 - x^2)).
a(n) has the form ((5*m + 1)^2 - 1)/5 if n is odd; a(n) has the form ((5*m + 4)^2 - 1)/5 if n is even.
a(2*k) = k*(5*k + 2), a(2*k + 1) = 5*k^2 + 8*k + 3. - Mohamed Bouhamida, Nov 06 2007
a(n+1) = n^2 + n + ceiling(n/2)^2. - Gary Detlefs, Feb 23 2010
From Bruno Berselli, Nov 27 2010: (Start)
a(n) = (10*n*(n - 1)+(2*n - 1)*(-1)^n + 1)/8.
5*a(n) + 1 = A047209(n)^2. (End)
a(n) = Sum_{k=0..n} k + A109043(k). - Jon Maiga, Nov 28 2018
E.g.f.: (exp(x)*(1 + 10*x^2) - exp(-x)*(1 + 2*x))/8. - Franck Maminirina Ramaharo, Nov 29 2018
From Amiram Eldar, Mar 15 2022: (Start)
Sum_{n>=2} 1/a(n) = 5/4 - sqrt(1-2/sqrt(5))*Pi/2.
Sum_{n>=2} (-1)^n/a(n) = 5*(log(5)-1)/4 - sqrt(5)*log(phi)/2, where phi is the golden ratio (A001622). (End)

Extensions

Better description and additional formula from Santi Spadaro, Jul 12 2001

A270516 Number of ordered ways to write n = x^3*(x+1) + y*(y+1)/2 + z*(3z+2), where x and y are nonnegative integers, and z is an integer.

Original entry on oeis.org

1, 2, 2, 3, 2, 2, 3, 2, 4, 2, 3, 4, 1, 3, 1, 2, 3, 3, 3, 2, 2, 3, 4, 3, 5, 3, 4, 2, 4, 4, 3, 5, 2, 5, 2, 5, 5, 2, 5, 5, 3, 4, 3, 5, 4, 5, 7, 2, 4, 1, 5, 2, 4, 3, 2, 5, 3, 6, 3, 3, 5, 6, 2, 5, 2, 4, 5, 4, 8, 3, 4, 5, 1, 5, 3, 1, 4, 3, 5, 4, 5
Offset: 0

Views

Author

Zhi-Wei Sun, Mar 18 2016

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n = 0,1,2,..., and the only values of n > 1428 with a(n) = 1 are 2205, 2259, 3556, 4107, 4337, 5387, 9331, 16561, 22237, 27569, 63947, 78610.
(ii) Any natural number can be written as x*(x^3+2) + y*(y+1)/2 + z*(3z+1), where x and y are nonnegative integers, and z is an integer.
(iii) Every n = 0,1,2,... can be written as x*(x^3+x^2+6) + y*(y+1)/2 + z*(3z+2) (or x*(x^3+x^2+4x+1) + y*(y+1)/2 + z*(3z+1)), where x and y are nonnegative integers, and z is an integer.
See also A270533 for a similar conjecture.

Examples

			a(72) = 1 since 72 = 2^3*3 + 5*6/2 + 3*(3*3+2).
a(75) = 1 since 75 = 0^3*1 + 4*5/2 + (-5)*(3*(-5)+2).
a(5387) = 1 since 5387 = 7^3*8 + 2*3/2 + (-30)*(3*(-30)+2).
a(9331) = 1 since 9331 = 8^3*9 + 2*3/2 + (-40)*(3*(-40)+2).
a(16561) = 1 since 16561 = 1^3*2 + 101*102/2 + (-62)*(3*(-62)+2).
a(22237) = 1 since 22237 = 6^3*7 + 104*105/2 + 71*(3*71+2).
a(27569) = 1 since 27569 = 2^3*3 + 49*50/2 + (-94)*(3*(-94)+2).
a(63947) = 1 since 63947 = 0^3*1 + 173*174/2 + (-128)*(3*(-128)+2).
a(78610) = 1 since 78610 = 16^3*17 + 52*53/2 + 50*(3*50+2).
		

Crossrefs

Programs

  • Mathematica
    OQ[x_]:=OQ[x]=IntegerQ[Sqrt[3x+1]]
    Do[r=0;Do[If[OQ[n-y(y+1)/2-x^3*(x+1)],r=r+1],{y,0,(Sqrt[8n+1]-1)/2},{x,0,(n-y(y+1)/2)^(1/4)}];Print[n," ",r];Continue,{n,0,80}]

A032765 a(n) = floor(n*(n+1)*(n+2) / (n + n+1 + n+2)) = floor(n*(n+2)/3).

Original entry on oeis.org

0, 1, 2, 5, 8, 11, 16, 21, 26, 33, 40, 47, 56, 65, 74, 85, 96, 107, 120, 133, 146, 161, 176, 191, 208, 225, 242, 261, 280, 299, 320, 341, 362, 385, 408, 431, 456, 481, 506, 533, 560, 587, 616, 645, 674, 705, 736, 767, 800, 833, 866, 901, 936, 971, 1008
Offset: 0

Views

Author

Patrick De Geest, May 15 1998

Keywords

Comments

Satisfies a(n+1) - 2*a(n) + a(n-1) = (2/3)*(1 + w^(n+1) + w^(2*n+2)), a(0)=0 & a(1)=1 where w is the imaginary cubic root of unity. - Robert G. Wilson v, Jun 24 2002
First differences have this pattern: (+1) +1 +1 +3 +3 +3 +5 +5 +5 +7 +7 +7 +9 +9 +9. - Alexandre Wajnberg, Dec 19 2005
In Duistermaat (2010) section 11.3 The Planar Four-Bar Link on page 516: "It follows from (4.3.2) that the number of k-periodic fibers of the QRT automorphism, counted with multiplicities, is equal to nu((tau^S)^k) = 3*n^2 - 1 when k = 3*n, 3*n^2 + 2*n when k = 3*n + 1, 3*n^2 + 4*n + 1 when k = 3*n + 2, for every integer n." - Michael Somos, Mar 14 2023
a(n-1) is the maximum number of edges in a graph with vertices labeled from 1 to n, such that there is no triangle whose sum of vertex labels is divisible by n. - Hoang Xuan Thanh, Jun 11 2025

Examples

			G.f. = x + 2*x^2 + 5*x^3 + 8*x^4 + 11*x^5 + 16*x^6 + 21*x^7 + 26*x^8 + ... - _Michael Somos_, Mar 14 2023
Let n = 5: a(5-1) = 8. Consider the graph G(5) with vertex set {1, 2, 3, 4, 5} and the edge set: E = {12, 23, 34, 45, 51, 13, 24, 35}, which contains 8 edges. The triangles in this graph are: {123}, {234}, {345}, {135}. Their vertex sums are: 1+2+3 = 6, 2+3+4 = 9, 3+4+5 = 12, 1+3+5=9. Since none of these sums are divisible by 5, the graph satisfies the required condition. If we add the edge 14, a new triangle {145} would appear, whose vertex sum is 1+4+5 = 10, divisible by 5. Similarly, if we add the edge 25, the triangle {235} would form, with vertex sum 2+3+5 = 10, also divisible by 5. - _Hoang Xuan Thanh_, Jun 11 2025
		

References

  • Johannes J. Duistermaat, Discrete Integrable Systems, Springer Science+Business Media, 2010.

Crossrefs

Programs

  • Maple
    A032765:=n->floor(n*(n+2)/3); seq(A032765(n), n=0..100); # Wesley Ivan Hurt, Dec 20 2013
  • Mathematica
    Table[Floor[n (n + 1)(n + 2)/(n + (n + 1) + (n + 2))], {n, 0, 55}]
    Table[Floor[n (n + 2)/3], {n, 0, 100}] (* Wesley Ivan Hurt, Dec 20 2013 *)
    LinearRecurrence[{2, -1, 1, -2, 1}, {0, 1, 2, 5, 8}, 60] (* Harvey P. Dale, Jun 06 2016 *)
    Table[(3 n (n + 2) + 2 Cos[2 n Pi/3] + 2 Sqrt[3] Sin[2 n Pi/3] - 2)/9, {n, 0, 20}] (* Eric W. Weisstein, Jul 27 2025 *)
    CoefficientList[Series[x (-1 - 2 x^2 + x^3)/((-1 + x)^3 (1 + x + x^2)), {x, 0, 20}], x] (* Eric W. Weisstein, Jul 27 2025 *)
  • PARI
    a(n)=n*(n+2)\3 \\ Charles R Greathouse IV, Jun 11 2015

Formula

From Ralf Stephan, May 05 2004: (Start)
a(n) = n^2 - ceiling(n*(n-1)/3).
G.f.: x*(1+2x^2-x^3)/((1+x+x^2)(1-x)^3). (End)
a(n) = floor(n*(n+2)/3). - Saburo Tamura, sent by Alexandre Wajnberg, Dec 19 2005
a(3*n - 1) = 3*n^2 - 1, a(3*n) = 3*n^2 + 2*n, a(3*n + 1) = 3*n^2 + 4*n + 1. - Michael Somos, Mar 14 2023
a(n+5) = A000217(n+5) - A001399(n+3) - A001399(n). - Hoang Xuan Thanh, Jun 11 2025
Sum_{n>=1} (-1)^(n+1)/a(n) = -1/4 + (Pi/(2*sqrt(3)))*(2-cosec(Pi/sqrt(3))). - Amiram Eldar, Jun 18 2025

Extensions

Name change suggested by Wesley Ivan Hurt, Dec 20 2013

A135453 a(n) = 12*n^2.

Original entry on oeis.org

0, 12, 48, 108, 192, 300, 432, 588, 768, 972, 1200, 1452, 1728, 2028, 2352, 2700, 3072, 3468, 3888, 4332, 4800, 5292, 5808, 6348, 6912, 7500, 8112, 8748, 9408, 10092, 10800, 11532, 12288, 13068, 13872, 14700, 15552, 16428, 17328, 18252, 19200, 20172, 21168, 22188
Offset: 0

Views

Author

Ben Paul Thurston, Dec 14 2007

Keywords

Comments

Areas of perfect 4:3 rectangles (for n > 0).
Sequence found by reading the line from 0, in the direction 0, 12, ..., in the square spiral whose vertices are the generalized octagonal numbers A001082. Semi-axis opposite to A069190 in the same spiral. - Omar E. Pol, Sep 16 2011
(x,y,z) = (-a(n), 1 + n*a(n), 1 - n*a(n)) are solutions of the Diophantine equation x^3 + 2*y^3 + 2*z^3 = 4. - XU Pingya, Apr 30 2022

Examples

			192 is on the list since 16*12 is a 4:3 rectangle with integer sides and an area of 192.
		

Crossrefs

Programs

Formula

a(n) = 12*A000290(n) = 6*A001105(n) = 4*A033428(n) = 3*A016742(n) = 2*A033581(n). - Omar E. Pol, Dec 13 2008
From Amiram Eldar, Feb 03 2021: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/72 (A086729).
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/144.
Product_{n>=1} (1 + 1/a(n)) = 2*sqrt(3)*sinh(Pi/(2*sqrt(3)))/Pi.
Product_{n>=1} (1 - 1/a(n)) = 2*sqrt(3)*sin(Pi/(2*sqrt(3)))/Pi. (End)
From Elmo R. Oliveira, Nov 30 2024: (Start)
G.f.: 12*x*(1 + x)/(1-x)^3.
E.g.f.: 12*x*(1 + x)*exp(x).
a(n) = n*A008594(n) = A195143(2*n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

Extensions

More terms from Stefan Steinerberger, Dec 17 2007
Minor edits from Omar E. Pol, Dec 15 2008

A195849 Column 5 of array A195825. Also column 1 of triangle A195839. Also 1 together with the row sums of triangle A195839.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 3, 4, 4, 4, 4, 5, 7, 10, 12, 13, 13, 14, 16, 21, 27, 32, 34, 36, 38, 44, 54, 67, 77, 84, 88, 95, 107, 128, 152, 174, 188, 200, 215, 242, 281, 329, 370, 402, 428, 462, 513, 589, 674, 754, 816, 873, 940, 1041, 1176, 1333, 1477, 1600, 1710, 1845
Offset: 0

Views

Author

Omar E. Pol, Oct 07 2011

Keywords

Comments

Note that this sequence contains three plateaus: [1, 1, 1, 1, 1, 1], [4, 4, 4, 4], [13, 13]. For more information see A210843. See also other columns of A195825. - Omar E. Pol, Jun 29 2012
Number of partitions of n into parts congruent to 0, 1 or 6 (mod 7). - Ludovic Schwob, Aug 05 2021

Crossrefs

Programs

  • Maple
    A118277 := proc(n)
            7*n^2/8+7*n/8-3/16+3*(-1)^n*(1/16+n/8) ;
    end proc:
    A195839 := proc(n, k)
            option remember;
            local ks, a, j ;
            if A118277(k) > n then
                    0 ;
            elif n <= 5 then
                    return 1;
            elif k = 1 then
                    a := 0 ;
                    for j from 1 do
                            if A118277(j) <= n-1 then
                                    a := a+procname(n-1, j) ;
                            else
                                    break;
                            end if;
                    end do;
                    return a;
            else
                    ks := A118277(k) ;
                    (-1)^floor((k-1)/2)*procname(n-ks+1, 1) ;
            end if;
    end proc:
    A195849 := proc(n)
            A195839(n+1,1) ;
    end proc:
    seq(A195849(n), n=0..60) ; # R. J. Mathar, Oct 08 2011
  • Mathematica
    m = 61;
    Product[1/((1 - x^(7k))(1 - x^(7k - 1))(1 - x^(7k - 6))), {k, 1, m}] + O[x]^m // CoefficientList[#, x]& (* Jean-François Alcover, Apr 13 2020, after Ilya Gutkovskiy *)

Formula

G.f.: Product_{k>=1} 1/((1 - x^(7*k))*(1 - x^(7*k-1))*(1 - x^(7*k-6))). - Ilya Gutkovskiy, Aug 13 2017
a(n) ~ exp(Pi*sqrt(2*n/7)) / (8*sin(Pi/7)*n). - Vaclav Kotesovec, Aug 14 2017

A014642 Even octagonal numbers: a(n) = 4*n*(3*n-1).

Original entry on oeis.org

0, 8, 40, 96, 176, 280, 408, 560, 736, 936, 1160, 1408, 1680, 1976, 2296, 2640, 3008, 3400, 3816, 4256, 4720, 5208, 5720, 6256, 6816, 7400, 8008, 8640, 9296, 9976, 10680, 11408, 12160, 12936, 13736, 14560, 15408, 16280, 17176, 18096, 19040, 20008, 21000, 22016
Offset: 0

Views

Author

Keywords

Comments

8 times pentagonal numbers. - Omar E. Pol, Dec 11 2008
Sequence found by reading the line from 0, in the direction 0, 8, ..., in the square spiral whose vertices are the generalized octagonal numbers A001082. - Omar E. Pol, Jul 18 2012
The sequence forms the even nesting cube-frames (see illustrations in A000567), which separate and appear according to formula along the axes on the zero-centered and one-centered hexagonal number spirals, as well as the axes of the zero-centered and one-centered square number spirals. See illustrations in links. - John Elias, Jul 20 2022

Crossrefs

Programs

  • GAP
    List([0..50], n-> 8*Binomial(3*n,2)/3); # G. C. Greubel, Oct 09 2019
  • Magma
    [8*Binomial(3*n,2)/3: n in [0..50]]; // G. C. Greubel, Oct 09 2019
    
  • Maple
    seq(8*binomial(3*n,2)/3, n=0..50); # G. C. Greubel, Oct 09 2019
  • Mathematica
    LinearRecurrence[{3,-3,1},{0,8,40}, 50] (* G. C. Greubel, Jun 07 2017 *)
    PolygonalNumber[8,Range[0,90,2]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 19 2020 *)
  • PARI
    vector(51, n, 8*binomial(3*(n-1),2)/3 ) \\ G. C. Greubel, Jun 07 2017
    
  • Sage
    [8*binomial(3*n,2)/3 for n in (0..50)] # G. C. Greubel, Oct 09 2019
    

Formula

a(n) = A000326(n)*8. - Omar E. Pol, Dec 11 2008
a(n) = A049450(n)*4 = A033579(n)*2. - Omar E. Pol, Dec 13 2008
a(n) = a(n-1) + 24*n - 16 (with a(0)=0). - Vincenzo Librandi, Nov 20 2010
G.f.: x*(8+16*x)/(1-3*x+3*x^2-x^3). - Colin Barker, Jan 06 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - G. C. Greubel, Jun 07 2017
E.g.f.: 4*x*(2 + 3*x)*exp(x). - G. C. Greubel, Oct 09 2019
From Amiram Eldar, Mar 24 2021: (Start)
Sum_{n>=1} 1/a(n) = 3*log(3)/8 - Pi/(8*sqrt(3)).
Sum_{n>=1} (-1)^(n+1)/a(n) = log(2)/2 - Pi/(4*sqrt(3)). (End)

Extensions

More terms from Patrick De Geest

A152746 Six times hexagonal numbers: 6*n*(2*n-1).

Original entry on oeis.org

0, 6, 36, 90, 168, 270, 396, 546, 720, 918, 1140, 1386, 1656, 1950, 2268, 2610, 2976, 3366, 3780, 4218, 4680, 5166, 5676, 6210, 6768, 7350, 7956, 8586, 9240, 9918, 10620, 11346, 12096, 12870, 13668, 14490, 15336, 16206, 17100
Offset: 0

Views

Author

Omar E. Pol, Dec 12 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 6, ..., in the square spiral whose vertices are the generalized octagonal numbers A001082. - Omar E. Pol, Sep 18 2011
a(n) is the number of walks on a cubic lattice of n dimensions that return to the origin, not necessarily for the first time, after 4 steps. - Shel Kaphan, Mar 20 2023

Crossrefs

Programs

  • Magma
    [6*n*(2*n-1): n in [0..50]]; // G. C. Greubel, Sep 01 2018
  • Mathematica
    6*PolygonalNumber[6,Range[0,40]] (* The program uses the PolygonalNumber function from Mathematica version 10 *) (* Harvey P. Dale, Mar 04 2016 *)
    LinearRecurrence[{3,-3,1}, {0,6,36}, 50] (* or *) Table[6*n*(2*n-1), {n,0,50}] (* G. C. Greubel, Sep 01 2018 *)
  • PARI
    a(n)=6*n*(2*n-1) \\ Charles R Greathouse IV, Jun 17 2017
    

Formula

a(n) = 12*n^2 - 6*n = A000384(n)*6 = A002939(n)*3 = A094159(n)*2.
a(n) = a(n-1) + 24*n - 18 (with a(0)=0). - Vincenzo Librandi, Nov 26 2010
From G. C. Greubel, Sep 01 2018: (Start)
G.f.: 6*x*(1+3*x)/(1-x)^3.
E.g.f.: 6*x*(1+2*x)*exp(x). (End)
From Amiram Eldar, Mar 30 2023: (Start)
Sum_{n>=1} 1/a(n) = log(2)/3.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/12 - log(2)/6. (End)

A195143 a(n) = n-th concentric 12-gonal number.

Original entry on oeis.org

0, 1, 12, 25, 48, 73, 108, 145, 192, 241, 300, 361, 432, 505, 588, 673, 768, 865, 972, 1081, 1200, 1321, 1452, 1585, 1728, 1873, 2028, 2185, 2352, 2521, 2700, 2881, 3072, 3265, 3468, 3673, 3888, 4105, 4332, 4561, 4800, 5041, 5292, 5545, 5808, 6073, 6348
Offset: 0

Views

Author

Omar E. Pol, Sep 17 2011

Keywords

Comments

Concentric dodecagonal numbers. [corrected by Ivan Panchenko, Nov 09 2013]
Sequence found by reading the line from 0, in the direction 0, 12,..., and the same line from 1, in the direction 1, 25,..., in the square spiral whose vertices are the generalized octagonal numbers A001082. Main axis, perpendicular to A028896 in the same spiral.
Partial sums of A091998. - Reinhard Zumkeller, Jan 07 2012
Column 12 of A195040. - Omar E. Pol, Sep 28 2011

Crossrefs

A135453 and A069190 interleaved.
Cf. A016921 (6n+1), A016969 (6n+5), A091998 (positive integers of the form 12*k +- 1), A092242 (positive integers of the form 12*k +- 5).

Programs

  • Haskell
    a195143 n = a195143_list !! n
    a195143_list = scanl (+) 0 a091998_list
    -- Reinhard Zumkeller, Jan 07 2012
  • Magma
    [(3*n^2+(-1)^n-1): n in [0..50]]; // Vincenzo Librandi, Sep 27 2011
    
  • Mathematica
    Table[Sum[2*(-1)^(n - k + 1) + 6*k - 3, {k, n}], {n, 0, 47}] (* L. Edson Jeffery, Sep 14 2014 *)

Formula

From Vincenzo Librandi, Sep 27 2011: (Start)
a(n) = 3*n^2+(-1)^n-1.
a(n) = -a(n-1) + 6*n^2 - 6*n + 1. (End)
G.f.: -x*(1+10*x+x^2) / ( (1+x)*(x-1)^3 ). - R. J. Mathar, Sep 18 2011
a(n) = Sum_{k=1..n} (2*(-1)^(n-k+1) + 3*(2*k-1)), n>0, a(0) = 0. - L. Edson Jeffery, Sep 14 2014
Sum_{n>=1} 1/a(n) = Pi^2/72 + tan(Pi/sqrt(6))*Pi/(4*sqrt(6)). - Amiram Eldar, Jan 16 2023
Previous Showing 51-60 of 126 results. Next