cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 126 results. Next

A014641 Odd octagonal numbers: (2n+1)*(6n+1).

Original entry on oeis.org

1, 21, 65, 133, 225, 341, 481, 645, 833, 1045, 1281, 1541, 1825, 2133, 2465, 2821, 3201, 3605, 4033, 4485, 4961, 5461, 5985, 6533, 7105, 7701, 8321, 8965, 9633, 10325, 11041, 11781, 12545, 13333, 14145, 14981, 15841, 16725, 17633, 18565, 19521, 20501, 21505
Offset: 0

Views

Author

Mohammad K. Azarian, Dec 11 1999

Keywords

Comments

Sequence found by reading the line from 1, in the direction 1, 21, ..., in the square spiral whose vertices are the generalized octagonal numbers A001082. - Omar E. Pol, Jul 18 2012

Crossrefs

Programs

Formula

a(n) = a(n-1) + 24*n - 4, with n > 0, a(0)=1. - Vincenzo Librandi, Dec 28 2010
G.f.: (1 + 18*x + 5*x^2)/(1 - 3*x + 3*x^2 - x^3). - Colin Barker, Jan 06 2012
a(n) = A289873(6*n+2). - Hugo Pfoertner, Jul 15 2017
From Peter Bala, Jan 22 2018: (Start)
This is the polynomial Qbar(2,n) in Brent. See A160485 for the triangle of coefficients (with signs) of the Qbar polynomials.
a(n) = (1/4^n) * Sum_{k = 0..n} (2*k + 1)^4*binomial(2*n + 1, n - k).
a(n-1) = (2/4^n) * binomial(2*n,n) * ( 1 + 3^4*(n - 1)/(n + 1) + 5^4*(n - 1)*(n - 2)/((n + 1)*(n + 2)) + 7^4*(n - 1)*(n - 2)*(n - 3)/((n + 1)*(n + 2)*(n + 3)) + ... ). (End)
From Amiram Eldar, Feb 27 2022: (Start)
Sum_{n>=0} 1/a(n) = (sqrt(3)*Pi + 3*log(3))/8.
Sum_{n>=0} (-1)^n/a(n) = Pi/8 + sqrt(3)*log(2+sqrt(3))/4. (End)
E.g.f.: exp(x)*(1 + 20*x + 12*x^2). - Stefano Spezia, Apr 16 2022
a(n) = A016754(n) + 4*A014105(n). - Leo Tavares, May 20 2022

Extensions

More terms from Patrick De Geest
Better description from N. J. A. Sloane

A049423 Primes of the form k^2 + 3.

Original entry on oeis.org

3, 7, 19, 67, 103, 199, 487, 787, 1447, 2503, 2707, 3847, 4099, 4903, 5479, 5779, 8467, 8839, 11239, 12547, 14887, 16903, 17959, 19603, 21319, 23719, 24967, 25603, 29587, 31687, 47527, 52903, 58567, 59539, 61507, 65539, 75079, 81799, 88807
Offset: 1

Views

Author

Paul Jobling (paul.jobling(AT)whitecross.com)

Keywords

Comments

Note that all terms after the first are congruent to 7 modulo 12.

Examples

			19 is prime and is equal to 4^2 + 3, so 19 is a term.
		

Crossrefs

Cf. A002496, A056899. Note that apart from first term, all of (a(n)-7)/12 have to be terms of A001082 for a(n) to be prime.

Programs

  • Magma
    [n: n in PrimesUpTo(175000) | IsSquare(n-3)];  // Bruno Berselli, Apr 05 2011
    
  • Magma
    [a: n in [0..300] | IsPrime(a) where a is n^2+3]; // Vincenzo Librandi, Dec 08 2011
    
  • Mathematica
    Intersection[Table[n^2+3,{n,0,10^2}],Prime[Range[9*10^3]]] ...or... For[i=3,i<=3,a={};Do[If[PrimeQ[n^2+i],AppendTo[a,n^2+i]],{n,0,100}];Print["n^2+",i,",",a];i++ ] (* Vladimir Joseph Stephan Orlovsky, Apr 29 2008 *)
    Select[Table[n^2+3,{n,0,198000}],PrimeQ] (* Vincenzo Librandi, Dec 08 2011 *)
  • PARI
    list(lim)=my(v=List(),t); forstep(k=0,sqrtint(lim\1-3),2, if(isprime(t=k^2+3), listput(v,t))); Vec(v) \\ Charles R Greathouse IV, Nov 06 2024

Formula

Primes m such that m-3 is a square.
For n>0, a(n) = 36*A056902(n-1)^2 + 24*A056902(n-1) + 7. - Henry Bottomley, Jul 06 2000
a(n) = 3 + (2*A097697(n-1))^2. - R. J. Mathar, Aug 07 2008
a(n) >> n^2 log n. - Charles R Greathouse IV, Nov 06 2024

A132355 Numbers of the form 9*h^2 + 2*h, for h an integer.

Original entry on oeis.org

0, 7, 11, 32, 40, 75, 87, 136, 152, 215, 235, 312, 336, 427, 455, 560, 592, 711, 747, 880, 920, 1067, 1111, 1272, 1320, 1495, 1547, 1736, 1792, 1995, 2055, 2272, 2336, 2567, 2635, 2880, 2952, 3211, 3287, 3560, 3640, 3927, 4011, 4312, 4400, 4715, 4807
Offset: 1

Views

Author

Mohamed Bouhamida, Nov 08 2007

Keywords

Comments

X values of solutions to the equation 9*X^3 + X^2 = Y^2.
The set of all m such that 9*m + 1 is a perfect square. - Gary Detlefs, Feb 22 2010
The concatenation of any term with 11..11 (1 repeated an even number of times, see A099814) belongs to the list. Example: 87 is a term, so also 8711, 871111, 87111111, 871111111111, ... are terms of this sequence. - Bruno Berselli, May 15 2017

Crossrefs

A205808 is the characteristic function.
Numbers of the form 9*n^2+k*n, for integer n: A016766 (k=0), this sequence (k=2), A185039 (k=4), A057780 (k=6), A218864 (k=8). - Jason Kimberley, Nov 09 2012
For similar sequences of numbers m such that 9*m+k is a square, see list in A266956.

Programs

Formula

a(2*k) = k*(9*k-2), a(2*k+1) = k*(9*k+2).
a(n) = n^2 - n + 5*floor(n/2)^2. - Gary Detlefs, Feb 23 2010
From R. J. Mathar, Mar 17 2010: (Start)
a(n) = +a(n-1) +2*a(n-2) -2*a(n-3) -a(n-4) +a(n-5).
G.f.: x^2*(7 + 4*x + 7*x^2)/((1 + x)^2*(1 - x)^3). (End)
a(n) = (2*n - 1 + (-1)^n)*(9*(2*n - 1) + (-1)^n)/16. - Luce ETIENNE, Sep 13 2014
Sum_{n>=2} 1/a(n) = 9/4 - cot(2*Pi/9)*Pi/2. - Amiram Eldar, Mar 15 2022

Extensions

Simpler definition and minor edits from N. J. A. Sloane, Feb 03 2012
Since this is a list, offset changed to 1 and formulas translated by Jason Kimberley, Nov 18 2012

A195850 Column 6 of array A195825. Also column 1 of triangle A195840. Also 1 together with the row sums of triangle A195840.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 4, 4, 4, 4, 5, 7, 10, 12, 13, 13, 13, 14, 16, 21, 27, 32, 34, 35, 36, 38, 44, 54, 67, 77, 83, 86, 89, 95, 107, 128, 152, 173, 186, 194, 202, 216, 242, 281, 328, 368, 396, 415, 434, 464, 514, 588, 672, 748, 803, 844
Offset: 0

Views

Author

Omar E. Pol, Oct 07 2011

Keywords

Comments

Note that this sequence contains three plateaus: [1, 1, 1, 1, 1, 1, 1], [4, 4, 4, 4, 4], [13, 13, 13]. For more information see A210843 and other sequences of this family. - Omar E. Pol, Jun 29 2012
Number of partitions of n into parts congruent to 0, 1 or 7 (mod 8). - Peter Bala, Dec 10 2020

Crossrefs

Formula

G.f.: Product_{k>=1} 1/((1 - x^(8*k))*(1 - x^(8*k-1))*(1 - x^(8*k-7))). - Ilya Gutkovskiy, Aug 13 2017
a(n) ~ exp(Pi*sqrt(n)/2) / (4*sqrt(2-sqrt(2))*n). - Vaclav Kotesovec, Aug 14 2017
a(n) = a(n-1) + a(n-7) - a(n-10) - a(n-22) + + - - (with the convention a(n) = 0 for negative n), where 1, 7, 10, 22, ... is the sequence of generalized 10-gonal numbers A074377. - Peter Bala, Dec 10 2020

A195851 Column 7 of array A195825. Also column 1 of triangle A195841. Also 1 together with the row sums of triangle A195841.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 4, 4, 4, 4, 4, 5, 7, 10, 12, 13, 13, 13, 13, 14, 16, 21, 27, 32, 34, 35, 35, 36, 38, 44, 54, 67, 77, 83, 85, 87, 89, 95, 107, 128, 152, 173, 185, 192, 196, 203, 216, 242, 281, 328, 367, 394, 409, 421, 436, 465
Offset: 0

Views

Author

Omar E. Pol, Oct 07 2011

Keywords

Comments

Note that this sequence contains four plateaus: [1, 1, 1, 1, 1, 1, 1, 1], [4, 4, 4, 4, 4, 4], [13, 13, 13, 13], [35, 35]. For more information see A210843 and other sequences of this family. - Omar E. Pol, Jun 29 2012

Crossrefs

Programs

  • Maple
    A195160 := proc(n)
            (18*n*(n+1)+5*(2*n+1)*(-1)^n-5)/16 ;
    end proc:
    A195841 := proc(n, k)
            option remember;
            local ks, a, j ;
            if A195160(k) > n then
                    0 ;
            elif n <= 5 then
                    return 1;
            elif k = 1 then
                    a := 0 ;
                    for j from 1 do
                            if A195160(j) <= n-1 then
                                    a := a+procname(n-1, j) ;
                            else
                                    break;
                            end if;
                    end do;
                    return a;
            else
                    ks := A195160(k) ;
                    (-1)^floor((k-1)/2)*procname(n-ks+1, 1) ;
            end if;
    end proc:
    A195851 := proc(n)
            A195841(n+1,1) ;
    end proc:
    seq(A195851(n), n=0..60) ; # R. J. Mathar, Oct 08 2011

Formula

G.f.: Product_{k>=1} 1/((1 - x^(9*k))*(1 - x^(9*k-1))*(1 - x^(9*k-8))). - Ilya Gutkovskiy, Aug 13 2017
a(n) ~ exp(Pi*sqrt(2*n)/3) / (8*sin(Pi/9)*n). - Vaclav Kotesovec, Aug 14 2017

A196933 Column 9 of array A195825. Also column 1 of triangle A195843. Also 1 together with the row sums of triangle A195843.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 7, 10, 12, 13, 13, 13, 13, 13, 13, 14, 16, 21, 27, 32, 34, 35, 35, 35, 35, 36, 38, 44, 54, 67, 77, 83, 85, 86, 86, 87, 89, 95, 107, 128, 152, 173, 185, 191, 193, 195, 197, 203, 216, 242, 281
Offset: 0

Views

Author

Omar E. Pol, Oct 07 2011

Keywords

Comments

Note that this sequence contains five plateaus: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 4, 4, 4, 4, 4, 4, 4], [13, 13, 13, 13, 13, 13], [35, 35, 35, 35], [86, 86]. For more information see A210843 and other sequences of this family. - Omar E. Pol, Jun 29 2012

Crossrefs

Programs

  • Mathematica
    T := Product[1/((1 - x^(11*k))*(1 - x^(11*k - 1))*(1 - x^(11*k - 10))), {k, 1, 70}]; a:= CoefficientList[Series[T, {x, 0, 60}], x]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jun 28 2018 *)

Formula

G.f.: Product_{k>=1} 1/((1 - x^(11*k))*(1 - x^(11*k-1))*(1 - x^(11*k-10))). - Ilya Gutkovskiy, Aug 13 2017
a(n) ~ exp(Pi*sqrt(2*n/11)) / (8*sin(Pi/11)*n). - Vaclav Kotesovec, Aug 14 2017

Extensions

More terms from Omar E. Pol, Jun 10 2012

A211970 Square array read by antidiagonal: T(n,k), n >= 0, k >= 0, which arises from a generalization of Euler's Pentagonal Number Theorem.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 6, 3, 1, 1, 1, 10, 5, 2, 1, 1, 1, 16, 7, 3, 1, 1, 1, 1, 24, 11, 4, 2, 1, 1, 1, 1, 36, 15, 5, 3, 1, 1, 1, 1, 1, 54, 22, 7, 4, 2, 1, 1, 1, 1, 1, 78, 30, 10, 4, 3, 1, 1, 1, 1, 1, 1, 112, 42, 13, 5, 4, 2, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Omar E. Pol, Jun 10 2012

Keywords

Comments

In the infinite square array if k is positive then column k is related to the generalized m-gonal numbers, where m = k+4. For example: column 1 is related to the generalized pentagonal numbers A001318. Column 2 is related to the generalized hexagonal numbers A000217 (note that A000217 is also the entry for the triangular numbers). And so on...
In the following table Euler's Pentagonal Number Theorem is represented by the entries A001318, A195310, A175003 and A000041. It seems unusual that the partition numbers are located in a middle column (see below row 1 of the table):
========================================================
. Column k of
. this square
. Generalized Triangle Triangle array A211970
k m m-gonal "A" "B" [row sums of
. numbers triangle "B"
. (if k>=1) with a(0)=1,
. if k >= 0]
========================================================
...
It appears that column 2 of the square array is A006950.
It appears that column 3 of the square array is A036820.
The partial sums of column 0 give A015128. - Omar E. Pol, Feb 09 2014

Examples

			Array begins:
1,     1,   1,   1,   1,   1,  1,  1,  1,  1,  1, ...
1,     1,   1,   1,   1,   1,  1,  1,  1,  1,  1, ...
2,     2,   1,   1,   1,   1,  1,  1,  1,  1,  1, ...
4,     3,   2,   1,   1,   1,  1,  1,  1,  1,  1, ...
6,     5,   3,   2,   1,   1,  1,  1,  1,  1,  1, ...
10,    7,   4,   3,   2,   1,  1,  1,  1,  1,  1, ...
16,   11,   5,   4,   3,   2,  1,  1,  1,  1,  1, ...
24,   15,   7,   4,   4,   3,  2,  1,  1,  1,  1, ...
36,   22,  10,   5,   4,   4,  3,  2,  1,  1,  1, ...
54,   30,  13,   7,   4,   4,  4,  3,  2,  1,  1, ...
78,   42,  16,  10,   5,   4,  4,  4,  3,  2,  1, ...
112,  56,  21,  12,   7,   4,  4,  4,  4,  3,  2, ...
160,  77,  28,  14,  10,   5,  4,  4,  4,  4,  3, ...
224, 101,  35,  16,  12,   7,  4,  4,  4,  4,  4, ...
312, 135,  43,  21,  13,  10,  5,  4,  4,  4,  4, ...
432, 176,  55,  27,  14,  12,  7,  4,  4,  4,  4, ...
...
		

Crossrefs

For another version see A195825.

Formula

T(n,k) = A211971(n), if k = 0.
T(n,k) = A195825(n,k), if k >= 1.

A005914 Number of points on surface of hexagonal prism: 12*n^2 + 2 for n > 0 (coordination sequence for W(2)).

Original entry on oeis.org

1, 14, 50, 110, 194, 302, 434, 590, 770, 974, 1202, 1454, 1730, 2030, 2354, 2702, 3074, 3470, 3890, 4334, 4802, 5294, 5810, 6350, 6914, 7502, 8114, 8750, 9410, 10094, 10802, 11534, 12290, 13070, 13874, 14702, 15554, 16430, 17330, 18254, 19202, 20174, 21170
Offset: 0

Views

Author

Keywords

Comments

For n >= 1, a(n) is equal to the number of functions f:{1,2,3,4}->{1,2,...,n,n+1} such that Im(f) contains 2 fixed elements. - Aleksandar M. Janjic and Milan Janjic, Feb 24 2007
Equals binomial transform of [1, 13, 23, 1, -1, 1, -1, 1, ...]. - Gary W. Adamson, Apr 22 2008
First bisection of A005918. After 1, all terms are in A000408 (see Formula section). - Bruno Berselli, Feb 07 2012
Also sequence found by reading the segment (1, 14) together with the line from 14, in the direction 14, 50, ..., in the square spiral whose vertices are the generalized octagonal numbers A001082. - Omar E. Pol, Nov 02 2012
Unique sequence such that for all n > 0, n*a(1) + (n-1)*a(2) + (n-3)*a(3) + ... + 2*a(2) + a(1) = n^4. - Warren Breslow, Dec 12 2014

References

  • Gmelin Handbook of Inorganic and Organometallic Chemistry, 8th Ed., 1994, TYPIX search code (229) cI2.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

First differences of A005917.

Programs

Formula

G.f.: (1+x)*(1+10*x+x^2)/(1-x)^3. - Simon Plouffe (see MAPLE line)
a(n) = (2n-1)^2 + (2n)^2 + (2n+1)^2 for n > 0. - Bruno Berselli, Jan 30 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=1, a(1)=14, a(2)=50, a(3)=110. - Harvey P. Dale, Oct 09 2012
E.g.f.: exp(x)*(12*x^2 + 12*x + 2) - 1. - Alois P. Heinz, Sep 10 2013
From Bruce J. Nicholson, Jan 19 2019: (Start)
Sum_{i=1..n} a(i) = A005917(n+1).
a(n) = A003154(n) + A003154(n+1). (End)
From Amiram Eldar, Jan 27 2022: (Start)
Sum_{n>=0} 1/a(n) = ((Pi/sqrt(6))*coth(Pi/sqrt(6)) + 3)/4.
Sum_{n>=0} (-1)^n/a(n) = ((Pi/sqrt(6))*cosech(Pi/sqrt(6)) + 3)/4. (End)

A132356 a(2*k) = k*(10*k+2), a(2*k+1) = 10*k^2 + 18*k + 8, with k >= 0.

Original entry on oeis.org

0, 8, 12, 36, 44, 84, 96, 152, 168, 240, 260, 348, 372, 476, 504, 624, 656, 792, 828, 980, 1020, 1188, 1232, 1416, 1464, 1664, 1716, 1932, 1988, 2220, 2280, 2528, 2592, 2856, 2924, 3204, 3276, 3572, 3648, 3960, 4040, 4368, 4452, 4796, 4884, 5244, 5336, 5712
Offset: 0

Views

Author

Mohamed Bouhamida, Nov 08 2007

Keywords

Comments

X values of solutions to the equation 10*X^3 + X^2 = Y^2.
Polygonal number connection: 2*H_n + 6S_n, where H_n is the n-th hexagonal number and S_n is the n-th square number. This is the base formula that is expanded upon to achieve the full series. See contributing formula below. - William A. Tedeschi, Sep 12 2010
Equivalently, numbers of the form 2*h*(5*h+1), where h = 0, -1, 1, -2, 2, -3, 3, -4, 4, ... . - Bruno Berselli, Feb 02 2017

Crossrefs

Cf. numbers m such that k*m+1 is a square: A005563 (k=1), A046092 (k=2), A001082 (k=3), A002378 (k=4), A036666 (k=5), A062717 (k=6), A132354 (k=7), A000217 (k=8), A132355 (k=9), A219257 (k=11), A152749 (k=12), A219389 (k=13), A219390 (k=14), A204221 (k=15), A074378 (k=16), A219394 (k=17), A219395 (k=18), A219396 (k=19), A219190 (k=20), A219391 (k=21), A219392 (k=22), A219393 (k=23), A001318 (k=24), A219259 (k=25), A217441 (k=26), A219258 (k=27), A219191 (k=28).
Cf. A220082 (numbers k such that 10*k-1 is a square).

Programs

  • Mathematica
    CoefficientList[Series[4*x*(2*x^2 + x + 2)/((1 - x)^3*(1 + x)^2), {x, 0, 50}], x] (* G. C. Greubel, Jun 12 2017 *)
    LinearRecurrence[{1,2,-2,-1,1},{0,8,12,36,44},50] (* Harvey P. Dale, Dec 15 2023 *)
  • PARI
    my(x='x+O('x^50)); concat([0], Vec(4*x*(2*x^2+x+2)/((1-x)^3*(1+x)^2))) \\ G. C. Greubel, Jun 12 2017
    
  • PARI
    a(n) = n^2 + n + 6*((n+1)\2)^2 \\ Charles R Greathouse IV, Sep 11 2022

Formula

G.f.: 4*x*(2*x^2+x+2)/((1-x)^3*(1+x)^2). - R. J. Mathar, Apr 07 2008
a(n) = 10*x^2 - 2*x, where x = floor(n/2)*(-1)^n for n >= 1. - William A. Tedeschi, Sep 12 2010
a(n) = ((2*n+1-(-1)^n)*(10*(2*n+1)-2*(-1)^n))/16. - Luce ETIENNE, Sep 13 2014
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n > 4. - Chai Wah Wu, May 24 2016
Sum_{n>=1} 1/a(n) = 5/2 - sqrt(1+2/sqrt(5))*Pi/2. - Amiram Eldar, Mar 15 2022
a(n) = n^2 + n + 6*ceiling(n/2)^2. - Ridouane Oudra, Aug 06 2022

Extensions

More terms from Max Alekseyev, Nov 13 2009

A195852 Column 8 of array A195825. Also column 1 of triangle A195842. Also 1 together with the row sums of triangle A195842.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 4, 4, 4, 4, 4, 4, 5, 7, 10, 12, 13, 13, 13, 13, 13, 14, 16, 21, 27, 32, 34, 35, 35, 35, 36, 38, 44, 54, 67, 77, 83, 85, 86, 87, 89, 95, 107, 128, 152, 173, 185, 191, 194, 197, 203, 216, 242, 281, 328, 367, 393, 407
Offset: 0

Views

Author

Omar E. Pol, Oct 07 2011

Keywords

Comments

Note that this sequence contains four plateaus: [1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 4, 4, 4, 4, 4, 4], [13, 13, 13, 13, 13], [35, 35, 35]. For more information see A210843 and other sequences of this family. - Omar E. Pol, Jun 29 2012
Number of partitions of n into parts congruent to 0, 1 or 9 (mod 10). - Peter Bala, Dec 10 2020

Crossrefs

Formula

G.f.: Product_{k>=1} 1/((1 - x^(10*k))*(1 - x^(10*k-1))*(1 - x^(10*k-9))). - Ilya Gutkovskiy, Aug 13 2017
a(n) ~ exp(Pi*sqrt(n/5))/(2*(sqrt(5)-1)*n). - Vaclav Kotesovec, Aug 14 2017
a(n) = a(n-1) + a(n-9) - a(n-12) - a(n-28) + + - - (with the convention a(n) = 0 for negative n), where 1, 9, 12, 28, ... is the sequence of generalized 12-gonal numbers A195162. - Peter Bala, Dec 10 2020

Extensions

More terms from Omar E. Pol, Jun 10 2012
Previous Showing 61-70 of 126 results. Next