A001810
a(n) = n!*n*(n-1)*(n-2)/36.
Original entry on oeis.org
0, 0, 0, 1, 16, 200, 2400, 29400, 376320, 5080320, 72576000, 1097712000, 17563392000, 296821324800, 5288816332800, 99165306240000, 1952793722880000, 40311241850880000, 870722823979008000, 19645683716026368000, 462251381553561600000, 11325158848062259200000
Offset: 0
G.f. = x^3 + 16*x^4 + 200*x^5 + 2400*x^6 + 29400*x^7 + 376320*x^8 + ...
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 799.
- Cornelius Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 519.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
[Factorial(n)*n*(n-1)*(n-2)/36: n in [0..20]]; // G. C. Greubel, May 16 2018
-
[seq(n!*n*(n-1)*(n-2)/36,n=0..30)];
with(combstruct):ZL:=[st, {st=Prod(left, right), left=Set(U, card=r+1), right=Set(U, card=1)}, labeled]: subs(r=2, stack): seq(count(subs(r=2, ZL), size=m), m=0..20) ; # Zerinvary Lajos, Feb 07 2008
-
Table[n! n*(n-1)*(n-2)/36, {n, 0, 20}] (* T. D. Noe, Aug 10 2012 *)
-
for(n=0,20, print1(n!*n*(n-1)*(n-2)/36, ", ")) \\ G. C. Greubel, May 16 2018
-
[factorial(m) * binomial(m, 3) / 6 for m in range(22)] # Zerinvary Lajos, Jul 05 2008
A002011
a(n) = 4*(2n+1)!/n!^2.
Original entry on oeis.org
4, 24, 120, 560, 2520, 11088, 48048, 205920, 875160, 3695120, 15519504, 64899744, 270415600, 1123264800, 4653525600, 19234572480, 79342611480, 326704870800, 1343120024400, 5513861152800, 22606830726480, 92580354403680, 378737813469600
Offset: 0
- R. C. Mullin, E. Nemeth and P. J. Schellenberg, The enumeration of almost cubic maps, pp. 281-295 in Proceedings of the Louisiana Conference on Combinatorics, Graph Theory and Computer Science. Vol. 1, edited R. C. Mullin et al., 1970.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
seq(2*n*binomial(2*n,n), n=1..23); # Zerinvary Lajos, Dec 14 2007
-
Table[4*(2*n + 1)!/n!^2, {n, 0, 20}] (* T. D. Noe, Aug 30 2012 *)
-
a(n)=if(n<0,0,4*(2*n+1)!/n!^2)
Simpler description from Travis Kowalski (tkowalski(AT)coloradocollege.edu), Mar 20 2003
A002700
Coefficients of Chebyshev polynomials: n*(2*n+1) * 4^(n-1).
Original entry on oeis.org
3, 40, 336, 2304, 14080, 79872, 430080, 2228224, 11206656, 55050240, 265289728, 1258291200, 5888802816, 27246198784, 124822487040, 566935683072, 2555505541120, 11441792876544, 50921132261376, 225399883694080, 992858999881728, 4354066045992960
Offset: 1
- Cornelius Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 518.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Colin Barker, Table of n, a(n) for n = 1..1000
- Cornelius Lanczos, Applied Analysis. (Annotated scans of selected pages)
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Index entries for linear recurrences with constant coefficients, signature (12,-48,64).
- Index entries for sequences related to Chebyshev polynomials.
-
List([1..30], n-> 4^(n-1)*n*(2*n+1)); # G. C. Greubel, Jul 23 2019
-
[4^(n-1)*n*(2*n+1): n in [1..30]]; // G. C. Greubel, Jul 23 2019
-
A002700:=-(3+4*z)/(4*z-1)**3; # Simon Plouffe in his 1992 dissertation.
-
Table[n*(2*n+1)*2^(2*n-2),{n,1,30}] (* Vaclav Kotesovec, Jun 03 2014 *)
LinearRecurrence[{12,-48,64},{3,40,336},30] (* Harvey P. Dale, May 17 2018 *)
-
Vec(-x*(4*x+3)/(4*x-1)^3 + O(x^30)) \\ Colin Barker, Jun 15 2015
-
[4^(n-1)*n*(2*n+1) for n in (1..30)] # G. C. Greubel, Jul 23 2019
A033504
a(n)/4^n is the expected number of tosses of a coin required to obtain n+1 heads or n+1 tails.
Original entry on oeis.org
1, 10, 66, 372, 1930, 9516, 45332, 210664, 960858, 4319100, 19188796, 84438360, 368603716, 1598231992, 6889682280, 29551095248, 126193235194, 536799072924, 2275560109868, 9616650989560, 40527780684972, 170368957887656, 714556104675736, 2990728476330672
Offset: 0
Michael Ulm (ulm(AT)mathematik.uni-ulm.de)
From _Jeremy Tan_, Mar 13 2018: (Start)
For n=1 the sequences of flips ending at two heads or two tails are:
HH, TT (probability 1/4 each)
HTH, HTT, THH, THT (1/8 each)
The expected number of flips is 2*2*1/4 + 3*4*1/8 = 10/4 = a(1)/4^1. (End)
- M. Klamkin, ed., Problems in Applied Mathematics: Selections from SIAM Review, SIAM, 1990; see pp. 127-129.
- V. A. Liskovets and T. R. Walsh, Enumeration of unrooted maps on the plane, Rapport technique, UQAM, No. 2005-01, Montreal, Canada, 2005.
-
[(n+1)*(2^(2*n+1)-Binomial(2*n+1,n+1)): n in [0..25]]; // Vincenzo Librandi, Jun 09 2011
-
a[n_]:=(n+1)*(2^(2*n+1)-Binomial[2*n+1,n+1])
a /@ Range[0,50] (* Julien Kluge, Jul 21 2016 *)
A045543
6-fold convolution of A000302 (powers of 4); expansion of 1/(1-4*x)^6.
Original entry on oeis.org
1, 24, 336, 3584, 32256, 258048, 1892352, 12976128, 84344832, 524812288, 3148873728, 18320719872, 103817412608, 574988746752, 3121367482368, 16647293239296, 87398289506304, 452414675091456, 2312341672689664, 11683410556747776, 58417052783738880, 289303499500421120
Offset: 0
-
List([0..30], n-> 4^n*Binomial(n+5,5)); # G. C. Greubel, Jul 20 2019
-
[4^n*Binomial(n+5, 5): n in [0..30]]; // Vincenzo Librandi, Oct 15 2011
-
seq(seq(binomial(i+5, j)*4^i, j =i), i=0..30); # Zerinvary Lajos, Dec 03 2007
seq(binomial(n+5,5)*4^n,n=0..30); # Zerinvary Lajos, Jun 16 2008
-
CoefficientList[Series[1/(1-4x)^6,{x,0,30}],x] (* or *) LinearRecurrence[ {24,-240,1280,-3840,6144,-4096}, {1,24,336,3584,32256, 258048}, 30] (* Harvey P. Dale, Mar 24 2018 *)
-
Vec(1/(1-4*x)^6 + O(x^30)) \\ Michel Marcus, Aug 21 2015
-
[lucas_number2(n, 4, 0)*binomial(n,5)/2^10 for n in range(5, 35)] # Zerinvary Lajos, Mar 11 2009
A061928
Array T(n,m) = 1/beta(n+1,m+1) read by antidiagonals.
Original entry on oeis.org
6, 12, 12, 20, 30, 20, 30, 60, 60, 30, 42, 105, 140, 105, 42, 56, 168, 280, 280, 168, 56, 72, 252, 504, 630, 504, 252, 72, 90, 360, 840, 1260, 1260, 840, 360, 90, 110, 495, 1320, 2310, 2772, 2310, 1320, 495, 110, 132, 660, 1980, 3960, 5544, 5544, 3960
Offset: 1
Antidiagonals:
6,
12, 12,
20, 30, 20,
30, 60, 60, 30,
...
Array:
6 12 20 30 42
12 30 60 105 168
20 60 140 280 504
30 105 280 630 1260
42 168 504 1260 2772
- G. Boole, A Treatise On The Calculus of Finite Differences, Dover, 1960, p. 26.
Rows: 1/b(n, 2):
A002378, 1/b(n, 3):
A027480, 1/b(n, 4):
A033488. Diagonals: 1/b(n, n):
A002457, 1/b(n, n+1)
A005430, 1/b(n, n+2):
A000917.
-
t[n_, m_] := 1/Beta[n+1, m+1]; Take[ Flatten[ Table[ t[n+1-m, m], {n, 1, 10}, {m, 1, n}]], 52] (* Jean-François Alcover, Oct 11 2011 *)
-
A(i,j)=if(i<1||j<1,0,1/subst(intformal(x^i*(1-x)^j),x,1)) /* Michael Somos, Feb 05 2004 */
-
A(i,j)=if(i<1||j<1,0,1/sum(k=0,i,(-1)^k*binomial(i,k)/(j+1+k))) /* Michael Somos, Feb 05 2004 */
-
from sympy import factorial as f
def T(n, m): return f(n + m + 1)/(f(n)*f(m))
for n in range(1, 11): print([T(m, n - m + 1) for m in range(1, n + 1)]) # Indranil Ghosh, Apr 29 2017
A074334
a(n) = Sum_{r=1..n} r^4*binomial(n,r)^2.
Original entry on oeis.org
0, 1, 20, 234, 2144, 16750, 117432, 761460, 4654848, 27173718, 152867000, 834212236, 4438175040, 23108423884, 118111709744, 594059985000, 2946077521920, 14429322555750, 69892354873080, 335194270938780, 1593211647720000, 7511501237722020, 35153884344493200
Offset: 0
- H. W. Gould, Combinatorial Identities, 1972. (See formulas 3.77, 3.78, and 3.79 on page 31.)
-
[n le 1 select n else n^2*(n^3+n^2-3*n-1)*Catalan(n-2): n in [0..30]]; // G. C. Greubel, Jun 23 2022
-
Total/@Table[r^4 Binomial[n,r]^2,{n,0,20},{r,n}] (* Harvey P. Dale, Dec 04 2017 *)
Table[n^2*(n^3+n^2-3*n-1)*CatalanNumber[n-2] -Boole[n==1], {n,0,30}] (* G. C. Greubel, Jun 23 2022 *)
-
vector(30, n, n--; sum(k=1, n, k^4*binomial(n,k)^2)) \\ Michel Marcus, Aug 19 2015
-
[n^2*(n^3+n^2-3*n-1)*catalan_number(n-2) for n in (0..30)] # G. C. Greubel, Jun 23 2022
A092437
Triangle read by rows, arising from enumeration of domino tilings of Aztec Pillow-like regions.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 5, 6, 6, 1, 1, 5, 13, 26, 30, 20, 1, 1, 5, 13, 41, 90, 140, 140, 70, 1, 1, 5, 13, 41, 121, 302, 560, 742, 630, 252
Offset: 0
Christopher Hanusa (chanusa(AT)math.washington.edu), Mar 24 2004
Triangle begins:
1;
1, 1, 2;
1, 1, 5, 6, 6;
1, 1, 5, 13, 26, 30, 20;
...
- James Propp, Enumeration of matchings: problems and progress, pp. 255-291 in L. J. Billera et al., eds, New Perspectives in Algebraic Combinatorics, Cambridge, 1999 (see Problem 13).
A155865
Triangle T(n,k) = (n-1)*binomial(n-2, k-1) for 1 <= k <= n-1, n >= 2, and T(n,0) = T(n,n) = 1 for n >= 0, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 6, 3, 1, 1, 4, 12, 12, 4, 1, 1, 5, 20, 30, 20, 5, 1, 1, 6, 30, 60, 60, 30, 6, 1, 1, 7, 42, 105, 140, 105, 42, 7, 1, 1, 8, 56, 168, 280, 280, 168, 56, 8, 1, 1, 9, 72, 252, 504, 630, 504, 252, 72, 9, 1, 1, 10, 90, 360, 840, 1260, 1260, 840, 360, 90, 10, 1
Offset: 0
Triangle begins:
1;
1, 1;
1, 1, 1;
1, 2, 2, 1;
1, 3, 6, 3, 1;
1, 4, 12, 12, 4, 1;
1, 5, 20, 30, 20, 5, 1;
1, 6, 30, 60, 60, 30, 6, 1;
1, 7, 42, 105, 140, 105, 42, 7, 1;
1, 8, 56, 168, 280, 280, 168, 56, 8, 1;
1, 9, 72, 252, 504, 630, 504, 252, 72, 9, 1;
...
ConvOffs transform of (1, 1, 2, 3) = integers of row 4: (1, 3, 6, 3, 1). _Gary W. Adamson_, Jul 09 2012
-
A155865:= func< n,k | k eq 0 or k eq n select 1 else (n-1)*Binomial(n-2, k-1) >;
[A155865(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 04 2021
-
p[x_, n_] = If[n==0, 1, 1 + x^n + x*D[(x+1)^(n-1), {x, 1}]];
Flatten[Table[CoefficientList[ExpandAll[p[x, n]], x], {n, 0, 10}]]
(* or *)
q = 1;
c[n_, q_]= If[n<2, 1, Product[(i-1)^q, {i, 2, n}]];
T[n_, m_, q_]= c[n, q]/(c[m, q]*c[n-m, q]);
Flatten[Table[T[n, m, q], {n,0,12}, {m, 0, n}]] (* Roger L. Bagula, Mar 09 2010 *)
-
T(n, k) := if k = 0 or k = n then 1 else (n-1)*binomial(n-2, k-1)$ create_list(T(n, k), n, 0, 12, k, 0, n); /* Franck Maminirina Ramaharo, Dec 05 2018 */
-
def A155865(n,k): return 1 if (k==0 or k==n) else (n-1)*binomial(n-2, k-1)
flatten([[A155865(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 04 2021
A258431
Sum over all peaks of Dyck paths of semilength n of the arithmetic mean of the x and y coordinates.
Original entry on oeis.org
0, 1, 5, 23, 102, 443, 1898, 8054, 33932, 142163, 592962, 2464226, 10209620, 42190558, 173962532, 715908428, 2941192472, 12065310083, 49428043442, 202249741418, 826671597572, 3375609654698, 13771567556012, 56138319705908, 228669994187432, 930803778591278
Offset: 0
-
A258431:= func< n | n eq 0 select 0 else (4^(n-1) + Factorial(2*n-1)/Factorial(n-1)^2)/2 >;
[A258431(n): n in [0..40]]; // G. C. Greubel, Mar 18 2023
-
a:= proc(n) option remember; `if`(n<3, [0, 1, 5][n+1],
((8*n-10)*a(n-1)-(16*n-24)*a(n-2))/(n-1))
end:
seq(a(n), n=0..30);
-
a[0]=0; a[1]=1; a[2]=5;
a[n_]:= a[n]= (2*(4*n-5)*a[n-1] - 8*(2*n-3)*a[n-2])/(n-1);
Table[a[n], {n,0,30}] (* Jean-François Alcover, May 31 2018, from Maple *)
-
def A258431(n): return 0 if (n==0) else (4^(n-1) + factorial(2*n-1)/factorial(n-1)^2)/2
[A258431(n) for n in range(41)] # G. C. Greubel, Mar 18 2023
Comments