cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 146 results. Next

A001810 a(n) = n!*n*(n-1)*(n-2)/36.

Original entry on oeis.org

0, 0, 0, 1, 16, 200, 2400, 29400, 376320, 5080320, 72576000, 1097712000, 17563392000, 296821324800, 5288816332800, 99165306240000, 1952793722880000, 40311241850880000, 870722823979008000, 19645683716026368000, 462251381553561600000, 11325158848062259200000
Offset: 0

Views

Author

Keywords

Comments

a(n) is the total number of 3-2-1 patterns in all permutations on [n]. This is because there are n! permutations, binomial(n,3) triples in each one and the probability that a given triple of entries in a random permutation form a 3-2-1 pattern (or any other specified pattern of length 3) is 1/6. - David Callan, Oct 26 2006
Old name was "Coefficients of Laguerre polynomials".

Examples

			G.f. = x^3 + 16*x^4 + 200*x^5 + 2400*x^6 + 29400*x^7 + 376320*x^8 + ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 799.
  • Cornelius Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 519.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [Factorial(n)*n*(n-1)*(n-2)/36: n in [0..20]]; // G. C. Greubel, May 16 2018
  • Maple
    [seq(n!*n*(n-1)*(n-2)/36,n=0..30)];
    with(combstruct):ZL:=[st, {st=Prod(left, right), left=Set(U, card=r+1), right=Set(U, card=1)}, labeled]: subs(r=2, stack): seq(count(subs(r=2, ZL), size=m), m=0..20) ; # Zerinvary Lajos, Feb 07 2008
  • Mathematica
    Table[n! n*(n-1)*(n-2)/36, {n, 0, 20}] (* T. D. Noe, Aug 10 2012 *)
  • PARI
    for(n=0,20, print1(n!*n*(n-1)*(n-2)/36, ", ")) \\ G. C. Greubel, May 16 2018
    
  • Sage
    [factorial(m) * binomial(m, 3) / 6 for m in range(22)]  # Zerinvary Lajos, Jul 05 2008
    

Formula

a(n) = -A021009(n, 3), n >= 0. a(n) = ((n!/3!)^2)/(n-3)!, n >= 3.
E.g.f.: x^3/(3!*(1-x)^4).
If we define f(n,i,x) = Sum_{k=i..n} Sum_{j=i..k} binomial(k,j) * Stirling1(n,k) * Stirling2(j,i) * x^(k-j) then a(n) = (-1)^(n-1) * f(n,3,-4), (n >= 3). - Milan Janjic, Mar 01 2009
a(n) = Sum_{k>0} k * A263771(n,k). - Alois P. Heinz, Oct 27 2015
From Amiram Eldar, May 02 2022: (Start)
Sum_{n>=3} 1/a(n) = 9*(2*e + gamma - Ei(1) - 4), where e = A001113, gamma = A001620, and Ei(1) = A091725.
Sum_{n>=3} (-1)^(n+1)/a(n) = 63*(gamma - Ei(-1)) - 36*(1/e + 1), where Ei(-1) = -A099285. (End)

Extensions

Edited by N. J. A. Sloane, Apr 12 2014

A002011 a(n) = 4*(2n+1)!/n!^2.

Original entry on oeis.org

4, 24, 120, 560, 2520, 11088, 48048, 205920, 875160, 3695120, 15519504, 64899744, 270415600, 1123264800, 4653525600, 19234572480, 79342611480, 326704870800, 1343120024400, 5513861152800, 22606830726480, 92580354403680, 378737813469600
Offset: 0

Views

Author

Keywords

References

  • R. C. Mullin, E. Nemeth and P. J. Schellenberg, The enumeration of almost cubic maps, pp. 281-295 in Proceedings of the Louisiana Conference on Combinatorics, Graph Theory and Computer Science. Vol. 1, edited R. C. Mullin et al., 1970.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n)=4 A002457(n).
a(n) = 2 * A005430(n+1) = 4 * A002457(n).
Cf. A001803.

Programs

  • Maple
    seq(2*n*binomial(2*n,n), n=1..23); # Zerinvary Lajos, Dec 14 2007
  • Mathematica
    Table[4*(2*n + 1)!/n!^2, {n, 0, 20}] (* T. D. Noe, Aug 30 2012 *)
  • PARI
    a(n)=if(n<0,0,4*(2*n+1)!/n!^2)

Formula

G.f.: 4*(1-4x)^(-3/2).
a(n) = 1/J(n) where J(n) = Integral_{t=0..Pi/4} (cos(t)^2 - 1/2)^(2n+1). - Benoit Cloitre, Oct 17 2006

Extensions

Simpler description from Travis Kowalski (tkowalski(AT)coloradocollege.edu), Mar 20 2003

A002700 Coefficients of Chebyshev polynomials: n*(2*n+1) * 4^(n-1).

Original entry on oeis.org

3, 40, 336, 2304, 14080, 79872, 430080, 2228224, 11206656, 55050240, 265289728, 1258291200, 5888802816, 27246198784, 124822487040, 566935683072, 2555505541120, 11441792876544, 50921132261376, 225399883694080, 992858999881728, 4354066045992960
Offset: 1

Views

Author

Keywords

References

  • Cornelius Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 518.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002699.

Programs

  • GAP
    List([1..30], n-> 4^(n-1)*n*(2*n+1)); # G. C. Greubel, Jul 23 2019
  • Magma
    [4^(n-1)*n*(2*n+1): n in [1..30]]; // G. C. Greubel, Jul 23 2019
    
  • Maple
    A002700:=-(3+4*z)/(4*z-1)**3; # Simon Plouffe in his 1992 dissertation.
  • Mathematica
    Table[n*(2*n+1)*2^(2*n-2),{n,1,30}] (* Vaclav Kotesovec, Jun 03 2014 *)
    LinearRecurrence[{12,-48,64},{3,40,336},30] (* Harvey P. Dale, May 17 2018 *)
  • PARI
    Vec(-x*(4*x+3)/(4*x-1)^3 + O(x^30)) \\ Colin Barker, Jun 15 2015
    
  • Sage
    [4^(n-1)*n*(2*n+1) for n in (1..30)] # G. C. Greubel, Jul 23 2019
    

Formula

a(n) = 12*a(n-1) - 48*a(n-2) + 64*a(n-3). - Colin Barker, Jun 15 2015
a(n) = 1/2*Sum_{k = 0..2*n} k^2*binomial(2*n,k). Cf. A002699. - Peter Bala, Apr 09 2017
From Amiram Eldar, Feb 17 2023: (Start)
Sum_{n>=1} 1/a(n) = 8 + 8*log(2) - 12*log(3).
Sum_{n>=1} (-1)^(n+1)/a(n) = 16*arctan(1/2) + 4*log(5/4) - 8. (End)

A033504 a(n)/4^n is the expected number of tosses of a coin required to obtain n+1 heads or n+1 tails.

Original entry on oeis.org

1, 10, 66, 372, 1930, 9516, 45332, 210664, 960858, 4319100, 19188796, 84438360, 368603716, 1598231992, 6889682280, 29551095248, 126193235194, 536799072924, 2275560109868, 9616650989560, 40527780684972, 170368957887656, 714556104675736, 2990728476330672
Offset: 0

Views

Author

Michael Ulm (ulm(AT)mathematik.uni-ulm.de)

Keywords

Comments

The number of rooted two-vertex n-edge maps in the plane (planar with a distinguished outside face). - Valery A. Liskovets, Mar 17 2005

Examples

			From _Jeremy Tan_, Mar 13 2018: (Start)
For n=1 the sequences of flips ending at two heads or two tails are:
HH, TT (probability 1/4 each)
HTH, HTT, THH, THT (1/8 each)
The expected number of flips is 2*2*1/4 + 3*4*1/8 = 10/4 = a(1)/4^1. (End)
		

References

  • M. Klamkin, ed., Problems in Applied Mathematics: Selections from SIAM Review, SIAM, 1990; see pp. 127-129.
  • V. A. Liskovets and T. R. Walsh, Enumeration of unrooted maps on the plane, Rapport technique, UQAM, No. 2005-01, Montreal, Canada, 2005.

Crossrefs

Programs

  • Magma
    [(n+1)*(2^(2*n+1)-Binomial(2*n+1,n+1)): n in [0..25]]; // Vincenzo Librandi, Jun 09 2011
  • Mathematica
    a[n_]:=(n+1)*(2^(2*n+1)-Binomial[2*n+1,n+1])
    a /@ Range[0,50] (* Julien Kluge, Jul 21 2016 *)

Formula

With a different offset: Sum_{j=0..n} Sum_{k=0..n} binomial(n, j)*binomial(n, k)*min(j, k) = n*2^(n-1) + (n/2)*binomial(2*n, n). [see Klamkin]
a(n-1) = 4^(n-1)*b(n, n), where b(n, m) = b(n-1, m)/2 + b(n, m-1)/2 + 1; b(n, 0)=b(0, n)=0.
a(n) = Sum_{k=0..n, l=0..n} 2^(2n - k - l) binomial(k+l, k).
a(n) = (2n+1)*Sum_{0<=i,j<=n} binomial(2n, i+j)/(i+j+1). - Benoit Cloitre, Mar 05 2005
a(n) = (n+1)*(2^(2*n+1) - binomial(2*n+1,n+1)). - Vladeta Jovovic, Aug 23 2007
n*a(n) + 6*(-2*n+1)*a(n-1) + 48*(n-1)*a(n-2) + 32*(-2*n+3)*a(n-3) = 0. - R. J. Mathar, Dec 22 2013
a(n) ~ 2^(2*n+1)*n. - Ilya Gutkovskiy, Jul 21 2016

Extensions

Name corrected by Jeremy Tan, Mar 13 2018

A045543 6-fold convolution of A000302 (powers of 4); expansion of 1/(1-4*x)^6.

Original entry on oeis.org

1, 24, 336, 3584, 32256, 258048, 1892352, 12976128, 84344832, 524812288, 3148873728, 18320719872, 103817412608, 574988746752, 3121367482368, 16647293239296, 87398289506304, 452414675091456, 2312341672689664, 11683410556747776, 58417052783738880, 289303499500421120
Offset: 0

Views

Author

Keywords

Comments

Also convolution of A020922 with A000984 (central binomial coefficients); also convolution of A040075 with A000302 (powers of 4).
With a different offset, number of n-permutations of 5 objects: u,v,z,x, y with repetition allowed, containing exactly five (5) u's. Example: a(1)=24 because we have uuuuuv uuuuvu uuuvuu uuvuuu uvuuuu vuuuuu uuuuuz uuuuzu uuuzuu uuzuuu uzuuuu zuuuuu uuuuux uuuuxu uuuxuu uuxuuu uxuuuu xuuuuu uuuuuy uuuuyu uuuyuu uuyuuu uyuuuu yuuuuu. - Zerinvary Lajos, Jun 16 2008
Also convolution of A002457 with A020920, also convolution of A002697 with A038846, also convolution of A002802 with A020918, also convolution of A038845 with A038845. - Rui Duarte, Oct 08 2011

Crossrefs

Cf. A038231.

Programs

  • GAP
    List([0..30], n-> 4^n*Binomial(n+5,5)); # G. C. Greubel, Jul 20 2019
  • Magma
    [4^n*Binomial(n+5, 5): n in [0..30]]; // Vincenzo Librandi, Oct 15 2011
    
  • Maple
    seq(seq(binomial(i+5, j)*4^i, j =i), i=0..30); # Zerinvary Lajos, Dec 03 2007
    seq(binomial(n+5,5)*4^n,n=0..30); # Zerinvary Lajos, Jun 16 2008
  • Mathematica
    CoefficientList[Series[1/(1-4x)^6,{x,0,30}],x] (* or *) LinearRecurrence[ {24,-240,1280,-3840,6144,-4096}, {1,24,336,3584,32256, 258048}, 30] (* Harvey P. Dale, Mar 24 2018 *)
  • PARI
    Vec(1/(1-4*x)^6 + O(x^30)) \\ Michel Marcus, Aug 21 2015
    
  • Sage
    [lucas_number2(n, 4, 0)*binomial(n,5)/2^10 for n in range(5, 35)] # Zerinvary Lajos, Mar 11 2009
    

Formula

a(n) = binomial(n+5, 5)*4^n.
G.f.: 1/(1-4*x)^6.
a(n) = Sum_{ i_1+i_2+i_3+i_4+i_5+i_6+i_7+i_8+i_9+i_10+i_11+i_12 = n} f(i_1)* f(i_2)*f(i_3)*f(i_4)*f(i_5)*f(i_6)*f(i_7)*f(i_8)*f(i_9)*f(i_10) *f(i_11)*f(i_12), with f(k)=A000984(k). - Rui Duarte, Oct 08 2011
E.g.f.: (15 + 120*x + 240*x^2 + 160*x^3 + 32*x^4)*exp(4*x)/3. - G. C. Greubel, Jul 20 2019
From Amiram Eldar, Mar 25 2022: (Start)
Sum_{n>=0} 1/a(n) = 1620*log(4/3) - 465.
Sum_{n>=0} (-1)^n/a(n) = 12500*log(5/4) - 8365/3. (End)

A061928 Array T(n,m) = 1/beta(n+1,m+1) read by antidiagonals.

Original entry on oeis.org

6, 12, 12, 20, 30, 20, 30, 60, 60, 30, 42, 105, 140, 105, 42, 56, 168, 280, 280, 168, 56, 72, 252, 504, 630, 504, 252, 72, 90, 360, 840, 1260, 1260, 840, 360, 90, 110, 495, 1320, 2310, 2772, 2310, 1320, 495, 110, 132, 660, 1980, 3960, 5544, 5544, 3960
Offset: 1

Views

Author

Frank Ellermann, May 22 2001

Keywords

Comments

beta(n+1,m+1) = Integral_{x=0..1} x^n * (1-x)^m dx for real n, m.

Examples

			Antidiagonals:
   6,
  12, 12,
  20, 30, 20,
  30, 60, 60, 30,
  ...
Array:
   6  12  20   30   42
  12  30  60  105  168
  20  60 140  280  504
  30 105 280  630 1260
  42 168 504 1260 2772
		

References

  • G. Boole, A Treatise On The Calculus of Finite Differences, Dover, 1960, p. 26.

Crossrefs

Rows: 1/b(n, 2): A002378, 1/b(n, 3): A027480, 1/b(n, 4): A033488. Diagonals: 1/b(n, n): A002457, 1/b(n, n+1) A005430, 1/b(n, n+2): A000917.
T(i, j)=A003506(i+1, j+1).

Programs

  • Mathematica
    t[n_, m_] := 1/Beta[n+1, m+1]; Take[ Flatten[ Table[ t[n+1-m, m], {n, 1, 10}, {m, 1, n}]], 52] (* Jean-François Alcover, Oct 11 2011 *)
  • PARI
    A(i,j)=if(i<1||j<1,0,1/subst(intformal(x^i*(1-x)^j),x,1)) /* Michael Somos, Feb 05 2004 */
    
  • PARI
    A(i,j)=if(i<1||j<1,0,1/sum(k=0,i,(-1)^k*binomial(i,k)/(j+1+k))) /* Michael Somos, Feb 05 2004 */
    
  • Python
    from sympy import factorial as f
    def T(n, m): return f(n + m + 1)/(f(n)*f(m))
    for n in range(1, 11): print([T(m, n - m + 1) for m in range(1, n + 1)]) # Indranil Ghosh, Apr 29 2017

Formula

beta(n+1, m+1) = gamma(n+1)*gamma(m+1)/gamma(n+m+2) = n!*m!/(n+m+1)!.

A074334 a(n) = Sum_{r=1..n} r^4*binomial(n,r)^2.

Original entry on oeis.org

0, 1, 20, 234, 2144, 16750, 117432, 761460, 4654848, 27173718, 152867000, 834212236, 4438175040, 23108423884, 118111709744, 594059985000, 2946077521920, 14429322555750, 69892354873080, 335194270938780, 1593211647720000, 7511501237722020, 35153884344493200
Offset: 0

Views

Author

Paul Boddington, Mar 05 2003

Keywords

References

  • H. W. Gould, Combinatorial Identities, 1972. (See formulas 3.77, 3.78, and 3.79 on page 31.)

Crossrefs

Cf. A000108 (Catalan numbers).

Programs

  • Magma
    [n le 1 select n else n^2*(n^3+n^2-3*n-1)*Catalan(n-2): n in [0..30]]; // G. C. Greubel, Jun 23 2022
    
  • Mathematica
    Total/@Table[r^4 Binomial[n,r]^2,{n,0,20},{r,n}] (* Harvey P. Dale, Dec 04 2017 *)
    Table[n^2*(n^3+n^2-3*n-1)*CatalanNumber[n-2] -Boole[n==1], {n,0,30}] (* G. C. Greubel, Jun 23 2022 *)
  • PARI
    vector(30, n, n--; sum(k=1, n, k^4*binomial(n,k)^2)) \\ Michel Marcus, Aug 19 2015
    
  • SageMath
    [n^2*(n^3+n^2-3*n-1)*catalan_number(n-2) for n in (0..30)] # G. C. Greubel, Jun 23 2022

Formula

For n>1 a(n) = n^2*(n^3+n^2-3*n-1)*C(n-2). Here C(n-2) = binomial(2*n-4, n-2)/(n-1) is a Catalan number.
From G. C. Greubel, Jun 23 2022: (Start)
a(n) = (n^2*(n^3 + n^2 - 3*n -1)/(2*(2*n-3)))*binomial(2*n-2, n-1).
G.f.: x*(1 + 2*x + 32*x^3 - 128*x^4 + 144*x^5)/(1-4*x)^(9/2).
E.g.f.: x*exp(2*x)*( (1+2*x)*(1 +6*x +4*x^2)*BesselI(0, 2*x) + 2*x*(2 + 7*x + 4*x^2)*BesselI(1, 2*x) ). (End)
D-finite with recurrence (n-1)*(39*n-106)*a(n) +4*(-38*n^2+n+290)*a(n-1) +4*(100*n^2-784*n+1145)*a(n-2) -64*(13*n+4)*(2*n-9)*a(n-3)=0. - R. J. Mathar, Sep 13 2024

Extensions

Terms a(18) and beyond from Andrew Howroyd, Jan 16 2020

A092437 Triangle read by rows, arising from enumeration of domino tilings of Aztec Pillow-like regions.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 5, 6, 6, 1, 1, 5, 13, 26, 30, 20, 1, 1, 5, 13, 41, 90, 140, 140, 70, 1, 1, 5, 13, 41, 121, 302, 560, 742, 630, 252
Offset: 0

Views

Author

Christopher Hanusa (chanusa(AT)math.washington.edu), Mar 24 2004

Keywords

Comments

The rows are of lengths 1, 3, 5, 7, ...
Call the first row row 0 and entries starting from 0. Then entries i=0 through k in row k are A046717(i).
In row k, entry k+1 is sequence A092438 and entry k+2 is sequence A092439.
In row k, entry 2k-1 is A002457(k-1) and entry 2k is A000984(k).

Examples

			Triangle begins:
  1;
  1, 1, 2;
  1, 1, 5, 6, 6;
  1, 1, 5, 13, 26, 30, 20;
  ...
		

References

  • James Propp, Enumeration of matchings: problems and progress, pp. 255-291 in L. J. Billera et al., eds, New Perspectives in Algebraic Combinatorics, Cambridge, 1999 (see Problem 13).

Crossrefs

A155865 Triangle T(n,k) = (n-1)*binomial(n-2, k-1) for 1 <= k <= n-1, n >= 2, and T(n,0) = T(n,n) = 1 for n >= 0, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 6, 3, 1, 1, 4, 12, 12, 4, 1, 1, 5, 20, 30, 20, 5, 1, 1, 6, 30, 60, 60, 30, 6, 1, 1, 7, 42, 105, 140, 105, 42, 7, 1, 1, 8, 56, 168, 280, 280, 168, 56, 8, 1, 1, 9, 72, 252, 504, 630, 504, 252, 72, 9, 1, 1, 10, 90, 360, 840, 1260, 1260, 840, 360, 90, 10, 1
Offset: 0

Views

Author

Roger L. Bagula, Jan 29 2009

Keywords

Examples

			Triangle begins:
  1;
  1, 1;
  1, 1,  1;
  1, 2,  2,   1;
  1, 3,  6,   3,   1;
  1, 4, 12,  12,   4,   1;
  1, 5, 20,  30,  20,   5,   1;
  1, 6, 30,  60,  60,  30,   6,   1;
  1, 7, 42, 105, 140, 105,  42,   7,  1;
  1, 8, 56, 168, 280, 280, 168,  56,  8, 1;
  1, 9, 72, 252, 504, 630, 504, 252, 72, 9, 1;
  ...
ConvOffs transform of (1, 1, 2, 3) = integers of row 4: (1, 3, 6, 3, 1). _Gary W. Adamson_, Jul 09 2012
		

Crossrefs

Cf. A002457 (T(2*n, n)), A155863, A155864.

Programs

  • Magma
    A155865:= func< n,k | k eq 0 or k eq n select 1 else (n-1)*Binomial(n-2, k-1) >;
    [A155865(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 04 2021
    
  • Mathematica
    p[x_, n_] = If[n==0, 1, 1 + x^n + x*D[(x+1)^(n-1), {x, 1}]];
    Flatten[Table[CoefficientList[ExpandAll[p[x, n]], x], {n, 0, 10}]]
    (* or *)
    q = 1;
    c[n_, q_]= If[n<2, 1, Product[(i-1)^q, {i, 2, n}]];
    T[n_, m_, q_]= c[n, q]/(c[m, q]*c[n-m, q]);
    Flatten[Table[T[n, m, q], {n,0,12}, {m, 0, n}]] (* Roger L. Bagula, Mar 09 2010 *)
  • Maxima
    T(n, k) := if k = 0 or k = n then 1 else (n-1)*binomial(n-2, k-1)$ create_list(T(n, k), n, 0, 12, k, 0, n); /* Franck Maminirina Ramaharo, Dec 05 2018 */
    
  • Sage
    def A155865(n,k): return 1 if (k==0 or k==n) else (n-1)*binomial(n-2, k-1)
    flatten([[A155865(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 04 2021

Formula

T(n, k) = coefficients of (p(n, x)), where p(n, x) = 1 + x^n + x*((d/dx) (x+1)^n) and T(0, 0) = 1.
Define c(n) = Product_{i=2..n} (i - 1), with c(0) = c(1) = 1. Then T(n,m) = c(n)/(c(m)*c(n-m)). - Roger L. Bagula, Mar 09 2010
The triangle is the ConvOffsStoT transform of the natural numbers prefaced with a 1. A row with n integers is the ConvOffs transform of a finite series of the first (n-1) terms in (1, 1, 2, 3, 4, ...). See A214281 for definitions of the transform. - Gary W. Adamson, Jul 09 2012
Sum_{k=0..n} T(n, k) = 2 + A001787(n-1) - (3/4)*[n==0]. - R. J. Mathar, Jul 17 2012
From Franck Maminirina Ramaharo, Dec 05 2018: (Start)
T(n, k) = (n-1)*binomial(n-2, k-1) with T(n, 0) = T(n, n) = 1.
n-th row polynomial is (1/2)*(1 + (-1)^(2^n) + 2*x^n + (1 + (-1)^(2^n))*(n - 1)*x*(x + 1)^(n - 2)).
G.f.: 1/(1 - y) + 1/(1 - x*y) + x*y^2/(1 - (1 + x)*y)^2 - 1.
E.g.f.: exp(y) + exp(x*y) + x*(1 - (1 - (1 + x)*y)*exp((1 + x)*y))/(1 + x)^2 - 1. (End)
T(2*n, n) = A002457(n). - Alois P. Heinz, Dec 05 2018

Extensions

Edited and name clarified by Franck Maminirina Ramaharo, Dec 04 2018

A258431 Sum over all peaks of Dyck paths of semilength n of the arithmetic mean of the x and y coordinates.

Original entry on oeis.org

0, 1, 5, 23, 102, 443, 1898, 8054, 33932, 142163, 592962, 2464226, 10209620, 42190558, 173962532, 715908428, 2941192472, 12065310083, 49428043442, 202249741418, 826671597572, 3375609654698, 13771567556012, 56138319705908, 228669994187432, 930803778591278
Offset: 0

Views

Author

Alois P. Heinz, May 29 2015

Keywords

Comments

A Dyck path of semilength n is a (x,y)-lattice path from (0,0) to (2n,0) that does not go below the x-axis and consists of steps U = (1,1) and D = (1,-1). A peak of a Dyck path is any lattice point visited between two consecutive steps UD.

Crossrefs

Programs

  • Magma
    A258431:= func< n | n eq 0 select 0 else (4^(n-1) + Factorial(2*n-1)/Factorial(n-1)^2)/2 >;
    [A258431(n): n in [0..40]]; // G. C. Greubel, Mar 18 2023
    
  • Maple
    a:= proc(n) option remember; `if`(n<3, [0, 1, 5][n+1],
           ((8*n-10)*a(n-1)-(16*n-24)*a(n-2))/(n-1))
        end:
    seq(a(n), n=0..30);
  • Mathematica
    a[0]=0; a[1]=1; a[2]=5;
    a[n_]:= a[n]= (2*(4*n-5)*a[n-1] - 8*(2*n-3)*a[n-2])/(n-1);
    Table[a[n], {n,0,30}] (* Jean-François Alcover, May 31 2018, from Maple *)
  • SageMath
    def A258431(n): return 0 if (n==0) else (4^(n-1) + factorial(2*n-1)/factorial(n-1)^2)/2
    [A258431(n) for n in range(41)] # G. C. Greubel, Mar 18 2023

Formula

G.f.: x*(1 + sqrt(1-4*x))/(2*sqrt(1-4*x)^3).
a(n) = (2*(4*n-5)*a(n-1) - 8*(2*n-3)*a(n-2))/(n-1) for n>2, a(0)=0, a(1)=1, a(2)=5.
a(n) = (4^(n-1) + (2*n-1)!/(n-1)!^2)/2 for n>0, a(0) = 0.
a(n) = (A000302(n-1) + A002457(n-1))/2 for n>0, a(0) = 0.
a(n) = (1/2)*binomial(2*n,n)*( 1 + 2*(n-1)/(n+1) + 3*(n-1)*(n-2)/((n+1)*(n+2)) + 4*(n-1)*(n-2)*(n-3)/((n+1)*(n+2)*(n+3)) + 5*(n-1)*(n-2)*(n-3)*(n-4)/((n+1)*(n+2)*(n+3)*(n+4)) + ...) for n >= 1. - Peter Bala, Feb 17 2022
Previous Showing 61-70 of 146 results. Next