cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 213 results. Next

A002001 a(n) = 3*4^(n-1), n>0; a(0)=1.

Original entry on oeis.org

1, 3, 12, 48, 192, 768, 3072, 12288, 49152, 196608, 786432, 3145728, 12582912, 50331648, 201326592, 805306368, 3221225472, 12884901888, 51539607552, 206158430208, 824633720832, 3298534883328, 13194139533312, 52776558133248, 211106232532992, 844424930131968
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 1996

Keywords

Comments

Second binomial transform of (1,1,4,4,16,16,...) = (3*2^n+(-2)^n)/4. - Paul Barry, Jul 16 2003
Number of vertices (or sides) formed after the (n-1)-th iterate towards building a Koch's snowflake. - Lekraj Beedassy, Jan 24 2005
For n >= 1, a(n) is the number of functions f:{1,2,...,n}->{1,2,3,4} such that for a fixed x in {1,2,...,n} and a fixed y in {1,2,3,4} we have f(x) <> y. - Aleksandar M. Janjic and Milan Janjic, Mar 27 2007
a(n) = (n+1) terms in the sequence (1, 2, 3, 3, 3, ...) dot (n+1) terms in the sequence (1, 1, 3, 12, 48, ...). Example: a(4) = 192 = (1, 2, 3, 3, 3) dot (1, 1, 3, 12, 48) = (1 + 2 + 9 + 36 + 144). - Gary W. Adamson, Aug 03 2010
a(n) is the number of compositions of n when there are 3 types of each natural number. - Milan Janjic, Aug 13 2010
See A178789 for the number of acute (= exterior) angles of the Koch snowflake referred to in the above comment by L. Beedassy. - M. F. Hasler, Dec 17 2013
After 1, subsequence of A033428. - Vincenzo Librandi, May 26 2014
a(n) counts walks (closed) on the graph G(1-vertex; 1-loop x3, 2-loop x3, 3-loop x3, 4-loop x3, ...). - David Neil McGrath, Jan 01 2015
For n > 1, a(n) are numbers k such that (2^(k-1) mod k)/(2^k mod k) = 2; 2^(a(n)-1) == 2^(2n-1) (mod a(n)) and 2^a(n) == 2^(2n-2) (mod a(n)). - Thomas Ordowski, Apr 22 2020
For n > 1, a(n) is the number of 4-colorings of the Hex graph of size 2 X (n-1). More generally, for q > 2, the number of q-colorings of the Hex graph of size 2 X n is given by q*(q - 1)*(q - 2)^(2*n - 2). - Sela Fried, Sep 25 2023
For n > 1, a(n) is the number of pixels in the HEALPix discretization of the sphere of order n-2; HEALPix is a common sphere pixellization scheme in astronomy, cosmology, and nuclear engineering. - Jayson R. Vavrek, Aug 08 2024

Crossrefs

First difference of 4^n (A000302).

Programs

Formula

From Paul Barry, Apr 20 2003: (Start)
a(n) = (3*4^n + 0^n)/4 (with 0^0=1).
E.g.f.: (3*exp(4*x) + 1)/4. (End)
With interpolated zeros, this has e.g.f. (3*cosh(2*x) + 1)/4 and binomial transform A006342. - Paul Barry, Sep 03 2003
a(n) = Sum_{j=0..1} Sum_{k=0..n} C(2n+j, 2k). - Paul Barry, Nov 29 2003
G.f.: (1-x)/(1-4*x). The sequence 1, 3, -12, 48, -192, ... has g.f. (1+7*x)/(1+4*x). - Paul Barry, Feb 12 2004
a(n) = 3*Sum_{k=0..n-1} a(k). - Adi Dani, Jun 24 2011
G.f.: 1/(1-3*Sum_{k>=1} x^k). - Joerg Arndt, Jun 24 2011
Row sums of triangle A134316. - Gary W. Adamson, Oct 19 2007
a(n) = A011782(n) * A003945(n). - R. J. Mathar, Jul 08 2009
If p(1)=3 and p(i)=3 for i > 1, and if A is the Hessenberg matrix of order n defined by A(i,j) = p(j-i+1) when i <= j, A(i,j)=-1 when i=j+1, and A(i,j) = 0 otherwise, then, for n >= 1, a(n) = det A. - Milan Janjic, Apr 29 2010
a(n) = 4*a(n-1), a(0)=1, a(1)=3. - Vincenzo Librandi, Dec 31 2010
G.f.: 1 - G(0) where G(k) = 1 - 1/(1-3*x)/(1-x/(x-1/G(k+1))); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 25 2013
G.f.: x+2*x/(G(0)-2), where G(k) = 1 + 1/(1 - x*(3*k+1)/(x*(3*k+4) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 26 2013
a(n) = ceiling(3*4^(n-1)). - Wesley Ivan Hurt, Dec 17 2013
Construct the power matrix T(n,j) = [A(n)^*j]*[S(n)^*(j-1)] where A(n)=(3,3,3,...) and S(n)=(0,1,0,0,...). (* is convolution operation.) Then T(n,j) counts n-walks containing j loops on the single vertex graph above and a(n) = Sum_{j=1..n} T(n,j). (S(n)^*0=I.) - David Neil McGrath, Jan 01 2015

A111125 Triangle read by rows: T(k,s) = ((2*k+1)/(2*s+1))*binomial(k+s,2*s), 0 <= s <= k.

Original entry on oeis.org

1, 3, 1, 5, 5, 1, 7, 14, 7, 1, 9, 30, 27, 9, 1, 11, 55, 77, 44, 11, 1, 13, 91, 182, 156, 65, 13, 1, 15, 140, 378, 450, 275, 90, 15, 1, 17, 204, 714, 1122, 935, 442, 119, 17, 1, 19, 285, 1254, 2508, 2717, 1729, 665, 152, 19, 1, 21, 385, 2079, 5148, 7007, 5733, 2940, 952, 189, 21, 1
Offset: 0

Views

Author

N. J. A. Sloane, Oct 16 2005

Keywords

Comments

Riordan array ((1+x)/(1-x)^2, x/(1-x)^2). Row sums are A002878. Diagonal sums are A003945. Inverse is A113187. An interesting factorization is (1/(1-x), x/(1-x))(1+2*x, x*(1+x)). - Paul Barry, Oct 17 2005
Central coefficients of rows with odd numbers of term are A052227.
From Wolfdieter Lang, Jun 26 2011: (Start)
T(k,s) appears as T_s(k) in the Knuth reference, p. 285.
This triangle is related to triangle A156308(n,m), appearing in this reference as U_m(n) on p. 285, by T(k,s) - T(k-1,s) = A156308(k,s), k>=s>=1 (identity on p. 286). T(k,s) = A156308(k+1,s+1) - A156308(k,s+1), k>=s>=0 (identity on p. 286).
(End)
A111125 is jointly generated with A208513 as an array of coefficients of polynomials v(n,x): initially, u(1,x)= v(1,x)= 1; for n>1, u(n,x)= u(n-1,x) +x*(x+1)*v(n-1) and v(n,x)= u(n-1,x) +x*v(n-1,x) +1. See the Mathematica section. The columns of A111125 are identical to those of A208508. Here, however, the alternating row sums are periodic (with period 1,2,1,-1,-2,-1). - Clark Kimberling, Feb 28 2012
This triangle T(k,s) (with signs and columns scaled with powers of 5) appears in the expansion of Fibonacci numbers F=A000045 with multiples of odd numbers as indices in terms of odd powers of F-numbers. See the Jennings reference, p. 108, Theorem 1. Quoted as Lemma 3 in the Ozeki reference given in A111418. The formula is: F_{(2*k+1)*n} = Sum_{s=0..k} ( T(k,s)*(-1)^((k+s)*n)*5^s*F_{n}^(2*s+1) ), k >= 0, n >= 0. - Wolfdieter Lang, Aug 24 2012
From Wolfdieter Lang, Oct 18 2012: (Start)
This triangle T(k,s) appears in the formula x^(2*k+1) - x^(-(2*k+1)) = Sum_{s=0..k} ( T(k,s)*(x-x^(-1))^(2*s+1) ), k>=0. Prove the inverse formula (due to the Riordan property this will suffice) with the binomial theorem. Motivated to look into this by the quoted paper of Wang and Zhang, eq. (1.4).
Alternating row sums are A057079.
The Z-sequence of this Riordan array is A217477, and the A-sequence is (-1)^n*A115141(n). For the notion of A- and Z-sequences for Riordan triangles see a W. Lang link under A006232. (End)
The signed triangle ((-1)^(k-s))*T(k,s) gives the coefficients of (x^2)^s of the polynomials C(2*k+1,x)/x, with C the monic integer Chebyshev T-polynomials whose coefficients are given in A127672 (C is there called R). See the odd numbered rows there. This signed triangle is the Riordan array ((1-x)/(1+x)^2, x/(1+x)^2). Proof by comparing the o.g.f. of the row polynomials where x is replaced by x^2 with the odd part of the bisection of the o.g.f. for C(n,x)/x. - Wolfdieter Lang, Oct 23 2012
From Wolfdieter Lang, Oct 04 2013: (Start)
The signed triangle S(k,s) := ((-1)^(k-s))*T(k,s) (see the preceding comment) is used to express in a (4*(k+1))-gon the length ratio s(4*(k+1)) = 2*sin(Pi/4*(k+1)) = 2*cos((2*k+1)*Pi/(4*(k+1))) of a side/radius as a polynomial in rho(4*(k+1)) = 2*cos(Pi/4*(k+1)), the length ratio (smallest diagonal)/side:
s(4*(k+1)) = Sum_{s=0..k} ( S(k,s)*rho(4*(k+1))^(2*s+1) ).
This is to be computed modulo C(4*(k+1), rho(4*(k+1)) = 0, the minimal polynomial (see A187360) in order to obtain s(4*(k+1)) as an integer in the algebraic number field Q(rho(4*(k+1))) of degree delta(4*(k+1)) (see A055034). Thanks go to Seppo Mustonen for asking me to look into the problem of the square of the total length in a regular n-gon, where this formula is used in the even n case. See A127677 for the formula in the (4*k+2)-gon. (End)
From Wolfdieter Lang, Aug 14 2014: (Start)
The row polynomials for the signed triangle (see the Oct 23 2012 comment above), call them todd(k,x) = Sum_{s=0..k} ( (-1)^(k-s)*T(k,s)*x^s ) = S(k, x-2) - S(k-1, x-2), k >= 0, with the Chebyshev S-polynomials (see their coefficient triangle (A049310) and S(-1, x) = 0), satisfy the recurrence todd(k, x) = (-1)^(k-1)*((x-4)/2)*todd(k-1, 4-x) + ((x-2)/2)*todd(k-1, x), k >= 1, todd(0, x) = 1. From the Aug 03 2014 comment on A130777.
This leads to a recurrence for the signed triangle, call it S(k,s) as in the Oct 04 2013 comment: S(k,s) = (1/2)*(1 + (-1)^(k-s))*S(k-1,s-1) + (2*(s+1)*(-1)^(k-s) - 1)*S(k-1,s) + (1/2)*(-1)^(k-s)*Sum_{j=0..k-s-2} ( binomial(j+s+2,s)*4^(j+2)* S(k-1, s+1+j) ) for k >= s >= 1, and S(k,s) = 0 if k < s and S(k,0) = (-1)^k*(2*k+1). Note that the recurrence derived from the Riordan A-sequence A115141 is similar but has simpler coefficients: S(k,s) = sum(A115141(j)*S(k-1,s-1+j), j=0..k-s), k >= s >=1.
(End)
From Tom Copeland, Nov 07 2015: (Start)
Rephrasing notes here: Append an initial column of zeros, except for a 1 at the top, to A111125 here. Then the partial sums of the columns of this modified entry are contained in A208513. Append an initial row of zeros to A208513. Then the difference of consecutive pairs of rows of the modified A208513 generates the modified A111125. Cf. A034807 and A127677.
For relations among the characteristic polynomials of Cartan matrices of the Coxeter root groups, Chebyshev polynomials, cyclotomic polynomials, and the polynomials of this entry, see Damianou (p. 20 and 21) and Damianou and Evripidou (p. 7).
As suggested by the equations on p. 7 of Damianou and Evripidou, the signed row polynomials of this entry are given by (p(n,x))^2 = (A(2*n+1, x) + 2)/x = (F(2*n+1, (2-x), 1, 0, 0, ... ) + 2)/x = F(2*n+1, -x, 2*x, -3*x, ..., (-1)^n n*x)/x = -F(2*n+1, x, 2*x, 3*x, ..., n*x)/x, where A(n,x) are the polynomials of A127677 and F(n, ...) are the Faber polynomials of A263196. Cf. A127672 and A127677.
(End)
The row polynomials P(k, x) of the signed triangle S(k, s) = ((-1)^(k-s))*T(k, s) are given from the row polynomials R(2*k+1, x) of triangle A127672 by
P(k, x) = R(2*k+1, sqrt(x))/sqrt(x). - Wolfdieter Lang, May 02 2021

Examples

			Triangle T(k,s) begins:
k\s  0    1     2     3     4     5     6    7    8   9 10
0:   1
1:   3    1
2:   5    5     1
3:   7   14     7     1
4:   9   30    27     9     1
5:  11   55    77    44    11     1
6:  13   91   182   156    65    13     1
7:  15  140   378   450   275    90    15    1
8:  17  204   714  1122   935   442   119   17    1
9:  19  285  1254  2508  2717  1729   665  152   19   1
10: 21  385  2079  5148  7007  5733  2940  952  189  21  1
... Extended and reformatted by _Wolfdieter Lang_, Oct 18 2012
Application for Fibonacci numbers F_{(2*k+1)*n}, row k=3:
F_{7*n} = 7*(-1)^(3*n)*F_n + 14*(-1)^(4*n)*5*F_n^3 + 7*(-1)^(5*n)*5^2*F_n^5 + 1*(-1)^(6*n)*5^3*F_n^7, n>=0. - _Wolfdieter Lang_, Aug 24 2012
Example for the  Z- and A-sequence recurrences  of this Riordan triangle: Z = A217477 = [3,-4,12,-40,...]; T(4,0) = 3*7 -4*14 +12*7 -40*1 = 9. A =  [1, 2, -1, 2, -5, 14, ..]; T(5,2) = 1*30 + 2*27 - 1*9 + 2*1= 77. _Wolfdieter Lang_, Oct 18 2012
Example for the (4*(k+1))-gon length ratio s(4*(k+1))(side/radius) as polynomial in the ratio rho(4*(k+1)) ((smallest diagonal)/side): k=0, s(4) = 1*rho(4) = sqrt(2); k=1, s(8) = -3*rho(8) + rho(8)^3 = sqrt(2-sqrt(2)); k=2, s(12) = 5*rho(12) - 5*rho(12)^3 + rho(12)^5, and C(12,x) = x^4 - 4*x^2 + 1, hence rho(12)^5 = 4*rho(12)^3 - rho(12), and s(12) = 4*rho(12) - rho(12)^3 = sqrt(2 - sqrt(3)). - _Wolfdieter Lang_, Oct 04 2013
Example for the recurrence for the signed triangle S(k,s)= ((-1)^(k-s))*T(k,s) (see the Aug 14 2014 comment above):
S(4,1) = 0 + (-2*2 - 1)*S(3,1) - (1/2)*(3*4^2*S(3,2) + 4*4^3*S(3,3)) = - 5*14 - 3*8*(-7) - 128*1 = -30. The recurrence from the Riordan A-sequence A115141 is S(4,1) = -7 -2*14 -(-7) -2*1 = -30. - _Wolfdieter Lang_, Aug 14 2014
		

Crossrefs

Mirror image of A082985, which see for further references, etc.
Also closely related to triangles in A098599 and A100218.

Programs

  • Magma
    [((2*n+1)/(n+k+1))*Binomial(n+k+1, 2*k+1): k in [0..n], n in [0..12]];  // G. C. Greubel, Feb 01 2022
  • Mathematica
    (* First program *)
    u[1, x_]:=1; v[1, x_]:=1; z=16;
    u[n_, x_]:= u[n-1, x] + x*v[n-1, x];
    v[n_, x_]:= u[n-1, x] + (x+1)*v[n-1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]  (* A208513 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]  (* A111125 *) (* Clark Kimberling, Feb 28 2012 *)
    (* Second program *)
    T[n_, k_]:= ((2*n+1)/(2*k+1))*Binomial[n+k, 2*k];
    Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 01 2022 *)
  • Sage
    @CachedFunction
    def T(n,k):
        if n< 0: return 0
        if n==0: return 1 if k == 0 else 0
        h = 3*T(n-1,k) if n==1 else 2*T(n-1,k)
        return T(n-1,k-1) - T(n-2,k) - h
    A111125 = lambda n,k: (-1)^(n-k)*T(n,k)
    for n in (0..9): [A111125(n,k) for k in (0..n)] # Peter Luschny, Nov 20 2012
    

Formula

T(k,s) = ((2*k+1)/(2*s+1))*binomial(k+s,2*s), 0 <= s <= k.
From Peter Bala, Apr 30 2012: (Start)
T(n,k) = binomial(n+k,2*k) + 2*binomial(n+k,2*k+1).
The row generating polynomials P(n,x) are a generalization of the Morgan-Voyce polynomials b(n,x) and B(n,x). They satisfy the recurrence equation P(n,x) = (x+2)*P(n-1,x) - P(n-2,x) for n >= 2, with initial conditions P(0,x) = 1, P(1,x) = x+r+1 and with r = 2. The cases r = 0 and r = 1 give the Morgan-Voyce polynomials A085478 and A078812 respectively. Andre-Jeannin has considered the case of general r.
P(n,x) = U(n+1,1+x/2) + U(n,1+x/2), where U(n,x) denotes the Chebyshev polynomial of the second kind - see A053117. P(n,x) = (2/x)*(T(2*n+2,u)-T(2*n,u)), where u = sqrt((x+4)/4) and T(n,x) denotes the Chebyshev polynomial of the first kind - see A053120. P(n,x) = Product_{k = 1..n} ( x + 4*(sin(k*Pi/(2*n+1)))^2 ). P(n,x) = 1/x*(b(n+1,x) - b(n-1,x)) and P(n,x) = 1/x*{(b(2*n+2,x)+1)/b(n+1,x) - (b(2*n,x)+1)/b(n,x)}, where b(n,x) := Sum_{k = 0..n} binomial(n+k,2*k)*x^k are the Morgan-Voyce polynomials of A085478. Cf. A211957.
(End)
From Wolfdieter Lang, Oct 18 2012 (Start)
O.g.f. column No. s: ((1+x)/(1-x)^2)*(x/(1-x)^2)^s, s >= 0. (from the Riordan data given in a comment above).
O.g.f. of the row polynomials R(k,x):= Sum_{s=0..k} ( T(k,s)*x^s ), k>=0: (1+z)/(1-(2+x)*z+z^2) (from the Riordan property).
(End)
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k), T(0,0) = 1, T(1,0) = 3, T(1,1) = 1, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Nov 12 2013

Extensions

More terms from Paul Barry, Oct 17 2005

A028399 a(n) = 2^n - 4.

Original entry on oeis.org

0, 4, 12, 28, 60, 124, 252, 508, 1020, 2044, 4092, 8188, 16380, 32764, 65532, 131068, 262140, 524284, 1048572, 2097148, 4194300, 8388604, 16777212, 33554428, 67108860, 134217724, 268435452, 536870908, 1073741820, 2147483644, 4294967292, 8589934588, 17179869180
Offset: 2

Views

Author

Keywords

Comments

Number of permutations of [n] with 2 sequences.
Number of 2 X n binary matrices that avoid simultaneously the right angled numbered polyomino patterns (ranpp) (00;1) and (11;0). An occurrence of a ranpp (xy;z) in a matrix A=(a(i,j)) is a triple (a(i1,j1), a(i1,j2), a(i2,j1)) where i1Sergey Kitaev, Nov 11 2004
The number of edges in the dual Edwards-Venn diagram graph with n-1 digits when n>2.
a(n) (n>=6) is the number of vertices in the molecular graph NS2[n-5], defined pictorially in the Ashrafi et al. reference (Fig. 2, where NS2[2] is shown). - Emeric Deutsch, May 16 2018
From Petros Hadjicostas, Aug 08 2019: (Start)
With regard to the comment above about a(n) being the "number of permutations of [n] with 2 sequences", we refer to Ex. 13 (pp. 260-261) of Comtet (1974), who uses the definition of a "séquence" given by André in several of his papers in the 19th century.
In the terminology of array A059427, these so-called "séquences" in permutations (defined by Comtet and André) are called "alternating runs" (or just "runs"). We discuss these so-called "séquences" below.
If b = (b_1, b_2, ..., b_n) is a permutation of [n], written in one-line notation (not in cycle notation), a "séquence" in a permutation of length l >= 2 (according to Comtet) is a maximal interval of integers {i, i+1, ..., i+l-1} for some i (where 1 <= i <= n-l+1) such that b_i < b_{i+1} < ... < b_{i+l-1} or b_i > b_{i+1} > ... > b_{i+l-1}. (The word "maximal" means that, in the first case, we have b_{i-1} > b_i and b_{i+l} < b_{i+l-1}, while in the second case, we have b_{i-1} < b_i and b_{i+l} > b_{i+l-1} provided b_{i-1} and b_{i+l} can be defined.)
When defining a "séquence", André (1884) actually refers to the list of terms (b_i, b_{i+1}, ..., b_{i+l-1}) rather than the corresponding index set {i, i+1, ..., i+l-1} (which is essentially the same thing).
For more details about these so-called "séquences" (or "alternate runs"), see the comments and examples for sequence A000708.
(End)
For n >= 1, a(n+2) is the number of shortest paths from (0,0) of a square grid to {(x,y): |x|+|y| = n} along the grid line. - Jianing Song, Aug 23 2021

Examples

			From _Petros Hadjicostas_, Aug 08 2019: (Start)
We have a(3) = 4 because each of the following permutations of [3] has the following so-called "séquences" ("alternate runs"):
   123 -> 123 (one),
   132 -> 13, 32 (two),
   213 -> 21, 13 (two),
   231 -> 23, 31 (two),
   312 -> 31, 12 (two),
   321 -> 321 (one).
Recall that a so-called "séquence" ("alternate run") must start with a "maximum" and end with "minimum", or vice versa, and it should not contain any other maxima and minima in between. Two consecutive such "séquences" ("alternate runs") have exactly one minimum or exactly one maximum in common.
(End)
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 261.
  • A. W. F. Edwards, Cogwheels of the Mind, Johns Hopkins University Press, 2004, p. 82.

Crossrefs

Column k = 2 of A059427.
Row n = 2 of A371064.

Programs

  • GAP
    a:=List([2..40], n->2^n-4); # Muniru A Asiru, May 17 2018
    
  • Maple
    seq(2^n-4, n=2..40); # Muniru A Asiru, May 17 2018
  • Mathematica
    2^Range[2,40]-4 (* Harvey P. Dale, Jul 05 2019 *)
  • PARI
    a(n)=if(n<2, 0, 2^n-4)
    
  • Python
    def A028399(n): return (1<Chai Wah Wu, Jun 27 2023

Formula

O.g.f.: 4*x^3/((1-x)*(1-2*x)). - R. J. Mathar, Aug 07 2008
From Reinhard Zumkeller, Feb 28 2010: (Start)
a(n) = A175164(2*n)/A140504(n+2);
a(2*n) = A052548(n)*A000918(n) for n > 0;
a(n) = A173787(n,2). (End)
a(n) = a(n-1) + 2^(n-1) (with a(2)=0). - Vincenzo Librandi, Nov 22 2010
a(n) = 4*A000225(n-2). - R. J. Mathar, Dec 15 2015
E.g.f.: 3 + 2*x - 4*exp(x) + exp(2*x). - Stefano Spezia, Apr 06 2021
a(n) = sigma(A003945(n-2)) for n>=3. - Flávio V. Fernandes, Apr 20 2021

Extensions

Additional comments from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Dec 02 2001

A042950 Row sums of the Lucas triangle A029635.

Original entry on oeis.org

2, 3, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 12288, 24576, 49152, 98304, 196608, 393216, 786432, 1572864, 3145728, 6291456, 12582912, 25165824, 50331648, 100663296, 201326592, 402653184, 805306368, 1610612736, 3221225472, 6442450944
Offset: 0

Views

Author

Keywords

Comments

Map a binary sequence b=[ b_1,...] to a binary sequence c=[ c_1,...] so that C = 1/Product((1-x^i)^c_i == 1 + Sum b_i*x^i mod 2.
This produces 2 new sequences: d={i:c_i=1} and e=[ 1,e_1,... ] where C = 1 + Sum e_i*x^i.
This sequence is d when b=[ 0,1,1,1,1,...].
Number of rises after n+1 iterations of morphism A007413.
a(n) written in base 2: a(0) = 10, a(n) for n >= 1: 11, 110, 11000, 110000, ..., i.e.: 2 times 1, (n-1) times 0 (see A003953(n)). - Jaroslav Krizek, Aug 17 2009
Row sums of the Lucas triangle A029635. - Sergio Falcon, Mar 17 2014

Crossrefs

Programs

  • Magma
    [2] cat [2^(n+1) - 2^(n-1): n in [1..40]]; // Vincenzo Librandi, Aug 08 2015
    
  • Mathematica
    Table[ Ceiling[3*2^(n - 1)], {n, 0, 32}] (* Robert G. Wilson v, Jul 08 2006 *)
    a[0] = 2; a[1] = 3; a[n_] := 2a[n - 1]; Table[a[n], {n, 0, 32}] (* Robert G. Wilson v, Jul 08 2006 *)
    f[s_] := Append[s, 1 + Plus @@ s]; Nest[f, {2}, 32] (* Robert G. Wilson v, Jul 08 2006 *)
    CoefficientList[Series[(2 - x)/(1 - 2x), {x, 0, 32}], x] (* Robert G. Wilson v, Jul 08 2006 *)
  • PARI
    a(n)=ceil(3*2^(n-1))
    
  • Python
    def A042950(n): return (3*2**n + int(n==0))//2 # G. C. Greubel, Jun 06 2025

Formula

G.f.: (2-x)/(1-2*x).
a(n) = 2*a(n-1), n > 1; a(0)=2, a(1)=3.
a(n) = A003945(n), for n > 0.
From Paul Barry, Dec 06 2004: (Start)
Binomial transform of 2, 1, 2, 1, 2, 1, ... = (3+(-1)^n)/2.
a(n) = (3*2^n + 0^n)/2. (End)
a(0) = 2, a(n) = 3*2^(n-1) = 2^n + 2^(n-1) for n >= 1. - Jaroslav Krizek, Aug 17 2009
a(n) = 2^(n+1) - 2^(n-1), for n > 0. - Ilya Gutkovskiy, Aug 08 2015
E.g.f.: (3*exp(2*x) + 1)/2. - G. C. Greubel, Jun 06 2025

A287804 Number of quinary sequences of length n such that no two consecutive terms have distance 1.

Original entry on oeis.org

1, 5, 17, 59, 205, 713, 2481, 8635, 30057, 104629, 364225, 1267923, 4413861, 15365465, 53490097, 186209299, 648230545, 2256616133, 7855718641, 27347281995, 95201200637, 331413874569, 1153716087665, 4016309864843, 13981555011321, 48672509644725
Offset: 0

Views

Author

David Nacin, Jun 01 2017

Keywords

Examples

			For n=2 the a(2)=17=25-8 sequences contain every combination except these eight: 01,10,12,21,23,32,34,43.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{5, -5, -1}, {1, 5, 17}, 50]
  • Python
    def a(n):
        if n in [0,1,2]:
            return [1,5,17][n]
        return 5*a(n-1)-5*a(n-2)-a(n-3)

Formula

a(n) = 5*a(n-1) - 5a(n-2) - a(n-3), a(0)=1, a(1)=5, a(2)=17.
G.f.: (1 - 3*x^2)/(1 - 5*x + 5*x^2 + x^3).

A287819 Number of nonary sequences of length n such that no two consecutive terms have distance 4.

Original entry on oeis.org

1, 9, 71, 561, 4433, 35031, 276827, 2187585, 17287073, 136608591, 1079529611, 8530826457, 67413620993, 532726379847, 4209793089371, 33267280400913, 262889866978817, 2077449112980255, 16416740845208075, 129730917736941417, 1025179795159015841
Offset: 0

Views

Author

David Nacin, Jun 02 2017

Keywords

Examples

			For n=2 the a(2) = 81 - 10 = 71 sequences contain every combination except these ten: 04,40,15,51,26,62,37,73,48,84.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{8, 1, -14}, {1, 9, 71, 561}, 40]
  • Python
    def a(n):
        if n in [0, 1, 2, 3]:
            return [1, 9, 71, 561][n]
        return 8*a(n-1)+a(n-2)-14*a(n-3)

Formula

For n>2, a(n) = 8*a(n-1) + a(n-2) - 14*a(n-3), a(0)=1, a(1)=9, a(2)=71, a(3)=561.
G.f.: (1 + x - 2 x^2 - 2 x^3)/(1 - 8 x - x^2 + 14 x^3).

A163876 Number of reduced words of length n in Coxeter group on 3 generators S_i with relations (S_i)^2 = (S_i S_j)^6 = I.

Original entry on oeis.org

1, 3, 6, 12, 24, 48, 93, 180, 351, 684, 1332, 2592, 5046, 9825, 19128, 37239, 72498, 141144, 274788, 534972, 1041513, 2027676, 3947595, 7685400, 14962368, 29129580, 56711106, 110408373, 214949232, 418475259, 814711182, 1586125572, 3087958512
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

Also, coordination sequence for (6,6,6) tiling of hyperbolic plane. - N. J. A. Sloane, Dec 29 2015
The initial terms coincide with those of A003945, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^6)/(1-2*x+2*x^6-x^7) )); // G. C. Greubel, Apr 25 2019
    
  • Mathematica
    coxG[{6,1,-1,40}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Mar 22 2015 *)
    CoefficientList[Series[(1+x)*(1-x^6)/(1-2*x+2*x^6-x^7), {x,0,40}], x] (* G. C. Greubel, Aug 06 2017, modified Apr 25 2019 *)
  • PARI
    x='x+O('x^40); Vec((x^6+2*x^5+2*x^4+2*x^3+2*x^2+2*x+1)/(x^6-x^5- x^4-x^3-x^2-x+1)) \\ G. C. Greubel, Aug 06 2017
    
  • Sage
    ((1+x)*(1-x^6)/(1-2*x+2*x^6-x^7)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 25 2019

Formula

G.f.: (x^6 + 2*x^5 + 2*x^4 + 2*x^3 + 2*x^2 + 2*x + 1)/(x^6 - x^5 - x^4 - x^3 - x^2 - x + 1).
G.f.: (1+x)*(1-x^6)/(1-2*x+2*x^6-x^7). - G. C. Greubel, Apr 25 2019
a(n) = -a(n-6) + Sum_{k=1..5} a(n-k). - Wesley Ivan Hurt, May 07 2021

A003688 a(n) = 3*a(n-1) + a(n-2), with a(1)=1 and a(2)=4.

Original entry on oeis.org

1, 4, 13, 43, 142, 469, 1549, 5116, 16897, 55807, 184318, 608761, 2010601, 6640564, 21932293, 72437443, 239244622, 790171309, 2609758549, 8619446956, 28468099417, 94023745207, 310539335038, 1025641750321, 3387464586001, 11188035508324, 36951571110973
Offset: 1

Views

Author

Keywords

Comments

Number of 2-factors in K_3 X P_n.
Form the graph with matrix [1,1,1,1;1,1,1,0;1,1,0,1;1,0,1,1]. The sequence 1,1,4,13,... with g.f. (1-2*x)/(1-3*x-x^2) counts closed walks of length n at the vertex of degree 5. - Paul Barry, Oct 02 2004
a(n) is term (1,1) in M^n, where M is the 3x3 matrix [1,1,2; 1,1,1; 1,1,1]. - Gary W. Adamson, Mar 12 2009
Starting with 1, INVERT transform of A003945: (1, 3, 6, 12, 24, ...). - Gary W. Adamson, Aug 05 2010
Row sums of triangle
m/k.|..0.....1.....2.....3.....4.....5.....6.....7
==================================================
.0..|..1
.1..|..1.....3
.2..|..1.....3.....9
.3..|..1.....6.....9.....27
.4..|..1.....6....27.....27...81
.5..|..1.....9....27....108...81...243
.6..|..1.....9....54....108..405...243...729
.7..|..1....12....54....270..405..1458...729..2187
which is the triangle for numbers 3^k*C(m,k) with duplicated diagonals. - Vladimir Shevelev, Apr 12 2012
Pisano period lengths: 1, 3, 1, 6, 12, 3, 16, 12, 6, 12, 8, 6, 52, 48, 12, 24, 16, 6, 40, 12, ... - R. J. Mathar, Aug 10 2012
a(n-1) is the number of length-n strings of 4 letters {0,1,2,3} with no two adjacent nonzero letters identical. The general case (strings of L letters) is the sequence with g.f. (1+x)/(1-(L-1)*x-x^2). - Joerg Arndt, Oct 11 2012

Examples

			G.f. = x + 4*x^2 + 13*x^3 + 43*x^4 + 142*x^5 + 469*x^6 + 1549*x^7 + 5116*x^8 + ...
		

References

  • F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.

Crossrefs

Partial sums of A052906. Pairwise sums of A006190.
Cf. A374439.

Programs

  • Magma
    [n le 2 select 4^(n-1) else 3*Self(n-1)+Self(n-2): n in [1..30]]; // Vincenzo Librandi, Aug 19 2011
    
  • Maple
    with(combinat): a:=n->fibonacci(n,3)-2*fibonacci(n-1,3): seq(a(n), n=2..25); # Zerinvary Lajos, Apr 04 2008
  • Mathematica
    a[n_] := (MatrixPower[{{1, 3}, {1, 2}}, n].{{1}, {1}})[[1, 1]]; Table[ a[n], {n, 0, 23}] (* Robert G. Wilson v, Jan 13 2005 *)
    LinearRecurrence[{3,1},{1,4},30] (* Harvey P. Dale, Mar 15 2015 *)
  • PARI
    a(n)=([0,1; 1,3]^(n-1)*[1;4])[1,1] \\ Charles R Greathouse IV, Aug 14 2017
    
  • SageMath
    @CachedFunction
    def a(n): # a = A003688
        if (n<3): return 4^(n-1)
        else: return 3*a(n-1) + a(n-2)
    [a(n) for n in range(1,41)] # G. C. Greubel, Dec 26 2023

Formula

a(n) = ((13 - sqrt(13))/26)*((3 + sqrt(13))/2)^n + ((13 + sqrt(13))/26)*((3 - sqrt(13))/2)^n. - Paul Barry, Oct 02 2004
a(n) = Sum_{k=0..n} 2^k*A055830(n,k). - Philippe Deléham, Oct 18 2006
Starting (1, 1, 4, 13, 43, 142, 469, ...), row sums (unsigned) of triangle A136159. - Gary W. Adamson, Dec 16 2007
G.f.: x*(1+x)/(1-3*x-x^2). - Philippe Deléham, Nov 03 2008
a(n) = A006190(n) + A006190(n-1). - Sergio Falcon, Nov 26 2009
For n>=2, a(n) = F_n(3) + F_(n+1)(3), where F_n(x) is Fibonacci polynomial (cf. A049310): F_n(x) = Sum_{i=0..floor((n-1)/2)} binomial(n-i-1,i) * x^(n-2*i-1). - Vladimir Shevelev, Apr 13 2012
G.f.: G(0)*(1+x)/(2-3*x), where G(k) = 1 + 1/(1 - (x*(13*k-9))/( x*(13*k+4) - 6/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 15 2013
a(n)^2 is the denominator of continued fraction [3,3,...,3, 5, 3,3,...,3], which has n-1 3's before, and n-1 3's after, the middle 5. - Greg Dresden, Sep 18 2019
a(n) = Sum_{k=0..n} A046854(n-1,k)*3^k. - R. J. Mathar, Feb 10 2024
a(n) = 3^n*Sum_{k=0..n} A374439(n, k)*(-1/3)^k. - Peter Luschny, Jul 26 2024

Extensions

Formula added by Olivier Gérard, Aug 15 1997
Name clarified by Michel Marcus, Oct 16 2016

A175655 Eight bishops and one elephant on a 3 X 3 chessboard. G.f.: (1+x-5*x^2)/(1-3*x-x^2+6*x^3).

Original entry on oeis.org

1, 4, 8, 22, 50, 124, 290, 694, 1628, 3838, 8978, 21004, 48962, 114022, 265004, 615262, 1426658, 3305212, 7650722, 17697430, 40911740, 94528318, 218312114, 503994220, 1163124866, 2683496134, 6189647948, 14273690782
Offset: 0

Views

Author

Johannes W. Meijer, Aug 06 2010, Aug 10 2010

Keywords

Comments

a(n) represents the number of n-move routes of a fairy chess piece starting in the central square (m = 5) on a 3 X 3 chessboard. This fairy chess piece behaves like a bishop on the eight side and corner squares but on the central square the bishop turns into a raging elephant, see A175654.
For the central square the 512 elephants lead to 46 different elephant sequences, see the cross-references for examples.
The sequence above corresponds to 16 A[5] vectors with decimal values 71, 77, 101, 197, 263, 269, 293, 323, 326, 329, 332, 353, 356, 389, 449 and 452. These vectors lead for the side squares to A000079 and for the corner squares to A175654.

Crossrefs

Cf. Elephant sequences central square [decimal value A[5]]: A000007 [0], A000012 [16], A000045 [1], A011782 [2], A000079 [3], A003945 [42], A099036 [11], A175656 [7], A105476 [69], A168604 [26], A045891 [19], A078057 [21], A151821 [170], A175657 [43], 4*A172481 [15; n>=-1], A175655 [71, this sequence], 4*A026597 [325; n>=-1], A033484 [58], A087447 [27], A175658 [23], A026150 [85], A175661 [171], A036563 [186], A098156 [59], A046717 [341], 2*A001792 [187; n>=1 with a(0)=1], A175659 [343].

Programs

  • Magma
    I:=[1, 4, 8]; [n le 3 select I[n] else 3*Self(n-1)+Self(n-2)-6*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jul 21 2013
    
  • Maple
    with(LinearAlgebra): nmax:=27; m:=5; A[5]:= [0,0,1,0,0,0,1,1,1]: A:=Matrix([[0,0,0,0,1,0,0,0,1], [0,0,0,1,0,1,0,0,0], [0,0,0,0,1,0,1,0,0], [0,1,0,0,0,0,0,1,0], A[5], [0,1,0,0,0,0,0,1,0], [0,0,1,0,1,0,0,0,0], [0,0,0,1,0,1,0,0,0], [1,0,0,0,1,0,0,0,0]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m,k],k=1..9): od: seq(a(n), n=0..nmax);
  • Mathematica
    CoefficientList[Series[(1 + x - 5 x^2) / (1 - 3 x - x^2 + 6 x^3), {x, 0, 40}], x] (* Vincenzo Librandi, Jul 21 2013 *)
    LinearRecurrence[{3,1,-6},{1,4,8},40] (* Harvey P. Dale, Dec 25 2024 *)
  • PARI
    a(n)=([0,1,0; 0,0,1; -6,1,3]^n*[1;4;8])[1,1] \\ Charles R Greathouse IV, Oct 03 2016

Formula

G.f.: (1+x-5*x^2)/(1-3*x-x^2+6*x^3).
a(n) = 3*a(n-1) + a(n-2) - 6*a(n-3) with a(0)=1, a(1)=4 and a(2)=8.
a(n) = ((10+8*A)*A^(-n-1) + (10+8*B)*B^(-n-1))/13 - 2^n with A = (-1+sqrt(13))/6 and B = (-1-sqrt(13))/6.
Limit_{k->oo} a(n+k)/a(k) = (-1)^(n)*2*A000244(n)/(A075118(n)-A006130(n-1)*sqrt(13)).
E.g.f.: 2*exp(x/2)*(13*cosh(sqrt(13)*x/2) + 5*sqrt(13)*sinh(sqrt(13)*x/2))/13 - cosh(2*x) - sinh(2*x). - Stefano Spezia, Jan 31 2023

A233275 Permutation of nonnegative integers obtained by entangling complementary pair A005187 & A055938 with even and odd numbers.

Original entry on oeis.org

0, 1, 3, 2, 6, 7, 5, 4, 12, 13, 14, 10, 15, 11, 9, 8, 24, 25, 26, 28, 27, 29, 20, 30, 21, 22, 18, 31, 23, 19, 17, 16, 48, 49, 50, 52, 51, 53, 56, 54, 57, 58, 40, 55, 59, 41, 60, 42, 61, 44, 36, 43, 45, 62, 46, 37, 38, 34, 63, 47, 39, 35, 33, 32, 96, 97, 98, 100
Offset: 0

Views

Author

Antti Karttunen, Dec 18 2013

Keywords

Comments

It seems that for all n, a(A000079(n)) = A003945(n).

Crossrefs

Inverse permutation: A233276.
Similarly constructed permutation pairs: A135141/A227413, A232751/A232752, A233277/A233278, A233279/A233280, A003188/A006068.

Formula

a(0)=0, a(1)=1, and thereafter, if A079559(n)=1, a(n) = 2*a(A213714(n)-1), else a(n) = 1+(2*a(A234017(n))).
a(n) = A054429(A233277(n)). [Follows from the definitions of these sequences]
Previous Showing 51-60 of 213 results. Next