cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 196 results. Next

A006352 Coefficients in expansion of Eisenstein series E_2 (also called E_1 or G_2).

Original entry on oeis.org

1, -24, -72, -96, -168, -144, -288, -192, -360, -312, -432, -288, -672, -336, -576, -576, -744, -432, -936, -480, -1008, -768, -864, -576, -1440, -744, -1008, -960, -1344, -720, -1728, -768, -1512, -1152, -1296, -1152, -2184, -912, -1440, -1344, -2160, -1008, -2304, -1056, -2016, -1872, -1728
Offset: 0

Views

Author

Keywords

Comments

Ramanujan's Eisenstein series: P(q) (see A006352), Q(q) (A004009), R(q) (A013973).
The series Q(q), R(q) are modular forms, but P(q) is not. - Michael Somos, May 18 2017

Examples

			G.f. = 1 - 24*x - 72*x^2 - 96*x^3 - 168*x^4 - 144*x^5 - 288*x^6 + ...
		

References

  • R. C. Gunning, Lectures on Modular Forms. Princeton Univ. Press, Princeton, NJ, 1962, p. 53.
  • N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Springer-Verlag, 1984, see pp. 111 and 113.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Zagier, Don. "Elliptic modular forms and their applications." The 1-2-3 of modular forms. Springer Berlin Heidelberg, 2008. 1-103. See p. 19, Eq. (17).

Crossrefs

Cf. A006352 (E_2), A004009 (E_4), A013973 (E_6), A008410 (E_8), A013974 (E_10), A029828 (E_12), A058550 (E_14), A029829 (E_16), A029830 (E_20), A029831 (E_24).
Cf. A000594 (Delta), A076835, A145155 (Delta').

Programs

  • Maple
    E := proc(k) local n,t1; t1 := 1-(2*k/bernoulli(k))*add(sigma[k-1](n)*q^n,n=1..60); series(t1,q,60); end; E(2);
  • Mathematica
    a[n_] := -24*DivisorSigma[1, n]; a[0] = 1; Table[a[n], {n, 0, 46}] (* Jean-François Alcover, Dec 12 2012 *)
    a[ n_] := If[ n < 1, Boole[n == 0], -24 DivisorSigma[ 1, n]]; (* Michael Somos, Apr 08 2015 *)
  • PARI
    {a(n) = if( n<1, n==0, -24 * sigma(n))}; /* Michael Somos, Apr 09 2003 */
    
  • Python
    from sympy import divisor_sigma
    def a(n): return 1 if n == 0 else -24 * divisor_sigma(n)
    [a(n) for n in range(51)]  # Indranil Ghosh, Jul 15 2017

Formula

a(n) = -24*sigma(n) = -24*A000203(n), for n>0.
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u1^2 + 4*u2^2 + 9*u3^2 + 36*u6^2 - 8*u1*u2 + 6*u1*u3 + 24*u2*u6 - 72*u3*u6. - Michael Somos, May 29 2005
G.f.: 1 - 24*sum(k>=1, k*x^k/(1 - x^k)).
G.f.: 1 + 24 *x*deriv(eta(x))/eta(x) where eta(x) = prod(n>=1, 1-x^n); (cf. A000203). - Joerg Arndt, Sep 28 2012
G.f.: 1 - 24*x/(1-x) + 48*x^2/(Q(0) - 2*x^2 + 2*x), where Q(k)= (2*x^(k+2) - x - 1)*k - 1 - 2*x + 3*x^(k+2) - x*(k+1)*(k+3)*(1-x^(k+2))^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 16 2013
G.f.: q*Delta'/Delta where Delta is the generating function of Ramanujan's tau function (A000594). - Seiichi Manyama, Jul 15 2017

A064987 a(n) = n*sigma(n).

Original entry on oeis.org

1, 6, 12, 28, 30, 72, 56, 120, 117, 180, 132, 336, 182, 336, 360, 496, 306, 702, 380, 840, 672, 792, 552, 1440, 775, 1092, 1080, 1568, 870, 2160, 992, 2016, 1584, 1836, 1680, 3276, 1406, 2280, 2184, 3600, 1722, 4032, 1892, 3696, 3510, 3312, 2256, 5952
Offset: 1

Views

Author

Vladeta Jovovic, Oct 30 2001

Keywords

Comments

Dirichlet convolution of sigma_2(n)=A001157(n) with phi(n)=A000010(n). - Vladeta Jovovic, Oct 27 2002
Equals row sums of triangle A143311 and of triangle A143308. - Gary W. Adamson, Aug 06 2008
a(n) is also the sum of all n's present in A244580, or in other words, a(n) is also the volume (or number of cubes) below the terraces of the n-th level of the staircase described in A244580 (see also A237593). - Omar E. Pol, Oct 11 2018
If n is a superperfect number then sigma(n) is a Mersenne prime and a(n) is a perfect number, a(A019279(k)) = A000396(k), k >= 1, assuming there are no odd perfect numbers. - Omar E. Pol, Apr 15 2020

References

  • B. C. Berndt, Ramanujan's theory of theta-functions, Theta functions: from the classical to the modern, Amer. Math. Soc., Providence, RI, 1993, pp. 1-63. MR 94m:11054. see page 43.
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publishing, Providence, Rhode Island, 2002, pp. 166-167.

Crossrefs

Main diagonal of A319073.
Cf. A000203, A038040, A002618, A000010, A001157, A143308, A143311, A004009, A006352, A000594, A126832, A069097 (Mobius transform), A001001 (inverse Mobius transform), A237593, A244580.

Programs

  • GAP
    a:=List([1..50],n->n*Sigma(n));; Print(a); # Muniru A Asiru, Jan 01 2019
  • Haskell
    a064987 n = a000203 n * n  -- Reinhard Zumkeller, Jan 21 2014
    
  • Magma
    [n*SumOfDivisors(n): n in [1..70]]; // Vincenzo Librandi, Jan 01 2019
    
  • Maple
    with(numtheory): [n*sigma(n)$n=1..50]; # Muniru A Asiru, Jan 01 2019
  • Mathematica
    # DivisorSigma[1,#]&/@Range[80]  (* Harvey P. Dale, Mar 12 2011 *)
  • MuPAD
    numlib::sigma(n)*n$ n=1..81 // Zerinvary Lajos, May 13 2008
    
  • PARI
    {a(n) = if ( n==0, 0, n * sigma(n))}
    
  • PARI
    { for (n=1, 1000, write("b064987.txt", n, " ", n*sigma(n)) ) } \\ Harry J. Smith, Oct 02 2009
    

Formula

Multiplicative with a(p^e) = p^e * (p^(e+1) - 1) / (p - 1).
G.f.: Sum_{n>0} n^2*x^n/(1-x^n)^2. - Vladeta Jovovic, Oct 27 2002
G.f.: phi_{2, 1}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}. - Michael Somos, Apr 02 2003
G.f. is also (Q - P^2) / 288 where P, Q are Ramanujan Lambert series. - Michael Somos, Apr 02 2003. See the Hardy reference, p. 136, eq. (10.5.4) (with a proof). For Q and P, (10.5.6) and (10.5.5), see E_4 A004009 and E_2 A006352, respectively. - Wolfdieter Lang, Jan 30 2017
Convolution of A000118 and A186690. Dirichlet convolution of A000027 and A000290. - Michael Somos, Mar 25 2012
Dirichlet g.f.: zeta(s-1)*zeta(s-2). - R. J. Mathar, Feb 16 2011
a(n) = A009194(n)*A009242(n). - Michel Marcus, Oct 23 2013
a(n) (mod 5) = A126832(n) = A000594(n) (mod 5). See A126832 for references. - Wolfdieter Lang, Feb 03 2017
L.g.f.: Sum_{k>=1} k*x^k/(1 - x^k) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 13 2017
Sum_{k>=1} 1/a(k) = 1.4383899259334187832765458631783591251241657856627653748389234270650138768... - Vaclav Kotesovec, Sep 20 2020
From Peter Bala, Jan 21 2021: (Start)
G.f.: Sum_{n >= 1} n*q^n*(1 + q^n)/(1 - q^n)^3 (use the expansion x*(1 + x)/(1 - x)^3 = x + 2^2*x^2 + 3^2*x^3 + 4^2*x^4 + ...).
A faster converging g.f.: Sum_{n >= 1} q^(n^2)*( n^3*q^(3*n) - (n^3 + 3*n^2 - n)*q^(2*n) - (n^3 - 3*n^2 - n)*q^n + n^3 )/(1 - q^n)^3 - differentiate equation 5 in Arndt w.r.t. both x and q and then set x = 1. (End)
From Richard L. Ollerton, May 07 2021: (Start)
a(n) = Sum_{k=1..n} sigma_2(gcd(n,k)).
a(n) = Sum_{k=1..n} sigma_2(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). (End)
From Peter Bala, Jan 22 2024: (Start)
a(n) = Sum_{1 <= j, k <= n} sigma_1( gcd(j, k, n) ).
a(n) = Sum_{d divides n} sigma_1(d)*J_2(n/d) = Sum_{d divides n} sigma_2(d)* phi(n/d), where the Jordan totient function J_2(n) = A007434(n). (End)

A008615 a(n) = floor(n/2) - floor(n/3).

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 2, 3, 3, 3, 3, 4, 3, 4, 4, 4, 4, 5, 4, 5, 5, 5, 5, 6, 5, 6, 6, 6, 6, 7, 6, 7, 7, 7, 7, 8, 7, 8, 8, 8, 8, 9, 8, 9, 9, 9, 9, 10, 9, 10, 10, 10, 10, 11, 10, 11, 11, 11, 11, 12, 11, 12, 12, 12, 12, 13, 12, 13, 13, 13, 13, 14, 13, 14, 14, 14, 14, 15, 14
Offset: 0

Views

Author

Keywords

Comments

If the two leading 0's are dropped, this becomes the essentially identical sequence A103221, with g.f. 1/((1-x^2)*(1-x^3)), which arises in many contexts. For example, 1/((1-x^4)*(1-x^6)) is the Poincaré series [or Poincare series] for modular forms of weight w for the full modular group. As generators one may take the Eisenstein series E_4 (A004009) and E_6 (A013973).
Dimension of the space of weight 2n+8 cusp forms for Gamma_0( 1 ).
Apart from initial term(s), dimension of the space of weight 2n cuspidal newforms for Gamma_0( 5 ).
a(n) is the number of ways n can be written as the sum of a positive even number and a nonnegative multiple of 3 and so the number of ways (n-2) can be written as the sum of a nonnegative even number and a nonnegative multiple of 3 and also the number of ways (n+3) can be written as the sum of a positive even number and a positive multiple of 3.
It appears that this is also the number of partitions of 2n+6 that are 4-term arithmetic progressions. - John W. Layman, May 01 2009 [verified by Wesley Ivan Hurt, Jan 17 2021]
a(n) is the number of (n+3)-digit fixed points under the base-3 Kaprekar map A164993 (see A164997 for the list of fixed points). - Joseph Myers, Sep 04 2009
Starting from n=10 also the number of balls in new consecutive hexagonal edges, if an (infinite) chain of balls is winded spirally around the first ball at the center, such that each six steps make an entire winding. - K. G. Stier, Dec 21 2012
In any three consecutive terms at least two of them are equal to each other. - Michael Somos, Mar 01 2014
Number of partitions of (n-2) into parts 2 and 3. - David Neil McGrath, Sep 05 2014
a(n), n >= 0, is also the dimension of S_{2*(n+4)}, the complex vector space of modular cusp forms of weight 2*(n+4) and level 1 (full modular group). The dimension of S_0, S_2, S_4 and S_6 is 0. See, e.g., Ash and Gross, p. 178. Table 13.1. - Wolfdieter Lang, Sep 16 2016
From Wolfdieter Lang, May 08 2017: (Start)
a(n-2) = floor((n-2)/2) - floor((n-2)/3) = floor(n/2) - floor((n+1)/3) is for n >=0 the number of integers k in the interval (n+1)/3 < k <= floor(n/2). This problem appears in the computation of the number of zeros of Chebyshev S(n, x) polynomials (coefficients in A049310) in the open interval (-1, +1). See a comment there. This computation was motivated by a conjecture given in A008611 by Michel Lagneau, Mar 31 2017.
a(n) is also the number of integers k in the closed interval (n+1)/3 <= k <= floor(n/2), which is floor(n/2) - (ceiling((n+1)/3) - 1) for n >= 0 (proof trivial for n+1 == 0 (mod 3) and otherwise). From the preceding statement this a(n) is also a(n-2) + [n == 2 (mod 3)] for n >= 0 (with [statement] = 1 if the statement is true and zero otherwise). This proves the recurrence given by Michael Somos in the formula section. (End)
Assuming the Collatz conjecture to be true, for n > 1, a(n+7) is the row length of the n-th row of A340985. That is, the number of weakly connected components of the Collatz digraph of order n. - Sebastian Karlsson, Feb 23 2021

Examples

			G.f. = x^2 + x^4 + x^5 + x^6 + x^7 + 2*x^8 + x^9 + 2*x^10 + 2*x^11 + 2*x^12 + ...
		

References

  • Avner Ash and Robert Gross, Summing it up, Princeton University Press, 2016, p. 178.
  • D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 100.
  • E. Freitag, Siegelsche Modulfunktionen, Springer-Verlag, Berlin, 1983; p. 141, Th. 1.1.
  • R. C. Gunning, Lectures on Modular Forms. Princeton Univ. Press, Princeton, NJ, 1962.
  • J.-M. Kantor, Où en sont les mathématiques, La formule de Molien-Weyl, SMF, Vuibert, p. 79

Crossrefs

Essentially the same as A103221.
First differences of A069905 (and A001399).

Programs

  • Haskell
    a008615 n = n `div` 2 - n `div` 3  -- Reinhard Zumkeller, Apr 28 2014
    
  • Magma
    [Floor(n/2)-Floor(n/3): n in [0..10]]; // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006
    
  • Magma
    a := func< n | n lt 2 select 0 else n eq 2 select 1 else Dimension( ModularForms( PSL2( Integers()), 2*n-4))>; /* Michael Somos, Dec 11 2018 */
    
  • Maple
    a := n-> floor(n/2) - floor(n/3): seq(a(n), n = 0 .. 87);
  • Mathematica
    a[n_]:=Floor[n/2]-Floor[n/3]; Array[a,90,0] (* Vladimir Joseph Stephan Orlovsky, Dec 05 2008; corrected by Harvey P. Dale, Nov 30 2011 *)
    LinearRecurrence[{0, 1, 1, 0, -1}, {0, 0, 1, 0, 1}, 100]; (* Vincenzo Librandi, Sep 09 2015 *)
  • PARI
    {a(n) = (n\2) - (n\3)}; /* Michael Somos, Feb 06 2003 */
    
  • Python
    def A008615(n): return n//2 - n//3 # Chai Wah Wu, Jun 07 2022

Formula

a(n) = a(n-6) + 1 = a(n-2) + a(n-3) - a(n-5). - Henry Bottomley, Sep 02 2000
G.f.: x^2 / ((1-x^2) * (1-x^3)).
From Reinhard Zumkeller, Feb 27 2008: (Start)
a(A016933(n)) = a(A016957(n)) = a(A016969(n)) = n+1.
a(A008588(n)) = a(A016921(n)) = a(A016945(n)) = n. (End)
a(6*k) = k, k >= 0. - Zak Seidov, Sep 09 2012
a(n) = A005044(n+1) - A005044(n-3). - Johannes W. Meijer, Oct 18 2013
a(n) = floor((n+4)/6) - floor((n+3)/6) + floor((n+2)/6). - Mircea Merca, Nov 27 2013
Euler transform of length 3 sequence [0, 1, 1]. - Michael Somos, Mar 01 2014
a(n+2) = a(n) + 1 if n == 0 (mod 3), a(n+2) = a(n) otherwise. - Michael Somos, Mar 01 2014. See the May 08 2017 comment above. - Wolfdieter Lang, May 08 2017
a(n) = -a(-1 - n) for all n in Z. - Michael Somos, Mar 01 2014.
a(n) = A004526(n) - A002264(n). - Reinhard Zumkeller, Apr 28 2014
a(n) = Sum_{i=0..n-2} (floor(i/6)-floor((i-3)/6))*(-1)^i. - Wesley Ivan Hurt, Sep 08 2015
a(n) = a(n+6) - 1 = A103221(n+4) - 1, n >= 0. - Wolfdieter Lang, Sep 16 2016
12*a(n) = 2*n +1 +3*(-1)^n -4*A057078(n). - R. J. Mathar, Jun 19 2019
a(n) = Sum_{k=1..floor((n+3)/2)} Sum_{j=k..floor((2*n+6-k)/3)} Sum_{i=j..floor((2*n+6-j-k)/2)} ([j-k = i-j = 2*n+6-2*i-j-k] - [k = j = i = 2*n+6-i-j-k]), where [ ] is the (generalized) Iverson bracket. - Wesley Ivan Hurt, Jan 17 2021
E.g.f.: (3*(2 + x)*cosh(x) - 2*exp(-x/2)*(3*cos(sqrt(3)*x/2) + sqrt(3)*sin(sqrt(3)*x/2)) + 3*(x-1)*sinh(x))/18. - Stefano Spezia, Oct 17 2022

A008410 a(0) = 1, a(n) = 480*sigma_7(n).

Original entry on oeis.org

1, 480, 61920, 1050240, 7926240, 37500480, 135480960, 395301120, 1014559200, 2296875360, 4837561920, 9353842560, 17342613120, 30119288640, 50993844480, 82051050240, 129863578080, 196962563520
Offset: 0

Views

Author

Keywords

Comments

Eisenstein series E_8(q) (alternate convention E_4(q)); theta series of direct sum of 2 copies of E_8 lattice.

Examples

			G.f. = 1 + 480*q + 61920*q^2 + 1050240*q^3 + 7926240*q^4 + 37500480*q^5 + ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 123.
  • R. C. Gunning, Lectures on Modular Forms. Princeton Univ. Press, Princeton, NJ, 1962, p. 53.
  • N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Springer-Verlag, 1984, see p. 111.
  • S. Ramanujan, On Certain Arithmetical Functions, Messenger Math., 45 (1916), 11-15 (Eq. (25)). Collected Papers of Srinivasa Ramanujan, Chap. 16, Ed. G. H. Hardy et al., Chelsea, NY, 1962.
  • S. Ramanujan, On Certain Arithmetical Functions, Messenger Math., 45 (1916), 11-15 (Eq. (25)). Ramanujan's Papers, p. 196, Ed. B. J. Venkatachala et al., Prism Books, Bangalore 2000.

Crossrefs

Cf. A013973.
Cf. A006352 (E_2), A004009 (E_4), A013973 (E_6), A008410 (E_8), A013974 (E_10), A029828 (E_12), A058550 (E_14), A029829 (E_16), A029830 (E_20), A029831 (E_24).
Convolution square of A004009.

Programs

  • Magma
    Basis( ModularForms( Gamma1(1), 8), 33) [1]; /* Michael Somos, May 27 2014 */
  • Maple
    E := proc(k) local n,t1; t1 := 1-(2*k/bernoulli(k))*add(sigma[k-1](n)*q^n,n=1..60); series(t1,q,60); end; E(8);
  • Mathematica
    a[ n_] := If[ n < 1, Boole[n == 0], 480 DivisorSigma[ 7, n]]; (* Michael Somos, Jun 04 2013 *)
    nmax = 60; CoefficientList[Series[(Product[(1-x^k)^8 / (1+x^k)^8, {k, 1, nmax}] + 256 * x * Product[(1+x^k)^16 *(1-x^k)^8, {k, 1, nmax}])^2, {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 02 2017 *)
  • PARI
    {a(n) = if( n<1, n==0, 480 * sigma(n, 7))};
    
  • PARI
    {a(n) = local(A, e1, e2, e4); if( n<0, 0, n*=2; A = x * O(x^n); e1 = eta(x + A)^16; e2 = eta(x^2 + A)^16; e4 = eta(x^4 + A)^16; polcoeff( (e1*e2^3 + 256*x^2 * e4*(e2^3 + e1^2*e4)) / (e1*e2*e4), n))}; /* Michael Somos, Jun 29 2005 */
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( ((eta(x + A)^24 + 256 * x * eta(x^2 + A)^24) / (eta(x + A) * eta(x^2 + A))^8)^2, n))}; /* Michael Somos, Dec 30 2008 */
    
  • Sage
    ModularForms( Gamma1(1), 8, prec=33).0; # Michael Somos, Jun 04 2013
    

Formula

Equivalently, g.f. = (theta2^16+theta3^16+theta4^16)/2.
G.f. Sum{k>=0} a(k)q^(2k) = (theta2^16+theta3^16+theta4^16)/2.
Expansion of ((eta(q)^24 + 256 * eta(q^2)^24) / (eta(q) * eta(q^2))^8)^2 in powers of q. - Michael Somos, Dec 30 2008
G.f. is a period 1 Fourier series which satisfies f(-1 / t) = (t/i)^8 * f(t) where q = exp(2 Pi i t). - Michael Somos, Dec 30 2008
a(n) = 480*A013955(n). - R. J. Mathar, Oct 10 2012

A013974 Eisenstein series E_10(q) (alternate convention E_5(q)).

Original entry on oeis.org

1, -264, -135432, -5196576, -69341448, -515625264, -2665843488, -10653352512, -35502821640, -102284205672, -264515760432, -622498190688, -1364917062432, -2799587834736, -5465169838656, -10149567696576, -18177444679944
Offset: 0

Views

Author

Keywords

Examples

			G.f. = 1 - 264*q - 135432*q^2 - 5196576*q^3 - 69341448*q^4 - 515625264*q^5 + ...
		

References

  • R. C. Gunning, Lectures on Modular Forms. Princeton Univ. Press, Princeton, NJ, 1962, p. 53.
  • N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Springer-Verlag, 1984, see p. 111.

Crossrefs

Cf. A008410.
Cf. A006352 (E_2), A004009 (E_4), A013973 (E_6), A008410 (E_8), A013974 (E_10), A029828 (E_12), A058550 (E_14), A029829 (E_16), A029830 (E_20), A029831 (E_24).
Convolution of A004009 and A013973.

Programs

  • Maple
    E := proc(k) local n,t1; t1 := 1-(2*k/bernoulli(k))*add(sigma[k-1](n)*q^n,n=1..60); series(t1,q,60); end; E(10);
  • Mathematica
    a[ n_] := If[ n < 1, Boole[n == 0], -264 DivisorSigma[ 9, n]]; (* Michael Somos, Jun 04 2013 *)
    a[ n_] := SeriesCoefficient[ With[{t2 = EllipticTheta[ 2, 0, q]^4, t3 = EllipticTheta[ 3, 0, q]^4}, t2^5 - 19 t2 t3 (t2^3 + t3^3) - 494 (t2 t3)^2 (t2 + t3) + t3^5], {q, 0, n}]; (* Michael Somos, Jun 04 2013 *)
    terms = 17; Ei[n_] = 1-(2n/BernoulliB[n]) Sum[k^(n-1) x^k/(1-x^k), {k, terms}]; CoefficientList[Ei[10] + O[x]^terms, x] (* Jean-François Alcover, Mar 01 2018 *)
  • PARI
    {a(n) = if( n<1, n==0, -264 * sigma( n, 9))};
    
  • Sage
    ModularForms( Gamma1(1), 10, prec=13).0; # Michael Somos, Jun 04 2013

Formula

Sum_{n >= 0} a(n)/exp(Pi)^(2n) = 0 or is very close to 0. - Gerald McGarvey, Jan 25 2005
G.f. is a period 1 Fourier series which satisfies f(-1 / t) = - (t/i)^10 * f(t) where q = exp(2 Pi i t). - Michael Somos, Dec 30 2008
G.f.: 1 - 264*Sum_{k>=1} k^9*x^k/(1 - x^k). - Ilya Gutkovskiy, Aug 31 2017

A058550 Eisenstein series E_14(q) (alternate convention E_7(q)).

Original entry on oeis.org

1, -24, -196632, -38263776, -1610809368, -29296875024, -313495116768, -2325336249792, -13195750342680, -61004818143672, -240029297071632, -828545091454368, -2568152034827232, -7269002558214096, -19051479894545856, -46708710975763776
Offset: 0

Views

Author

N. J. A. Sloane, Dec 25 2000

Keywords

References

  • R. C. Gunning, Lectures on Modular Forms. Princeton Univ. Press, Princeton, NJ, 1962, p. 53.
  • N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Springer-Verlag, 1984, see p. 111.

Crossrefs

Cf. A006352 (E_2), A004009 (E_4), A013973 (E_6), A008410 (E_8), A013974 (E_10), A029828 (E_12), A058550 (E_14), A029829 (E_16), A029830 (E_20), A029831 (E_24).

Programs

  • Maple
    E := proc(k) local n,t1; t1 := 1-(2*k/bernoulli(k))*add(sigma[k-1](n)*q^n,n=1..60); series(t1,q,60); end; E(14);
  • Mathematica
    terms = 16;
    E14[x_] = 1 - 24*Sum[k^13*x^k/(1 - x^k), {k, 1, terms}];
    E14[x] + O[x]^terms // CoefficientList[#, x]&
    (* or: *)
    Table[If[n == 0, 1, -24*DivisorSigma[13, n]], {n, 0, terms-1}] (* Jean-François Alcover, Feb 26 2018 *)
    (* or *)
    terms = 15; E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}]; E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}]; CoefficientList[Series[E4[x]^2*E6[x], {x, 0, terms}], x] (* Vaclav Kotesovec, Aug 03 2025 *)
  • PARI
    a(n)=if(n<1,n==0,-24*sigma(n,13))

A103221 Number of partitions of n into parts 2 and 3.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 2, 3, 3, 3, 3, 4, 3, 4, 4, 4, 4, 5, 4, 5, 5, 5, 5, 6, 5, 6, 6, 6, 6, 7, 6, 7, 7, 7, 7, 8, 7, 8, 8, 8, 8, 9, 8, 9, 9, 9, 9, 10, 9, 10, 10, 10, 10, 11, 10, 11, 11, 11, 11, 12, 11, 12, 12, 12, 12, 13, 12, 13, 13, 13, 13, 14, 13, 14, 14, 14, 14, 15, 14, 15, 15
Offset: 0

Views

Author

Michael Somos, Jan 25 2005

Keywords

Comments

Essentially the same as A008615.
Poincaré series [or Poincare series] for modular forms of weight w for the full modular group. As generators one may take the Eisenstein series E_4 (A004009) and E_6 (A013973).
Dimension of the space of weight 2n+12 cusp forms for Gamma_0( 1 ).
Dimension of the space of weight 2n cuspidal newforms for Gamma_0( 5 ).
a(n) is the number of partitions of n into two nonnegative parts congruent modulo 3. - Andrew Baxter, Jun 28 2006
Also number of equivalence classes of period 2n billiards on an equilateral triangle. - Andrew Baxter, Jun 06 2008
a(n) is also the number of 2-regular multigraphs on n vertices, where each component is either a pair of parallel edges, or a triangle. - Jason Kimberley, Oct 14 2011
For n>1, a(n) is the number of partitions of 2n into positive parts x,y, and z such that x>=y and y=z. This sequence is used in calculating the probability of the need for a run-off election when n voters randomly cast ballots for two of three candidates running for two empty slots on a county commission. - Dennis P. Walsh, Apr 25 2013
Also, Molien series for invariants of finite Coxeter group A_2. The Molien series for the finite Coxeter group of type A_k (k >= 1) has g.f. = 1/Product_{i=2..k+1} (1-x^i). Note that this is the root system A_k, not the alternating group Alt_k. - N. J. A. Sloane, Jan 11 2016
The coefficient of x^(2*n+1) in the power series expansion of the Weierstrass sigma function is a polynomial in the invariants g2 and g3 with a(n) terms. - Michael Somos, Jun 14 2016
a(n) is also the dimension of the complex vector space of modular forms M_{2*n} of weight 2*n and level 1 (full modular group). See Apostol p. 119, eq. (9) for k=2*n, and Ash and Gross, p. 178, Table 13.1. For a(6*k+1) = a(6*k+j)-1 for j = 0,2,3,4,5 and k >= 0 see A016921 (so-called dips, cf. Ash and Gross, p. 178.). - Wolfdieter Lang, Sep 16 2016
In an hexagonal tiling of the plane where the base tile is (0,0)--(2,1)--(3,3)--(1,4)--(-1,3)--(-2,1)--(0,0), a(n) is the number of vertices on the (n,0)--(n,n) closed line segment. - Luc Rousseau, Mar 22 2018

Examples

			For n=8, a(n)=2 since there are two partitions of 16 into 3 positive parts x, y, and z such that x >= y and y=z, namely, 16 = 8+4+4 and 16 = 6+5+5. - _Dennis P. Walsh_, Apr 25 2013
G.f. = 1 + x^2 + x^3 + x^4 + x^5 + 2*x^6 + x^7 + 2*x^8 + 2*x^9 + 2*x^10 + 2*x^11 + ...
		

References

  • T. M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Springer-Verlag, 1990, page 119.
  • Avner Ash and Robert Gross, Summing it up, Princeton University Press, 2016, p. 178.
  • D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 100.
  • E. Freitag, Siegelsche Modulfunktionen, Springer-Verlag, Berlin, 1983; p. 141, Th. 1.1.
  • R. C. Gunning, Lectures on Modular Forms. Princeton Univ. Press, Princeton, NJ, 1962.
  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See Table 3.1, page 59.
  • J.-M. Kantor, Ou en sont les mathématiques, La formule de Molien-Weyl, SMF, Vuibert, p. 79
  • S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; see p. 26. - N. J. A. Sloane, Aug 28 2010.

Crossrefs

Cf. A008615, A001399 (partial sums), A128115, A171386, A081753.
Molien series for finite Coxeter groups A_1 through A_12 are A059841, A103221, A266755, A008667, A037145, A001996, and A266776, A266777, A266778, A266779, A266780, A266781.

Programs

  • Magma
    [Floor((n+2)/2)-Floor((n+2)/3): n in [0..100]]; // Vincenzo Librandi, Sep 18 2016
    
  • Maple
    A103221:=n->floor((n+2)/2)-floor((n+2)/3): # Andrew Baxter, Jun 06 2008
  • Mathematica
    a=b=c=d=0;Table[e=a+b-d+1;a=b;b=c;c=d;d=e,{n,100}] (* Vladimir Joseph Stephan Orlovsky, Feb 26 2011 *)
    LinearRecurrence[{0, 1, 1, 0, -1},{1, 0, 1, 1, 1},88] (* Ray Chandler, Sep 23 2015 *)
    a[ n_] := With[{m = Max[-5 - n, n]}, (-1)^Boole[n < 0] SeriesCoefficient[ 1 / ((1 - x^2) (1 - x^3)), {x, 0, m}]]; (* Michael Somos, Jun 02 2019 *)
  • PARI
    {a(n) = if( n<-4, -a(-5-n), polcoeff( 1 / ((1 - x^2) * (1 - x^3)) + x * O(x^n), n))};
    
  • PARI
    a(n)=n+=2; n\2 - n\3 \\ Charles R Greathouse IV, Jul 31 2017
    
  • Python
    def A103221(n): return (n>>1)+1-(n+2)//3 # Chai Wah Wu, Apr 15 2025
  • Sage
    def a(n) : return( len( CuspForms( Gamma0( 1), 2*n + 12, prec=1). basis())); # Michael Somos, May 29 2013
    

Formula

Euler transform of finite sequence [0, 1, 1] with offset 1, which is A171386.
a(n) = A008615(n+2). First differences of A001399.
a(n) = a(n-6) + 1 = a(n-2) + a(n-3) - a(n-5). - Henry Bottomley, Sep 02 2000
G.f.: 1/((1-x^2)*(1-x^3)).
a(n) = floor((n+2)/2) - floor((n+2)/3). - Andrew Baxter, Jun 06 2008
For odd n, a(n)=floor((n+3)/6). For even n, a(n)=floor((n+6)/6). - Dennis P. Walsh, Apr 25 2013
a(n) = floor(n/6)+1 unless n == 1 (mod 6); if n == 1 (mod 6), a(n) = floor(n/6). - Bob Selcoe, Sep 27 2014
a(n) = A081753(2*n); see the Dennis P. Walsh formula. - Wolfdieter Lang, Sep 16 2016
a(n)-a(n-2) = A079978(n). - R. J. Mathar, Jun 23 2021
E.g.f.: (3*(4 + x)*cosh(x) + exp(-x/2)*(6*cos(sqrt(3)*x/2) - 2*sqrt(3)*sin(sqrt(3)*x/2)) + 3*(1 + x)*sinh(x))/18. - Stefano Spezia, Mar 05 2023
a(n) = A008615(n-1)+A059841(n). - R. J. Mathar, May 03 2023

Extensions

Name changed by Wolfdieter Lang, Sep 16 2016

A029828 Eisenstein series E_12(q) (alternate convention E_6(q)), multiplied by 691.

Original entry on oeis.org

691, 65520, 134250480, 11606736960, 274945048560, 3199218815520, 23782204031040, 129554448266880, 563087459516400, 2056098632318640, 6555199353000480, 18693620658498240, 48705965462306880, 117422349017369760, 265457064498837120, 566735214731736960, 1153203117089652720
Offset: 0

Views

Author

Keywords

References

  • R. C. Gunning, Lectures on Modular Forms. Princeton Univ. Press, Princeton, NJ, 1962, p. 53.
  • N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Springer-Verlag, 1984, see p. 111.
  • J.-P. Serre, Course in Arithmetic, Chap. VII, Section 4.

Crossrefs

Cf. A037164.
Cf. A006352 (E_2), A004009 (E_4), A013973 (E_6), A008410 (E_8), A013974 (E_10), A029828 (E_12), A058550 (E_14), A029829 (E_16), A029830 (E_20), A029831 (E_24).

Programs

  • Maple
    E := proc(k) local n,t1; t1 := 1-(2*k/bernoulli(k))*add(sigma[k-1](n)*q^n,n=1..60); series(t1,q,60); end; E(12);
  • Mathematica
    Table[If[n == 0, 691, 65520 DivisorSigma[11, n]], {n, 0, 16}] (* Jean-François Alcover, Feb 26 2018 *)
  • PARI
    a(n)=if(n<1,691*(n==0),65520*sigma(n,11))

A004011 Theta series of D_4 lattice; Fourier coefficients of Eisenstein series E_{gamma,2}.

Original entry on oeis.org

1, 24, 24, 96, 24, 144, 96, 192, 24, 312, 144, 288, 96, 336, 192, 576, 24, 432, 312, 480, 144, 768, 288, 576, 96, 744, 336, 960, 192, 720, 576, 768, 24, 1152, 432, 1152, 312, 912, 480, 1344, 144, 1008, 768, 1056, 288, 1872, 576, 1152, 96, 1368, 744, 1728, 336
Offset: 0

Views

Author

Keywords

Comments

D_4 is also the Barnes-Wall lattice in 4 dimensions.
E_{gamma,2} is the unique normalized modular form for Gamma_0(2) of weight 2.
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
Ramanujan's Eisenstein series: P(q) (see A006352), Q(q) (A004009), R(q) (A013973).
Convolution square is A008658. - Michael Somos, Aug 21 2014
Expansion of 2*P(x^2) - P(x) in powers of x where P() is a Ramanujan Eisenstein series. - Michael Somos, Feb 16 2015
a(n) is the number of Hurwitz quaternions of norm n. - Michael Somos, Feb 16 2015

Examples

			G.f. = 1 + 24*x + 24*x^2 + 96*x^3 + 24*x^4 + 144*x^5 + 96*x^6 + 192*x^7 + 24*x^8 + ...
G.f. = 1 + 24*q^2 + 24*q^4 + 96*q^6 + 24*q^8 + 144*q^10 + 96*q^12 + 192*q^14 + 24*q^16 + ...
		

References

  • Bruce C. Berndt, Ramanujan's Notebooks Part V, Springer-Verlag, 1998, see p. 148 Eq. (9.11).
  • Harvey Cohn, Advanced Number Theory, Dover Publications, Inc., 1980, p. 89. Eq. (1).
  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 119.
  • S. Ramanujan, Notebooks, Tata Institute of Fundamental Research, Bombay 1957 Vol. 1, see page 214.
  • N. J. A. Sloane, Seven Staggering Sequences, in Homage to a Pied Puzzler, E. Pegg Jr., A. H. Schoen and T. Rodgers (editors), A. K. Peters, Wellesley, MA, 2009, pp. 93-110.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Partial sums give A046949.
Cf. A108092 (convolution fourth root).

Programs

  • Magma
    Basis( ModularForms( Gamma0(2), 2), 54) [1]; /* Michael Somos, May 27 2014 */
    
  • Maple
    readlib(ifactors): with(numtheory): for n from 1 to 100 do if n mod 2 = 0 then m := n/ifactors(n)[2][1][1]^ifactors(n)[2][1][2] else m := n fi: printf(`%d,`,24*sigma(m)) od: # James Sellers, Dec 07 2000
  • Mathematica
    a[ n_] := If[ n < 0, 0, With[ {m = Floor @ Sqrt[4 n]}, SeriesCoefficient[ Sum[ q^( x^2 + y^2 + z^2 + t^2 + (x + y + z) t ), {x, -m, m}, {y, -m, m}, {z, -m, m}, {t, -m, m}] + O[q]^(n + 1), n]]]; (* Michael Somos, Jan 11 2011 *)
    a[n_] := 24*Total[ Select[ Divisors[n], OddQ]]; a[0]=1; Table[a[n], {n, 0, 52}] (* Jean-François Alcover, Sep 12 2012 *)
    a[ n_] := With[{m = InverseEllipticNomeQ @q}, SeriesCoefficient[ (1 + m) (EllipticK[ m] / (Pi/2))^2, {q, 0, n}]]; (* Michael Somos, Jun 04 2013 *)
    a[ n_] := With[{m = InverseEllipticNomeQ @q}, SeriesCoefficient[ (1 - m/2) (EllipticK[ m] / (Pi/2))^2, {q, 0, 2 n}]]; (* Michael Somos, Jun 04 2013 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q]^4 + EllipticTheta[ 2, 0, q]^4, {q, 0, n}]; (* Michael Somos, Jun 04 2013 *)
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q]^4 + EllipticTheta[ 4, 0, q]^4) / 2, {q, 0, 2 n}]; (* Michael Somos, Jun 04 2013 *)
  • PARI
    {a(n) = if( n<1, n==0, 24 * sumdiv( n, d, d%2 * d))}; /* Michael Somos, Apr 17 2000 */
    
  • PARI
    {a(n) = my(G); if( n<0, 0, G = [2, 1, 1, 1; 1, 2, 0, 0; 1, 0, 2, 0; 1, 0, 0, 2]; polcoeff( 1 + 2 * x * Ser(qfrep( G, n, 1)), n))}; /* Michael Somos, Sep 11 2007 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^20 / (eta(x + A) * eta(x^4 + A))^8 + 16 * x * eta(x^4 + A)^8 / eta(x^2 + A)^4, n))}; /* Michael Somos, Oct 21 2017 */
    
  • Python
    from sympy import divisors
    def a(n): return 1 if n==0 else 24*sum(d for d in divisors(n) if d%2)
    print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 24 2017
    
  • Python
    from math import prod
    from sympy import factorint
    def A004011(n): return 24*prod((p**(e+1)-1)//(p-1) for p, e in factorint(n).items() if p > 2) if n else 1 # Chai Wah Wu, Nov 13 2022
  • Sage
    ModularForms( Gamma0(2), 2, prec=54).0; # Michael Somos, Jun 04 2013
    

Formula

a(0) = 1; if n>0 then a(n) = 24 (Sum_{d|n, d odd, d>0} d) = 24 * A000593(n).
G.f.: 1 + 24 Sum_{n>0} n x^n /(1 + x^n). a(n) = A000118(2*n) = A096727(2*n).
G.f.: (1/2) * (theta_3(z)^4 + theta_4(z)^4) = theta_3(2z)^4 + theta_2(2z)^4 = Sum_{k>=0} a(k) * x^(2*k).
G.f.: Sum_{a, b, c, d in Z} x^(a^2 + b^2 + c^2 + d^2 + a*d + b*d + c*d). - Michael Somos, Jan 11 2011
Expansion of (1 + k^2) * K(k^2)^2 / (Pi/2)^2 in powers of nome q. - Michael Somos, Jun 10 2006
Expansion of (1 - k^2/2) * K(k^2)^2 / (Pi/2)^2 in powers of nome q^2. - Michael Somos, Mar 14 2012
Expansion of b(x) * b(x^2) + 3 * c(x) * c(x^2) in powers of x where b(), c() are cubic AGM theta functions. - Michael Somos, Jan 11 2011
Expansion of b(x) * b(x^2) + c(x) * c(x^2) / 3 in powers of x^3 where b(), c() are cubic AGM theta functions. - Michael Somos, Mar 14 2012
G.f. is a period 1 Fourier series which satisfies f(-1 / (2 t)) = 2 (t/i)^2 f(t) where q = exp(2 Pi i t). - Michael Somos, Sep 11 2007
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = u^2 - 2*u*v - 7*v^2 - 8*v*w + 16*w^2. - Michael Somos, May 29 2005
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u1^2 + 4*u2^2 + 9*u3^2 + 36*u6^2 - 2*u1*u2 - 10*u1*u3 + 10*u1*u6 + 10*u2*u3 - 40*u2*u6 - 18*u3*u6. - Michael Somos, Sep 11 2007
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2 = 9.869604... (A002388). - Amiram Eldar, Dec 29 2023

Extensions

Additional comments from Barry Brent (barryb(AT)primenet.com)

A008408 Theta series of Leech lattice.

Original entry on oeis.org

1, 0, 196560, 16773120, 398034000, 4629381120, 34417656000, 187489935360, 814879774800, 2975551488000, 9486551299680, 27052945920000, 70486236999360, 169931095326720, 384163586352000, 820166620815360, 1668890090322000
Offset: 0

Views

Author

Keywords

Examples

			G.f. = 1 + 196560*q^2 + 16773120*q^3 + 398034000*q^4 + 4629381120*q^5 + ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Third Edition, Springer-Verlag,1993, pp. 51, 134-135.
  • W. Ebeling, Lattices and Codes, Vieweg; 2nd ed., 2002, see p. 113.
  • N. J. A. Sloane, Seven Staggering Sequences, in Homage to a Pied Puzzler, E. Pegg Jr., A. H. Schoen and T. Rodgers (editors), A. K. Peters, Wellesley, MA, 2009, pp. 93-110.

Crossrefs

Programs

  • Magma
    // Theta series of the Leech lattice, from John Cannon, Dec 29 2006
    A008408Q := function(prec) M12 := ModularForms(Gamma0(1), 12); t1 := Basis(M12)[1]; T := PowerSeries(t1, prec); return Coefficients(T); end function; Q := A008408Q(1000); Q[678];
    
  • Magma
    Basis( ModularForms( Gamma0(1), 12), 30) [1] ; /* Michael Somos, Jun 09 2014 */
    
  • Maple
    with(numtheory); f := 1+240*add(sigma[ 3 ](m)*q^(2*m),m=1..50); t := q^2*mul((1-q^(2*m))^24,m=1..50); series(f^3-720*t,q,51);
  • Mathematica
    max = 17; f = 1 + 240*Sum[ DivisorSigma[3, m]*q^(2m), {m, 1, max}]; t = q^2*Product[(1 - q^(2m))^24, {m, 1, max}]; Partition[ CoefficientList[ Series[f^3 - 720t, {q, 0, 2 max}], q], 2][[All, 1]] (* Jean-François Alcover , Oct 14 2011, after Maple *)
    (* From version 6 on *) f[q_] = LatticeData["Leech", "ThetaSeriesFunction"][x] /. x -> -I*Log[q]/Pi; Series[f[q], {q, 0, 32}] // CoefficientList[#, q^2]& (* Jean-François Alcover, May 15 2013 *)
    a[ n_] := If[ n < 1, Boole[n == 0], SeriesCoefficient[(1 + 240 Sum[ q^k DivisorSigma[ 3, k], {k, n}])^3 - 720 q QPochhammer[ q]^24, {q, 0, n}]]; (* Michael Somos, Jun 09 2014 *)
  • PARI
    {a(n) = if( n<1, n==0, polcoeff( 1 + (sum(k=1, n, sigma(k,11)*x^k) - x*eta(x + O(x^n))^24) * 65520/691, n))}; /* Michael Somos, Oct 19 2006 */
    
  • PARI
    {a(n) = if( n<1, n==0, polcoeff( sum(k=1, n, 240*sigma(k,3)*x^k, 1 + x*O(x^n))^3 - 720*x*eta(x + O(x^n))^24, n))}; /* Michael Somos, Oct 19 2006 */
    
  • Python
    from sympy import divisor_sigma
    def A008408(n): return 65520*(divisor_sigma(n,11)-(n**4*divisor_sigma(n)-24*((m:=n+1>>1)**2*(0 if n&1 else (m*(35*m - 52*n) + 18*n**2)*divisor_sigma(m)**2)+sum((i*(i*(i*(70*i - 140*n) + 90*n**2) - 20*n**3) + n**4)*divisor_sigma(i)*divisor_sigma(n-i) for i in range(1,m)))))//691 if n else 1 # Chai Wah Wu, Nov 17 2022
  • Sage
    A = ModularForms( Gamma0(1), 12, prec=30) . basis() ; A[1] - 65520/691*A[0] # Michael Somos, Jun 09 2014
    

Formula

The simplest way to obtain this is to take the cube of the theta series for E_8 (A004009) and subtract 720 times the g.f. for the Ramanujan numbers (A000594).
This theta series is thus also the q-expansion of (7/12) E_4(z)^3 + (5/12) E_6(z)^2. Cf. A013973. - Daniel D. Briggs, Nov 25 2011
a(n) = 65520*(A013959(n) - A000594(n))/691, n >= 1. a(0) = 1. Expansion of the Theta series of the Leech lattice in powers of q^2. See the Conway and Sloane reference. - Wolfdieter Lang, Jan 16 2017
Previous Showing 61-70 of 196 results. Next