cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 250 results. Next

A077065 Semiprimes of form prime - 1.

Original entry on oeis.org

4, 6, 10, 22, 46, 58, 82, 106, 166, 178, 226, 262, 346, 358, 382, 466, 478, 502, 562, 586, 718, 838, 862, 886, 982, 1018, 1186, 1282, 1306, 1318, 1366, 1438, 1486, 1522, 1618, 1822, 1906, 2026, 2038, 2062, 2098, 2206, 2446, 2458, 2578, 2818, 2878, 2902
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 23 2002

Keywords

Comments

There are 670 semiprimes of form prime-1 below 10^5.

Examples

			A001358(16) = 46 = 2*23 is a term as 46 = A000040(15) - 1 = 47 - 1.
		

Crossrefs

Intersection of A006093 and A001358.
Intersection of A006093 and A100484.

Programs

  • Haskell
    a077065 n = a077065_list !! (n-1)
    a077065_list = filter ((== 1) . a010051' . (`div` 2)) a006093_list
    -- Reinhard Zumkeller, Nov 22 2013, Oct 27 2012
    
  • Magma
    IsSemiprime:=func; [s: n in [2..500] | IsSemiprime(s) where s is NthPrime(n)-1]; // Vincenzo Librandi, Oct 17 2012
    
  • Maple
    q:= n-> (n::even) and andmap(isprime, [n+1, n/2]):
    select(q, [$1..5000])[];  # Alois P. Heinz, Jul 19 2023
  • Mathematica
    Select[Range[6000],Plus@@Last/@FactorInteger[#]==2&&PrimeQ[#+1]&] (* Vladimir Joseph Stephan Orlovsky, May 08 2011 *)
    Select[Range[3000],PrimeOmega[#]==2&&PrimeQ[#+1]&] (* Harvey P. Dale, Oct 16 2012 *)
    Select[ Prime@ Range@ 430 - 1, PrimeOmega@# == 2 &] (* Robert G. Wilson v, Feb 18 2014 *)
  • PARI
    [x-1|x<-primes(10^4),bigomega(x-1)==2] \\ Charles R Greathouse IV, Nov 22 2013

Formula

a(n) = A005385(n) - 1 = 2*A005384(n).
A010051(A006093(a(n))/2) = A064911(A006093(a(n))) = 1. - Reinhard Zumkeller, Nov 22 2013
a(n) = A077068(n) - A232342(n). - Reinhard Zumkeller, Dec 16 2013
a(n) = A000010(A194593(n+1)). - Torlach Rush, Aug 23 2018
A000010((a(n)*2)+2) = A023900((a(n)*2)+2). - Torlach Rush, Aug 23 2018

A336467 Fully multiplicative with a(2) = 1 and a(p) = A000265(p+1) for odd primes p, with A000265(k) giving the odd part of k.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 3, 1, 7, 1, 3, 1, 9, 1, 5, 3, 1, 3, 3, 1, 9, 7, 1, 1, 15, 3, 1, 1, 3, 9, 3, 1, 19, 5, 7, 3, 21, 1, 11, 3, 3, 3, 3, 1, 1, 9, 9, 7, 27, 1, 9, 1, 5, 15, 15, 3, 31, 1, 1, 1, 21, 3, 17, 9, 3, 3, 9, 1, 37, 19, 9, 5, 3, 7, 5, 3, 1, 21, 21, 1, 27, 11, 15, 3, 45, 3, 7, 3, 1, 3, 15, 1, 49, 1, 3, 9, 51, 9, 13, 7, 3
Offset: 1

Views

Author

Antti Karttunen, Jul 22 2020

Keywords

Comments

For the comment here, we extend the definition of the first kind of Cunningham chain (see Wikipedia-article) so that also isolated primes for which neither (p-1)/2 nor 2p+1 is a prime are considered to be in singular chains, that is, in chains of the length one. If we replace one or more instances of any particular odd prime factor p in n with any odd prime q of the same Cunningham chain, so that m = (q^k)*n / p^(e-k), where e is the exponent of p of n, and k <= e is the number of instances of p replaced with q, then it holds that a(m) = a(n), and by induction, the value stays invariant for any number of such replacements. Note also that A001222, but not necessarily A001221 will stay invariant in such changes.
For example, if some of the odd prime divisors p of n are Sophie Germain primes (in A005384), then replacing any of them with 2p+1 ("safe primes", i.e., the corresponding terms of A005385), gives a new number m, for which a(m) = a(n). And vice versa, the same is true for any safe prime factors > 5 of n (that are in A005385), then replacing any one of them with (p-1)/2 will not affect the result. For example, a(5*11*23*47) = a(11*11*23*23) = a(5^4) = a(11^4) = a(23^4) = 81, as 5, 11, 23 and 47 are in the same Cunningham chain of the first kind.

Crossrefs

Cf. also A335915, A336466 (similar sequences).

Programs

  • PARI
    A000265(n) = (n>>valuation(n,2));
    A336467(n) = { my(f=factor(n)); prod(k=1,#f~,if(2==f[k,1],1,(A000265(f[k,1]+1))^f[k,2])); };

Formula

For all n >= 1, A331410(a(n)) = A336921(n).
From Antti Karttunen, Nov 21 2023: (Start)
a(n) = A335915(n) / A336466(n).
a(1) = 1, and for n > 1, a(n) = A000265(A206787(n)) * a(A336651(n)).
(End)

A063638 Primes p such that p-2 is a semiprime.

Original entry on oeis.org

11, 17, 23, 37, 41, 53, 59, 67, 71, 79, 89, 97, 113, 131, 157, 163, 179, 211, 223, 239, 251, 269, 293, 307, 311, 331, 337, 367, 373, 379, 383, 397, 409, 419, 439, 449, 487, 491, 499, 503, 521, 547, 593, 599, 613, 631, 673, 683, 691, 701, 709, 719, 733, 739
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 21 2001

Keywords

Comments

Primes of form p*q + 2, where p and q are primes.
11 is the only prime of this form where p=q. For prime p>3, 3 divides p^2+2. - T. D. Noe, Mar 01 2006
The asymptotic growth of this sequence is relevant for A204142. We have a(10^k) = (11, 79, 1571, 27961, 407741, 5647823, ...). - M. F. Hasler, Feb 13 2012

Crossrefs

Programs

  • Haskell
    a063638 n = a063638_list !! (n-1)
    a063638_list = map (+ 2) $ filter ((== 1) . a064911) a040976_list
    -- Reinhard Zumkeller, Feb 22 2012
  • Mathematica
    Take[Select[ # + 2 & /@ Union[Flatten[Outer[Times, Prime[Range[100]], Prime[Range[100]]]]], PrimeQ], 60]
    Select[Prime[Range[200]],PrimeOmega[#-2]==2&] (* Paolo Xausa, Oct 30 2023 *)
  • PARI
    n=0; for (m=2, 10^9, p=prime(m); if (bigomega(p - 2) == 2, write("b063638.txt", n++, " ", p); if (n==1000, break))) \\ Harry J. Smith, Aug 26 2009
    
  • PARI
    forprime(p=3,9999, bigomega(p-2)==2 & print1(p","))
    
  • PARI
    p=2; for(n=1,1e4, until(bigomega(-2+p=nextprime(p+1))==2,); write("b063638.txt", n" "p)) \\ M. F. Hasler, Feb 13 2012
    
  • PARI
    list(lim)=my(v=List(), t); forprime(p=3, (lim-2)\3, forprime(q=3, min((lim-2)\p, p), t=p*q+2; if(isprime(t), listput(v, t)))); Set(v) \\ Charles R Greathouse IV, Aug 05 2016
    

Formula

a(n) = A241809(n) + 2. - Hugo Pfoertner, Oct 30 2023

A059762 Initial primes of Cunningham chains of first type with length exactly 3. Primes in A059453 that survive as primes just two "2p+1 iterations", forming chains of exactly 3 terms.

Original entry on oeis.org

41, 1031, 1451, 1481, 1511, 1811, 1889, 1901, 1931, 3449, 3491, 3821, 3911, 5081, 5441, 5849, 6101, 6131, 7151, 7349, 7901, 8969, 9221, 10691, 10709, 11171, 11471, 11801, 12101, 12821, 12959, 13229, 14009, 14249, 14321, 14669, 14741, 15161
Offset: 1

Views

Author

Labos Elemer, Feb 20 2001

Keywords

Comments

Primes p such that {(p-1)/2, p, 2p+1, 4p+3, 8p+7} = {composite, prime, prime, prime, composite}.

Examples

			41 is a term because 20 and 325 are composites, and 41, 83, and 167 are primes.
		

Crossrefs

Programs

  • Mathematica
    ipccQ[n_]:=Module[{c=(n-1)/2},PrimeQ[NestList[2#+1&,c,4]]=={False, True, True, True, False}]; Select[Prime[Range[2000]],ipccQ] (* Harvey P. Dale, Nov 10 2014 *)

Extensions

Definition corrected by Alexandre Wajnberg, Aug 31 2005
Offset corrected by Amiram Eldar, Jul 15 2024

A051254 Mills primes.

Original entry on oeis.org

2, 11, 1361, 2521008887, 16022236204009818131831320183, 4113101149215104800030529537915953170486139623539759933135949994882770404074832568499
Offset: 1

Views

Author

Keywords

Comments

Mills showed that there is a number A > 1 but not an integer, such that floor( A^(3^n) ) is a prime for all n = 1, 2, 3, ... A is approximately 1.306377883863... (see A051021).
a(1) = 2 and (for n > 1) a(n) is least prime > a(n-1)^3. - Jonathan Vos Post, May 05 2006, corrected by M. F. Hasler, Sep 11 2024
The name refers to the American mathematician William Harold Mills (1921-2007). - Amiram Eldar, Jun 23 2021

Examples

			a(3) = 1361 = 11^3 + 30 = a(2)^3 + 30 and there is no smaller k such that a(2)^3 + k is prime. - _Jonathan Vos Post_, May 05 2006
		

References

  • Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 8.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.13, p. 130.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 137.

Crossrefs

Cf. A224845 (integer lengths of Mills primes).
Cf. A108739 (sequence of offsets b_n associated with Mills primes).
Cf. A051021 (decimal expansion of Mills constant).

Programs

  • Maple
    floor(A^(3^n), n=1..10); # A is Mills's constant: 1.306377883863080690468614492602605712916784585156713644368053759966434.. (A051021).
  • Mathematica
    p = 1; Table[p = NextPrime[p^3], {6}] (* T. D. Noe, Sep 24 2008 *)
    NestList[NextPrime[#^3] &, 2, 5] (* Harvey P. Dale, Feb 28 2012 *)
  • PARI
    a(n)=if(n==1, 2, nextprime(a(n-1)^3)) \\ Charles R Greathouse IV, Jun 23 2017
    
  • PARI
    apply( {A051254(n, p=2)=while(n--, p=nextprime(p^3));p}, [1..6]) \\ M. F. Hasler, Sep 11 2024

Formula

a(1) = 2; a(n) is least prime > a(n-1)^3. - Jonathan Vos Post, May 05 2006

Extensions

Edited by N. J. A. Sloane, May 05 2007

A058340 Primes p such that phi(x) = p-1 has only 2 solutions, namely x = p and x = 2p.

Original entry on oeis.org

11, 23, 29, 31, 47, 53, 59, 67, 71, 79, 83, 103, 107, 127, 131, 137, 139, 149, 151, 167, 173, 179, 191, 197, 199, 211, 223, 227, 229, 239, 251, 263, 269, 271, 283, 293, 307, 311, 317, 331, 347, 359, 367, 373, 379, 383, 389, 419, 431, 439, 443, 463, 467, 479
Offset: 1

Views

Author

Labos Elemer, Dec 14 2000

Keywords

Comments

Two solutions, p and 2p, exist for all odd primes p; primes in sequence have no other solutions.
Conjecture: if q > 7 is in A005385, then q is in the sequence. - Thomas Ordowski, Jan 04 2017
Proof of conjecture: q'=(q-1)/2 is an odd prime > 3. If phi(x)=2q', which has 2-adic order 1 but is not a power of 2, there must be exactly one odd prime r dividing x. We could also have a factor of 2 (but no higher power, which would contribute more 2's to phi(x)). If x = r^e or 2r^e, then phi(x) = (r-1) r^(e-1). For this to be 2q' one possibility is r-1 = 2 and r^(e-1)=q', but then q'=r=3, ruled out by q > 7. The only other possibility is r-1=2q' and e=1, which makes r=q and x=q or 2q. - Robert Israel, Jan 04 2017
Information from Carl Pomerance: It is known that almost all primes (in the sense of relative asymptotic density) are in the sequence. - Thomas Ordowski, Jan 08 2017

Examples

			For p=2, phi(x)=1 has only two solutions, but they are 1 and 2, not 2 and 4, so 2 is not in the sequence.
		

Crossrefs

Programs

  • Maple
    filter:= n -> isprime(n) and nops(numtheory:-invphi(n-1))=2:
    select(filter, [seq(i,i=3..10000,2)]); # Robert Israel, Aug 12 2016
  • Mathematica
    Take[Rest@ Keys@ Select[KeySelect[KeyMap[# + 1 &, PositionIndex@ Array[EulerPhi, 10^4]], PrimeQ], Length@ # == 2 &], 54] (* Michael De Vlieger, Dec 29 2017 *)

Formula

a(n) ~ n log . - Charles R Greathouse IV, Nov 18 2022

Extensions

Edited by Ray Chandler, Jun 06 2008

A090866 Primes p == 1 (mod 4) such that (p-1)/4 is prime.

Original entry on oeis.org

13, 29, 53, 149, 173, 269, 293, 317, 389, 509, 557, 653, 773, 797, 1109, 1229, 1493, 1637, 1733, 1949, 1997, 2309, 2477, 2693, 2837, 2909, 2957, 3413, 3533, 3677, 3989, 4133, 4157, 4253, 4349, 4373, 4493, 4517, 5189, 5309, 5693, 5717, 5813, 6173, 6197
Offset: 1

Views

Author

Benoit Cloitre, Feb 12 2004

Keywords

Comments

Same as Chebyshev's subsequence of the primes with primitive root 2, because Chebyshev showed that 2 is a primitive root of all primes p = 4*q+1 with q prime. If the sequence is infinite, then Artin's conjecture ("every nonsquare positive integer n is a primitive root of infinitely many primes q") is true for n = 2. - Jonathan Sondow, Feb 04 2013

References

  • Albert H. Beiler: Recreations in the theory of numbers. New York: Dover, (2nd ed.) 1966, p. 102, nr. 5.
  • P. L. Chebyshev, Theory of congruences. Elements of number theory, Chelsea, 1972, p. 306.

Crossrefs

Programs

  • Magma
    f:=[n: n in [1..2000] | IsPrime(n) and IsPrime(4*n+1)]; [4*f[n] + 1: n in [1..50]]; // G. C. Greubel, Feb 08 2019
    
  • Mathematica
    Select[Prime[Range[1000]], Mod[#, 4]==1 && PrimeQ[(#-1)/4] &] (* G. C. Greubel, Feb 08 2019 *)
  • PARI
    isok(p) = isprime(p) && !frac(q=(p-1)/4) && isprime(q); \\ Michel Marcus, Feb 09 2019

Formula

a(n) = 4*A023212(n) + 1.

A152913 Primes of the form n^4 + (n+1)^4.

Original entry on oeis.org

17, 97, 337, 881, 3697, 10657, 16561, 49297, 66977, 89041, 149057, 847601, 988417, 1146097, 1972097, 2522257, 2836961, 3553777, 3959297, 4398577, 5385761, 7166897, 11073217, 17653681, 32530177, 41532497, 44048497, 55272097, 61627201
Offset: 1

Views

Author

Vincenzo Librandi, Dec 15 2008

Keywords

Comments

Also primes in A008514.
Sequence is disjoint to A005385: If n^4 + (n+1)^4 is a prime p, then (p-1)/2 = n^4 + 2*n^3 + 3*n^2 + 2*n. (p-1)/2 = 8 for n = 1 and (p-1)/2 is divisible by n for n > 1. In each case, (p-1)/2 is not prime.

Examples

			For n=3, n^4 + (n+1)^4 = 337 is prime and (337-1)/2 = 168 = 3*56 is not prime.
		

Crossrefs

Programs

  • Magma
    [ a: n in [1..80] | IsPrime(a) where a is n^4+(n+1)^4 ];
  • Mathematica
    f[n_]:=n^4+(n+1)^4;lst={};Do[a=f[n];If[PrimeQ[a],AppendTo[lst,a]],{n,0,6!}];lst (* Vladimir Joseph Stephan Orlovsky, May 30 2009 *)
    Select[Table[n^4+(n+1)^4,{n,0,700}],PrimeQ]
    Select[Total/@Partition[Range[100]^4,2,1],PrimeQ] (* Harvey P. Dale, Sep 29 2023 *)

Extensions

Edited and extended by Klaus Brockhaus, Dec 21 2008

A059761 Initial primes of Cunningham chains of first type with length exactly 2. Primes in A059453 that survive as primes only one "2p-1 iteration", forming chains of exactly 2 terms.

Original entry on oeis.org

3, 29, 53, 113, 131, 173, 191, 233, 239, 251, 281, 293, 419, 431, 443, 491, 593, 641, 653, 659, 683, 743, 761, 809, 911, 953, 1013, 1049, 1103, 1223, 1289, 1499, 1559, 1583, 1601, 1733, 1973, 2003, 2069, 2129, 2141, 2273, 2339, 2351, 2393, 2399, 2543
Offset: 1

Views

Author

Labos Elemer, Feb 20 2001

Keywords

Comments

Primes p such that {(p-1)/2, p, 2p+1, 4p+3} = {composite, prime, prime, composite}.

Examples

			53 is a term because 26 and 215 are composites, and 53 and 107 are primes.
		

Crossrefs

Programs

  • Mathematica
    ccftQ[p_]:=Boole[PrimeQ[{(p-1)/2,p,2 p+1,4 p+3}]]=={0,1,1,0}; Select[ Prime[ Range[400]],ccftQ] (* Harvey P. Dale, Jun 19 2021 *)

A033631 Numbers k such that sigma(phi(k)) = sigma(k) where sigma is the sum of divisors function A000203 and phi is the Euler totient function A000010.

Original entry on oeis.org

1, 87, 362, 1257, 1798, 5002, 9374, 21982, 22436, 25978, 35306, 38372, 41559, 50398, 51706, 53098, 53314, 56679, 65307, 68037, 89067, 108946, 116619, 124677, 131882, 136551, 136762, 138975, 144014, 160629, 165554, 170037, 186231, 192394, 197806
Offset: 1

Views

Author

Keywords

Comments

For corresponding values of phi(k) and sigma(k), see A115619 and A115620.
This sequence is infinite because for each positive integer k, 3^k*7*1979 and 3^k*7*2699 are in the sequence (the proof is easy). A108510 gives primes p like 1979 and 2699 such that for each positive integer k, 3^k*7*p is in this sequence. - Farideh Firoozbakht, Jun 07 2005
There is another class of [conjecturally] infinite subsets connected to A005385 (safe primes). Examples: Let s,t be safe primes, s<>t, then 3^2*5*251*s, 2^2*61*71*s, 2*61*s*t and 2*19*311*s are in this sequence. So is 3*s*A108510(m). (There are some obvious exceptions for small s, t.) - Vim Wenders, Dec 27 2006

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 87, p. 29, Ellipses, Paris 2008.
  • R. K. Guy, Unsolved Problems in Number Theory, B42.
  • D. Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books 1997.
  • David Wells, Curious and Interesting Numbers (Revised), Penguin Books, page 114.

Crossrefs

Programs

  • Magma
    [k:k in [1..200000]| DivisorSigma(1,EulerPhi(k)) eq DivisorSigma(1,k)]; // Marius A. Burtea, Feb 09 2020
  • Mathematica
    Do[If[DivisorSigma[1, EulerPhi[n]]==DivisorSigma[1, n], Print[n]], {n, 1, 10^5}]
  • PARI
    is(n)=sigma(eulerphi(n))==sigma(n) \\ Charles R Greathouse IV, Feb 13 2013
    

Extensions

Entry revised by N. J. A. Sloane, Apr 10 2006
Previous Showing 31-40 of 250 results. Next