cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 79 results. Next

A079309 a(n) = C(1,1) + C(3,2) + C(5,3) + ... + C(2*n-1,n).

Original entry on oeis.org

1, 4, 14, 49, 175, 637, 2353, 8788, 33098, 125476, 478192, 1830270, 7030570, 27088870, 104647630, 405187825, 1571990935, 6109558585, 23782190485, 92705454895, 361834392115, 1413883873975, 5530599237775, 21654401079325, 84859704298201, 332818970772253
Offset: 1

Views

Author

Miklos Kristof, Feb 10 2003

Keywords

Comments

a(n) is the sum of pyramid weights of all Dyck paths of length 2n (for pyramid weight see Denise and Simion). Equivalently, a(n) is the sum of the total lengths of end branches of an ordered tree, summation being over all ordered trees with n edges. For example, the five ordered trees with 3 edges have total lengths of endbranches 3,2,3,3 and 3. - Emeric Deutsch, May 30 2003
a(n) is the number of Motzkin paths of length 2n with exactly one level segment. (A level segment is a maximal sequence of contiguous flatsteps.) Example: for n=2, the paths counted are FFFF, FFUD, UDFF, UFFD. The formula for a(n) below counts these paths by length of the level segment. - David Callan, Jul 15 2004
The inverse Catalan transform yields A024495, shifted once left. - R. J. Mathar, Jul 07 2009
From Paul Barry, Mar 29 2010: (Start)
Hankel transform is A138341.
The aerated sequence 0, 0, 1, 0, 4, 0, 14, 0, 49, ... has e.g.f. int(cosh(x-t)*Bessel_I(1,2t), t = 0..x). (End)
a(n) is the number of terms of A031443 not exceeding 4^n. - Vladimir Shevelev, Oct 01 2010
Also the number of nonempty subsets of {1..2n} with median n, bisection of A361801. The version containing n is A001700 (bisected). Replacing 2n with 2n+1 and n with n+1 gives A006134. For mean instead of median we have A212352. - Gus Wiseman, Apr 16 2023

Examples

			a(4) = C(1,1) + C(3,2) + C(5,3) + C(7,4) = 1 + 3 + 10 + 35 = 49.
G.f. = x + 4*x^2 + 14*x^3 + 49*x^4 + 175*x^5 + 637*x^6 + 2353*x^7 + ...
From _Gus Wiseman_, Apr 16 2023: (Start)
The a(1) = 1 through a(3) = 14 subsets of {1..2n} with median n:
  {1}  {2}      {3}
       {1,3}    {1,5}
       {1,2,3}  {2,4}
       {1,2,4}  {1,3,4}
                {1,3,5}
                {1,3,6}
                {2,3,4}
                {2,3,5}
                {2,3,6}
                {1,2,4,5}
                {1,2,4,6}
                {1,2,3,4,5}
                {1,2,3,4,6}
                {1,2,3,5,6}
(End)
		

Crossrefs

Equals A024718(n) - 1.
This is the even (or odd) bisection of A361801.
A007318 counts subsets by length, A327481 by mean, A013580 by median.
A359893 and A359901 count partitions by median.

Programs

  • Maple
    a := n -> add(binomial(2*j, j)/2, j=1..n): seq(a(n), n=1..24); # Zerinvary Lajos, Oct 25 2006
    a := n -> add(abs(binomial(-j, -2*j)), j=1..n): seq(a(n), n=1..24); # Zerinvary Lajos, Oct 03 2007
    f:= gfun:-rectoproc({n*a(n) +(-5*n+2)*a(n-1) +2*(2*n-1)*a(n-2)=0,a(1)=1,a(2)=4},a(n),remember):
    map(f, [$1..100]); # Robert Israel, Jun 24 2015
  • Mathematica
    Rest[CoefficientList[Series[(1/Sqrt[1-4*x]-1)/(1-x)/2, {x, 0, 20}], x]] (* Vaclav Kotesovec, Feb 13 2014 *)
    Accumulate[Table[Binomial[2n-1,n],{n,30}]] (* Harvey P. Dale, Jan 06 2021 *)
  • PARI
    {a(n) = sum(k=1, n, binomial(2*k - 1, k))}; /* Michael Somos, Feb 14 2006 */
    
  • PARI
    my(x='x+O('x^40)); Vec((1/sqrt(1-4*x)-1)/(1-x)/2) \\ Altug Alkan, Dec 24 2015

Formula

a(n) = (1/2)*(C(2, 1) + C(4, 2) + C(6, 3) + ... + C(2*n, n)) = A066796(n)/2. - Vladeta Jovovic, Feb 12 2003
G.f.: (1/sqrt(1 - 4*x) - 1)/(1 - x)/2. - Vladeta Jovovic, Feb 12 2003
Given g.f. A(x), then x * A(x - x^2) is g.f. of A024495. - Michael Somos, Feb 14 2006
a(n) = A066796(n)/2. - Zerinvary Lajos, Oct 25 2006
a(n) = Sum_{0 <= i <= j <= n} binomial(i+j, i). - Benoit Cloitre, Nov 25 2006
D-finite with recurrence n*a(n) + (-5*n+2)*a(n-1) + 2*(2*n-1)*a(n-2) = 0. - R. J. Mathar, Nov 30 2012
a(n) ~ 2^(2*n+1) / (3*sqrt(Pi*n)). - Vaclav Kotesovec, Feb 13 2014
a(n) = Sum_{k=0..n-1} A001700(k). - Doug Bell, Jun 23 2015
a(n) = -binomial(2*n+1, n)*hypergeom([1, n+3/2], [n+2], 4) - (i/sqrt(3) + 1)/2. - Peter Luschny, May 18 2018
From Gus Wiseman, Apr 18 2023: (Start)
a(n) = A024718(n) - 1.
a(n) = A231147(2n+1,n).
a(n) = A361801(2n) = A361801(2n+1). (End)
a(n) = Sum_{k=0..floor(n/2)} (-1)^k*binomial(2*n+2-k, n-2*k). - Michael Weselcouch, Jun 17 2025
a(n) = binomial(2*(1+n), n)*hypergeom([1, (1-n)/2, -n/2], [-2*(1+n), 3+n], 4). - Stefano Spezia, Jun 18 2025

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Feb 11 2003

A024718 a(n) = (1/2)*(1 + Sum_{k=0..n} binomial(2*k, k)).

Original entry on oeis.org

1, 2, 5, 15, 50, 176, 638, 2354, 8789, 33099, 125477, 478193, 1830271, 7030571, 27088871, 104647631, 405187826, 1571990936, 6109558586, 23782190486, 92705454896, 361834392116, 1413883873976, 5530599237776, 21654401079326, 84859704298202, 332818970772254
Offset: 0

Views

Author

Keywords

Comments

Total number of leaves in all rooted ordered trees with at most n edges. - Michael Somos, Feb 14 2006
Also: Number of UH-free Schroeder paths of semilength n with horizontal steps only at level less than two [see Yan]. - R. J. Mathar, May 24 2008
Hankel transform is A010892. - Paul Barry, Apr 28 2009
Binomial transform of A005773. - Philippe Deléham, Dec 13 2009
Number of vertices all of whose children are leaves in all ordered trees with n+1 edges. Example: a(3) = 15; for an explanation see David Callan's comment in A001519. - Emeric Deutsch, Feb 12 2015

Examples

			G.f. = 1 + 2*x + 5*x^2 + 15*x^3 + 50*x^4 + 176*x^5 + 638*x^6 + ...
		

Crossrefs

Partial sums of A088218.
Bisection of A086905.
Second column of triangle A102541.

Programs

  • Maple
    A024718 := n -> (binomial(2*n, n)*hypergeom([1, -n], [1/2 - n], 1/4) + 1)/2:
    seq(simplify(A024718(n)), n = 0..26); # Peter Luschny, Dec 15 2024
  • Mathematica
    Table[Sum[Binomial[2k-1,k-1],{k,0,n}],{n,0,100}] (* Emanuele Munarini, May 18 2018 *)
  • PARI
    a(n) = (1 + sum(k=0, n, binomial(2*k, k)))/2; \\ Michel Marcus, May 18 2018

Formula

a(n) = A079309(n) + 1.
G.f.: 1/((1 - x)*(2 - C)), where C = g.f. for the Catalan numbers A000108. - N. J. A. Sloane, Aug 30 2002
Given g.f. A(x), then x * A(x - x^2) is the g.f. of A024494. - Michael Somos, Feb 14 2006
G.f.: (1 + 1 / sqrt(1 - 4*x)) / (2 - 2*x). - Michael Somos, Feb 14 2006
D-finite with recurrence: n*a(n) - (5*n-2)*a(n-1) + 2*(2*n-1)*a(n-2) = 0. - R. J. Mathar, Dec 02 2012
Remark: The above recurrence is true (it can be easily proved by differentiating the generating function). Notice that it is the same recurrence satisfied by the partial sums of the central binomial coefficients (A006134). - Emanuele Munarini, May 18 2018
0 = a(n)*(16*a(n+1) - 22*a(n+2) + 6*a(n+3)) + a(n+1)*(-18*a(n+1) + 27*a(n+2) - 7*a(n+3)) + a(n+2)*(-3*a(n+2) + a(n+3)) for all n in Z if a(n) = 1/2 for n < 0. - Michael Somos, Apr 23 2014
a(n) = ((1 - I/sqrt(3))/2 - binomial(2*n+1, n)*hypergeom([n+3/2, 1], [n+2], 4)). - Peter Luschny, May 18 2018
a(n) = [x^n] 1/((1-x+x^2) * (1-x)^n). - Seiichi Manyama, Apr 06 2024

Extensions

Name edited by Petros Hadjicostas, Aug 04 2020

A059481 Triangle read by rows. T(n, k) = binomial(n+k-1, k) for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 6, 10, 1, 4, 10, 20, 35, 1, 5, 15, 35, 70, 126, 1, 6, 21, 56, 126, 252, 462, 1, 7, 28, 84, 210, 462, 924, 1716, 1, 8, 36, 120, 330, 792, 1716, 3432, 6435, 1, 9, 45, 165, 495, 1287, 3003, 6435, 12870, 24310, 1, 10, 55, 220, 715, 2002, 5005, 11440, 24310, 48620, 92378
Offset: 0

Views

Author

Fabian Rothelius, Feb 04 2001

Keywords

Comments

T(n,k) is the number of ways to distribute k identical objects in n distinct containers; containers may be left empty.
T(n,k) is the number of nondecreasing functions f from {1,...,k} to {1,...,n}. - Dennis P. Walsh, Apr 07 2011
Coefficients of Faber polynomials for function x^2/(x-1). - Michael Somos, Sep 09 2003
Consider k-fold Cartesian products CP(n,k) of the vector A(n)=[1,2,3,...,n].
An element of CP(n,k) is a n-tuple T_t of the form T_t=[i_1,i_2,i_3,...,i_k] with t=1,...,n^k.
We count members T of CP(n,k) which satisfy some condition delta(T_t), so delta(.) is an indicator function which attains values of 1 or 0 depending on whether T_t is to be counted or not; the summation sum_{CP(n,k)} delta(T_t) over all elements T_t of CP produces the count.
For the triangle here we have delta(T_t) = 0 if for any two i_j, i_(j+1) in T_t one has i_j > i_(j+1), T(n,k) = Sum_{CP(n,k)} delta(T_t) = Sum_{CP(n,k)} delta(i_j > i_(j+1)).
The indicator function which tests on i_j = i_(j+1) generates A158497, which contains further examples of this type of counting.
Triangle of the numbers of combinations of k elements with repetitions from n elements {1,2,...,n} (when every element i, i=1,...,n, appears in a k-combination either 0, or 1, or 2, ..., or k times). - Vladimir Shevelev, Jun 19 2012
G.f. for Faber polynomials is -log(-t*x-(1-sqrt(1-4*t))/2+1)=sum(n>0, T(n,k)*t^k/n). - Vladimir Kruchinin, Jul 04 2013
Values of complete homogeneous symmetric polynomials with all arguments equal to 1, or, equivalently, the number of monomials of degree k in n variables. - Tom Copeland, Apr 07 2014
Row k >= 0 of the infinite square array A[k,n] = C(n,k), n >= 0, would start with k zeros in front of the first nonzero element C(k,k) = 1; this here is the triangle obtained by taking the first k+1 nonzero terms C(k .. 2k, k) of rows k = 0, 1, 2, ... of that array. - M. F. Hasler, Mar 05 2017

Examples

			The triangle T(n,k), n >= 0, 0 <= k <= n, begins
  1      A000217
  1 1   /     A000292
  1 2  3    /    A000332
  1 3  6  10    /    A000389
  1 4 10  20  35    /     A000579
  1 5 15  35  70 126     /
  1 6 21  56 126 252  462
  1 7 28  84 210 462  924 1716
  1 8 36 120 330 792 1716 3432 6435
.
T(3,2)=6 considers the CP with the 3^2=9 elements (1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3), and does not count the 3 of them which are (2,1),(3,1) and (3,2).
T(3,3) = 10 because the ways to distribute the 3 objects into the three containers are: (3,0,0) (0,3,0) (0,0,3) (2,1,0) (1,2,0) (2,0,1) (1,0,2) (0,1,2) (0,2,1) (1,1,1), for a total of 10 possibilities.
T(3,3)=10 since (x^2/(x-1))^3 = (x+1+1/x+O(1/x^2))^3 = x^3+3x^2+6x+10+O(x).
T(4,2)=10 since there are 10 nondecreasing functions f from {1,2} to {1,2,3,4}. Using <f(1),f(2)> to denote such a function, the ten functions are <1,1>, <1,2>, <1,3>, <1,4>, <2,2>, <2,3>, <2,4>, <3,3>, <3,4>, and <4,4>. - _Dennis P. Walsh_, Apr 07 2011
T(4,0) + T(4,1) + T(4,2) + T(4,3) = 1 + 4 + 10 + 20 = 35 = T(4,4). - _Jonathan Sondow_, Jun 28 2014
From _Paul Curtz_, Jun 18 2018: (Start)
Consider the array
2,    1,    1,    1,    1,    1,     ... = A054977(n)
1,    1/2,  1/3,  1/4,  1/5,  1/6,   ... = 1/(n+1) = 1/A000027(n)
1/3,  1/6,  1/10, 1/15, 1/21, 1/28,  ... = 2/((n+2)*(n+3)) = 1/A000217(n+2)
1/10, 1/20, 1/35, 1/56, 1/84, 1/120, ... = 6/((n+3)*(n+4)*(n+5)) =1/A000292(n+2) (see the triangle T(n,k)).
Every row is an autosequence of the second kind. (See OEIS Wiki, Autosequence.)
By decreasing antidiagonals the denominator of the array is a(n).
Successive vertical denominators: A088218(n), A000984(n), A001700(n), A001791(n+1), A002054(n), A002694(n).
Successive diagonal denominators: A165817(n), A005809(n), A045721(n), A025174(n+1), A004319(n). (End)
Without the first row (2, 1, 1, 1, ... ), the array leads to A165257(n) instead of a(n). - _Paul Curtz_, Jun 19 2018
		

References

  • R. Grimaldi, Discrete and Combinatorial Mathematics, Addison-Wesley, 4th edition, chapter 1.4.

Crossrefs

Columns: T(n,1) = A000027(n), n >= 1. T(n,2) = A000217(n) = A161680(n+1), n >= 2. T(n,3) = A000292(n), n >= 3. T(n,4) = A000332(n+3), n >= 4. T(n,5) = A000389(n+4), n >= 5. T(n,6) = A000579(n+5), n >=6. T(n,k) = A001405(n+k-1) for k <= n <= k+2. [Corrected and extended by M. F. Hasler, Mar 05 2017]
Rows: T(5,k) = A000332(k+4). T(6,k) = A000389(k+5). T(7,k) = A000579(k+6).
Diagonals: T(n,n) = A001700(n-1). T(n,n-1) = A000984(n-1).
T(n,k) = A046899(n-1,k). - R. J. Mathar, Mar 26 2009
Take Pascal's triangle A007318, delete entries to the right of a vertical line just right of center, then scan the diagonals.
For a signed version of this triangle see A027555.
Row sums give A000984.
Cf. A007318, A158497, A100100 (mirrored), A009766.

Programs

  • GAP
    Flat(List([0..10], n->List([0..n], k->Binomial(n+k-1, k)))); # Stefano Spezia, Oct 30 2018
    
  • Haskell
    a059481 n k = a059481_tabl !! n !! n
    a059481_row n = a059481_tabl !! n
    a059481_tabl = map reverse a100100_tabl
    -- Reinhard Zumkeller, Jan 15 2014
    
  • Magma
    &cat [[&*[ Binomial(n+k-1,k)]: k in [0..n]]: n in [0..30] ]; // Vincenzo Librandi, Apr 08 2011
    
  • Maple
    for n from 0 to 10 do for k from 0 to n do print(binomial(n+k-1,k)) ; od: od: # R. J. Mathar, Mar 31 2009
  • Mathematica
    t[n_, k_] := Binomial[n+k-1, k]; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 09 2013 *)
    (* The combinatorial objects defined in the first comment can, for n >= 1, be generated by: *) r[n_, k_] := FrobeniusSolve[ConstantArray[1,n],k]; (* Peter Luschny, Jan 24 2019 *)
  • Maxima
    sjoin(v, j) := apply(sconcat, rest(join(makelist(j, length(v)), v)))$ display_triangle(n) := for i from 0 thru n do disp(sjoin(makelist(binomial(i+j-1, j), j, 0, i), " ")); display_triangle(10); /* triangle output */ /* Stefano Spezia, Oct 30 2018 */
    
  • PARI
    {T(n, k) = binomial( n+k-1, k)}; \\ Michael Somos, Sep 09 2003, edited by M. F. Hasler, Mar 05 2017
    
  • PARI
    {T(n, k) = if( n<0, 0, polcoeff( Pol(((1 / (x - x^2) + x * O(x^n))^n + O(x)) * x^n), k))}; /* Michael Somos, Sep 09 2003 */
    
  • Sage
    [[binomial(n+k-1,k) for k in range(n+1)] for n in range(11)] # G. C. Greubel, Nov 21 2018

Formula

T(n,0) + T(n,1) + . . . + T(n,n-1) = T(n,n). - Jonathan Sondow, Jun 28 2014
From Peter Bala, Jul 21 2015: (Start)
T(n, k) = Sum_{j = k..n} (-1)^(k+j)*binomial(2*n,n+j)*binomial(n+j-1,j)* binomial(j,k) (gives the correct value T(n,k) = 0 for k > n).
O.g.f.: 1/2*( x*(2*x - 1)/(sqrt(1 - 4*t*x)*(1 - x - t)) + (1 + 2*x)/sqrt(1 - 4*t*x) + (1 - t)/(1 - x - t) ) = 1 + (1 + t)*x + (1 + 2*t + 3*t^2)*x^2 + (1 + 3*t + 6*t^2 + 10*t^3)*x^3 + ....
n-th row polynomial R(n,t) = [x^n] ( (1 + x)^2/(1 + x(1 - t)) )^n.
exp( Sum_{n >= 1} R(n,t)*x^n/n ) = 1 + (1 + t)*x + (1 + 2*t + 2*t^2)*x^2 + (1 + 3*t + 5*t^2 + 5*t^3)*x^3 + ... is the o.g.f for A009766. (End)
a(n) = abs(A027555(n)). - M. F. Hasler, Mar 05 2017
For n >= k > 0, T(n, k) = Sum_{j=1..n} binomial(k + j - 2, k - 1) = Sum_{j=1..n} A007318(k + j - 2, k - 1). - Stefano Spezia, Oct 30 2018
T(n, k) = RisingFactorial(n, k) / k!. - Peter Luschny, Nov 24 2023

Extensions

Offset changed from 1 to 0 by R. J. Mathar, Jan 15 2013
Edited by M. F. Hasler, Mar 05 2017

A066796 a(n) = Sum_{i=1..n} binomial(2*i,i).

Original entry on oeis.org

2, 8, 28, 98, 350, 1274, 4706, 17576, 66196, 250952, 956384, 3660540, 14061140, 54177740, 209295260, 810375650, 3143981870, 12219117170, 47564380970, 185410909790, 723668784230, 2827767747950, 11061198475550, 43308802158650
Offset: 1

Views

Author

Benoit Cloitre, Jan 18 2002

Keywords

Comments

Comments from Alexander Adamchuk, Jul 02 2006: (Start)
Every a(n) is divisible by prime 2, a(n)/2 = A079309(n).
a(n) is divisible by prime 3 only for n=12,30,36,84,90,108,120,... A083096.
a(p) is divisible by p^2 for primes p=5,11,17,23,29,41,47,... Primes of form 6n-1. A007528.
a(p-1) is divisible by p^2 for primes p=7,13,19,31,37,43,... Primes of form 6n+1. A002476.
Every a(n) from a((p-1)/2) to a(p-1) is divisible by prime p for p=7,13,19,31,37,43,... Primes of form 6n+1. A002476.
Every a(n) from a((p^2-1)/2) to a(p^2-1) is divisible by prime p>3.
a(p^2-1), a(p^2-2) and a(p^2-3) are divisible by p^2 for prime p>3.
a(p^2-4) is divisible by p^2 for prime p>5.
a(p^2-5) is divisible by p^2 for prime p>7.
a(p^2-6) is divisible by p^2 for prime p>7.
a(p^2-7) is divisible by p^2 for prime p>11.
a(p^2-8) is divisible by p^2 for prime p>13.
a(p^3) is divisible by p^2 for prime 2 and prime p=5,11,... Primes of form 6n-1. A007528.
a(p^3-1) is divisible by p^2 for prime p=7,13,... Primes of form 6n+1. A002476.
a(p^4-1) is divisible by p^2 for prime p>3. (End)
Mod[ a(3^k), 9 ] = 1 for integer k>0. Smallest number k such that 2^n divides a(k) is k(n) = {1,2,2,11,11,46,46,707,707,707,...}. Smallest number k such that 3^n divides a(k) is k(n) = {12,822,2466,...}. a(2(p-1)/3) is divisible by p^2 for prime p = {7,13,19,31,37,43,61,...} = A002476 Primes of form 6n+1. Every a(n) from a(p^2-(p+1)/2) to a(p^2-1) is divisible by p^2 for prime p>3. Every a(n) from a((4p+3)(p-1)/6) to a((2p+3)(p-1)/3) is divisible by p^2 for prime p = {7,13,19,31,37,43,61,...} = A002476 Primes of form 6n+1. - Alexander Adamchuk, Jan 04 2007

Crossrefs

Essentially the same as A079309 and A054114.
Equals A006134 - 1.

Programs

  • Mathematica
    Table[Sum[(2k)!/(k!)^2,{k,1,n}],{n,1,50}] (* Alexander Adamchuk, Jul 02 2006 *)
    Table[Sum[Binomial[2k,k],{k,1,n}],{n,1,30}] (* Alexander Adamchuk, Jan 04 2007 *)
  • PARI
    { a=0; for (n=1, 200, write("b066796.txt", n, " ", a+=binomial(2*n, n)) ) } \\ Harry J. Smith, Mar 27 2010
    
  • PARI
    a(n) = sum(i=1, n, binomial(2*i,i)); \\ Michel Marcus, Jan 04 2016

Formula

a(n) = A006134(n) - 1; generating function: (sqrt(1-4*x)-1)/(sqrt(1-4*x)*(x-1)) - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Feb 11 2003, corrected by Vaclav Kotesovec, Nov 06 2012
a(n) = Sum_{k=1..n}(2k)!/(k!)^2. - Alexander Adamchuk, Jul 02 2006
a(n) = Sum_{k=1..n}binomial(2k,k). - Alexander Adamchuk, Jan 04 2007
a(n) ~ 2^(2*n+2)/(3*sqrt(Pi*n)). - Vaclav Kotesovec, Nov 06 2012

A013580 Triangle formed in same way as Pascal's triangle (A007318) except 1 is added to central element in even-numbered rows.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 4, 4, 1, 1, 5, 9, 5, 1, 1, 6, 14, 14, 6, 1, 1, 7, 20, 29, 20, 7, 1, 1, 8, 27, 49, 49, 27, 8, 1, 1, 9, 35, 76, 99, 76, 35, 9, 1, 1, 10, 44, 111, 175, 175, 111, 44, 10, 1, 1, 11, 54, 155, 286, 351, 286, 155, 54, 11, 1, 1, 12, 65, 209, 441, 637, 637, 441, 209, 65
Offset: 0

Views

Author

Martin Hecko (bigusm(AT)interramp.com)

Keywords

Comments

From Gus Wiseman, Apr 19 2023: (Start)
Appears to be the number of nonempty subsets of {1,...,n} with median k, where the median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length). For example, row n = 5 counts the following subsets:
{1} {2} {3} {4} {5}
{1,3} {1,5} {3,5}
{1,2,3} {2,4} {1,4,5}
{1,2,4} {1,3,4} {2,4,5}
{1,2,5} {1,3,5} {3,4,5}
{2,3,4}
{2,3,5}
{1,2,4,5}
{1,2,3,4,5}
Including half-steps gives A231147.
For mean instead of median we have A327481.
(End)

Examples

			Triangle begins:
   1
   1   1
   1   3   1
   1   4   4   1
   1   5   9   5   1
   1   6  14  14   6   1
   1   7  20  29  20   7   1
   1   8  27  49  49  27   8   1
   1   9  35  76  99  76  35   9   1
   1  10  44 111 175 175 111  44  10   1
   1  11  54 155 286 351 286 155  54  11   1
   1  12  65 209 441 637 637 441 209  65  12   1
		

Crossrefs

Row sums give A000975, A054106.
Central diagonal T(2n+1,n+1) appears to be A006134.
Central diagonal T(2n,n) appears to be A079309.
For partitions instead of subsets we have A359901, row sums A325347.
A000975 counts subsets with integer median.
A007318 counts subsets by length, A359893 by twice median.

Programs

  • Mathematica
    CoefficientList[CoefficientList[Series[1/(1 - (1 + y)*x)/(1 - y*x^2), {x, 0, 10}, {y, 0, 10}], x], y] // Flatten (* G. C. Greubel, Oct 10 2017 *)

Formula

G.f.: 1/(1-(1+y)*x)/(1-y*x^2). - Vladeta Jovovic, Oct 12 2003

Extensions

More terms from James Sellers

A045912 Triangle of coefficients of characteristic polynomial of negative Pascal matrix with (i,j)-th entry -C(i+j-2,i-1).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 9, 9, 1, 1, 29, 72, 29, 1, 1, 99, 626, 626, 99, 1, 1, 351, 6084, 13869, 6084, 351, 1, 1, 1275, 64974, 347020, 347020, 64974, 1275, 1, 1, 4707, 744193, 9952274, 21537270, 9952274, 744193, 4707, 1, 1, 17577, 8965323, 321541977, 1545936516, 1545936516, 321541977, 8965323, 17577, 1
Offset: 0

Views

Author

Fred Lunnon, Dec 11 1999

Keywords

Examples

			1;
1,1;
1,3,1;
1,9,9,1;
1,29,72,29,1;
...
		

Crossrefs

Sum of k-th row is A006366(n). Columns give A006134, A006135, A006136.

Programs

  • Mathematica
    P[n_] := Table[Binomial[i + j - 2, i - 1], {i, 1, n}, {j, 1, n}];
    row[0] = {1};
    row[n_] := CoefficientList[ CharacteristicPolynomial[P[n], x], x] // Abs;
    Table[row[n], {n, 0, 9}] // Flatten (* Jean-François Alcover, Aug 09 2018 *)
  • PARI
    T(n,k)=if(n<0,0,(-1)^(n+k)*polcoeff(charpoly(matrix(n,n,i,j,binomial(i+j-2,i-1))),k))
    
  • PARI
    T(n,k)=if(n<0,0,polcoeff(charpoly(-matrix(n,n,i,j,binomial(i+j-2,i-1))),k))

A231147 Array of coefficients of numerator polynomials of the rational function p(n, x + 1/x), where p(n,x) = (x^n - 1)/(x - 1).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 4, 3, 4, 1, 1, 1, 1, 5, 4, 9, 4, 5, 1, 1, 1, 1, 6, 5, 14, 9, 14, 5, 6, 1, 1, 1, 1, 7, 6, 20, 14, 29, 14, 20, 6, 7, 1, 1, 1, 1, 8, 7, 27, 20, 49, 29, 49, 20, 27, 7, 8, 1, 1, 1, 1, 9, 8, 35, 27, 76, 49, 99, 49, 76, 27, 35, 8, 9
Offset: 1

Views

Author

Clark Kimberling, Nov 05 2013

Keywords

Comments

From Gus Wiseman, Mar 19 2023: (Start)
Also appears to be the number of nonempty subsets of {1,...,n} with median k, where k ranges from 1 to n in steps of 1/2, and the median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length). For example, row n = 5 counts the following subsets:
{1} {1,2} {2} {1,4} {3} {2,5} {4} {4,5} {5}
{1,3} {2,3} {1,5} {3,4} {3,5}
{1,2,3} {1,2,3,4} {2,4} {1,3,4,5} {1,4,5}
{1,2,4} {1,2,3,5} {1,3,4} {2,3,4,5} {2,4,5}
{1,2,5} {1,3,5} {3,4,5}
{2,3,4}
{2,3,5}
{1,2,4,5}
{1,2,3,4,5}
Central diagonals T(n,(n+1)/2) appear to be A100066 (bisection A006134).
For mean instead of median we have A327481.
For partitions instead of subsets we have A359893, full steps A359901.
Central diagonals T(n,n/2) are A361801 (bisection A079309).
(End)

Examples

			Triangle begins:
  1
  1  1  1
  1  1  3  1  1
  1  1  4  3  4  1  1
  1  1  5  4  9  4  5  1  1
  1  1  6  5 14  9 14  5  6  1  1
  1  1  7  6 20 14 29 14 20  6  7  1  1
  1  1  8  7 27 20 49 29 49 20 27  7  8  1  1
  1  1  9  8 35 27 76 49 99 49 76 27 35  8  9  1  1
First 3 polynomials: 1, 1 + x + x^2, 1 + x + 3*x^2 + x^3 + x^4
		

Crossrefs

Cf. A231148.
Row sums are 2^n-1 = A000225(n).
Row lengths are 2n-1 = A005408(n-1).
Removing every other column appears to give A013580.

Programs

  • Mathematica
    z = 60; p[n_, x_] := p[x] = (x^n - 1)/(x - 1); Table[p[n, x], {n, 1, z/4}]; f1[n_, x_] := f1[n, x] = Numerator[Factor[p[n, x] /. x -> x + 1/x]]; Table[Expand[f1[n, x]], {n, 0, z/4}]
    Flatten[Table[CoefficientList[f1[n, x], x], {n, 1, z/4}]]
  • PARI
    A231147_row(n) = {Vecrev(Vec(numerator((-1+(x+(1/x))^n)/(x+(1/x)-1))))} \\ John Tyler Rascoe, Sep 10 2024

A025565 a(n) = T(n,n-1), where T is array defined in A025564.

Original entry on oeis.org

1, 2, 4, 10, 26, 70, 192, 534, 1500, 4246, 12092, 34606, 99442, 286730, 829168, 2403834, 6984234, 20331558, 59287740, 173149662, 506376222, 1482730098, 4346486256, 12754363650, 37461564504, 110125172682, 323990062452, 953883382354
Offset: 1

Views

Author

Keywords

Comments

a(n+1) is the number of UDU-free paths of n upsteps (U) and n downsteps (D), n>=0. - David Callan, Aug 19 2004
Hankel transform is A120580. - Paul Barry, Mar 26 2010
If interpreted with offset 0, the inverse binomial transform of A006134 - Gary W. Adamson, Nov 10 2007
Also the number of different integer sets { k_1, k_2, ..., k_(i+1) } with Sum_{j=1..i+1} k_j = i and k_j >= 0, see the "central binomial coefficients" (A000984), without all sets in which any two successive k_j and k_(j+1) are zero. See the partition problem eq. 3.12 on p. 19 in my dissertation below. - Eva Kalinowski, Oct 18 2012

Examples

			G.f. = x + 2*x^2 + 4*x^3 + 10*x^4 + 26*x^5 + 70*x^6 + 192*x^7 + 534*x^8 + ...
		

Crossrefs

First column of A097692.
Partial sums of A105696.

Programs

  • Haskell
    a025565 n = a025565_list !! (n-1)
    a025565_list = 1 : f a001006_list [1] where
       f (x:xs) ys = y : f xs (y : ys) where
         y = x + sum (zipWith (*) a001006_list ys)
    -- Reinhard Zumkeller, Mar 30 2012
    
  • Maple
    seq( add(binomial(i-2, k)*(binomial(i-k, k+1)), k=0..floor(i/2)), i=1..30 ); # Detlef Pauly (dettodet(AT)yahoo.de), Nov 09 2001
    # Alternatively:
    a := n -> `if`(n=1,1,2*(-1)^n*hypergeom([3/2, 2-n], [2], 4)):
    seq(simplify(a(n)),n=1..28); # Peter Luschny, Jan 30 2017
  • Mathematica
    T[, 0] = 1; T[1, 1] = 2; T[n, k_] /; 0 <= k <= 2n := T[n, k] = T[n-1, k-2] + T[n-1, k-1] + T[n-1, k]; T[, ] = 0;
    a[n_] := T[n-1, n-1];
    Array[a, 30] (* Jean-François Alcover, Jul 30 2018 *)
  • Sage
    def A():
        a, b, n  = 1, 1, 1
        yield a
        while True:
            yield a + b
            n += 1
            a, b = b, ((3*(n-1))*a+(2*n-1)*b)//n
    A025565 = A()
    print([next(A025565) for  in range(28)]) # _Peter Luschny, Jan 30 2017

Formula

G.f.: x*sqrt((1+x)/(1-3*x)).
a(n) = 2*A005773(n-1) for n > 1.
a(n) = |A085455(n-1)| = A025577(n) - A025577(n-1) = A002426(n) + A002426(n-1).
Sum_{i=0..n} Sum_{j=0..i} (-1)^(n-i)*a(j)*a(i-j) = 3^n. - Mario Catalani (mario.catalani(AT)unito.it), Jul 02 2003
a(1) = 1, a(n) = M(n-1) + Sum_{k=1..n-1} M(k-1)*a(n-k) with M=A001006, the Motzkin Numbers. - Reinhard Zumkeller, Mar 30 2012
D-finite with recurrence: (-n+1)*a(n) +2*(n-1)*a(n-1) +3*(n-3)*a(n-2)=0. - R. J. Mathar, Dec 02 2012
G.f.: G(0), where G(k) = 1 + 4*x*(4*k+1)/( (1+x)*(4*k+2) - x*(1+x)*(4*k+2)*(4*k+3)/(x*(4*k+3) + (1+x)*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 26 2013
a(n) = n*hypergeom([2-n, 1/2-n/2, 1-n/2], [2, -n], 4). - Peter Luschny, Jul 12 2016
a(n) = (-1)^n*2*hypergeom([3/2, 2-n], [2], 4) for n > 1. - Peter Luschny, Jan 30 2017

Extensions

Incorrect statement related to A000984 (see A002426) and duplicate of the g.f. removed by R. J. Mathar, Oct 16 2009
Edited by R. J. Mathar, Aug 09 2010

A120305 a(n) = Sum_{i=0..n} Sum_{j=0..n} (-1)^(i+j) * (i+j)!/(i!j!).

Original entry on oeis.org

1, 1, 3, 9, 31, 111, 407, 1513, 5679, 21471, 81643, 311895, 1196131, 4602235, 17757183, 68680169, 266200111, 1033703055, 4020716123, 15662273839, 61092127491, 238582873475, 932758045123, 3650336341239, 14298633670931
Offset: 0

Views

Author

Alexander Adamchuk, Jul 14 2006

Keywords

Comments

p divides a((p+1)/2) for prime p = 3, 11, 17, 19, 41, 43, 59, 67, 73, 83, 89, 97, 107, 113, ... (A033200: primes congruent to {1, 3} mod 8; or, odd primes of the form x^2 + 2*y^2).
p divides a((p-3)/2) for prime p = 17, 41, 73, 89, 97, 113, 137, ... (A007519: primes of the form 8n+1).
Essentially the same as partial sums of A072547. - Seiichi Manyama, Jan 30 2023

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[(-1)^(i+j)*(i+j)!/(i!j!),{i,0,n}],{j,0,n}],{n,0,50}]
  • PARI
    a(n) = sum(i=0, n, sum(j=0, n, (-1)^(i+j) * (i+j)!/(i!*j!))); \\ Michel Marcus, Apr 02 2019
    
  • PARI
    a(n) = sum(i=0, 2*n, (-1)^i*i!*polcoef(sum(j=0, n, x^j/j!)^2, i)); \\ Seiichi Manyama, May 20 2019
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec((1+sqrt(1-4*x))/(sqrt(1-4*x)*(1-x)*(3-sqrt(1-4*x)))) \\ Seiichi Manyama, Jan 30 2023

Formula

a(n) = Sum_{j=0..n} Sum_{i=0..n} (-1)^(i+j)*(i+j)!/(i!j!).
Recurrence: 2*n*(3*n-5)*a(n) = 3*(9*n^2 - 19*n + 8)*a(n-1) - 3*(n-1)*(3*n-4)*a(n-2) - 2*(2*n-3)*(3*n-2)*a(n-3). - Vaclav Kotesovec, Aug 13 2013
a(n) ~ 4^(n+1)/(9*sqrt(Pi*n)). - Vaclav Kotesovec, Aug 13 2013
G.f.: ( 1/(sqrt(1-4*x) * (1-x)) ) * ( (1 - x *c(x))/(1 + x *c(x)) ), where c(x) is the g.f. of A000108. - Seiichi Manyama, Jan 30 2023
From Seiichi Manyama, Apr 06 2024: (Start)
a(n) = Sum_{k=0..floor(n/3)} (-1)^k * binomial(2*n-3*k-1,n-3*k).
a(n) = [x^n] 1/((1+x^3) * (1-x)^n). (End)

A361801 Number of nonempty subsets of {1..n} with median n/2.

Original entry on oeis.org

0, 0, 1, 1, 4, 4, 14, 14, 49, 49, 175, 175, 637, 637, 2353, 2353, 8788, 8788, 33098, 33098, 125476, 125476, 478192, 478192, 1830270, 1830270, 7030570, 7030570, 27088870, 27088870, 104647630, 104647630, 405187825, 405187825, 1571990935, 1571990935
Offset: 0

Views

Author

Gus Wiseman, Apr 07 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The subset {1,2,3,5} of {1..5} has median 5/2, so is counted under a(5).
The subset {2,3,5} of {1..6} has median 6/2, so is counted under a(6).
The a(0) = 0 through a(7) = 14 subsets:
  .  .  {1}  {1,2}  {2}      {1,4}      {3}          {1,6}
                    {1,3}    {2,3}      {1,5}        {2,5}
                    {1,2,3}  {1,2,3,4}  {2,4}        {3,4}
                    {1,2,4}  {1,2,3,5}  {1,3,4}      {1,2,5,6}
                                        {1,3,5}      {1,2,5,7}
                                        {1,3,6}      {1,3,4,5}
                                        {2,3,4}      {1,3,4,6}
                                        {2,3,5}      {1,3,4,7}
                                        {2,3,6}      {2,3,4,5}
                                        {1,2,4,5}    {2,3,4,6}
                                        {1,2,4,6}    {2,3,4,7}
                                        {1,2,3,4,5}  {1,2,3,4,5,6}
                                        {1,2,3,4,6}  {1,2,3,4,5,7}
                                        {1,2,3,5,6}  {1,2,3,4,6,7}
		

Crossrefs

A bisection is A079309.
The case with n's has bisection A057552.
The case without n's is A100066, bisection A006134.
A central diagonal of A231147.
A version for partitions is A361849.
For mean instead of median we have A362046.
A000975 counts subsets with integer median, for mean A327475.
A007318 counts subsets by length.
A013580 appears to count subsets by median, by mean A327481.
A360005(n)/2 represents the median statistic for partitions.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],Median[#]==n/2&]],{n,0,10}]

Formula

a(n) = A079309(floor(n/2)). - Alois P. Heinz, Apr 11 2023
Previous Showing 11-20 of 79 results. Next