cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 57 results. Next

A006054 a(n) = 2*a(n-1) + a(n-2) - a(n-3), with a(0) = a(1) = 0, a(2) = 1.

Original entry on oeis.org

0, 0, 1, 2, 5, 11, 25, 56, 126, 283, 636, 1429, 3211, 7215, 16212, 36428, 81853, 183922, 413269, 928607, 2086561, 4688460, 10534874, 23671647, 53189708, 119516189, 268550439, 603427359, 1355888968, 3046654856, 6845771321, 15382308530, 34563733525
Offset: 0

Views

Author

Keywords

Comments

Let u(k), v(k), w(k) be defined by u(1)=1, v(1)=0, w(1)=0 and u(k+1)=u(k)+v(k)+w(k), v(k+1)=u(k)+v(k), w(k+1)=u(k); then {u(n)} = 1,1,3,6,14,31,... (A006356 with an extra initial 1), {v(n)} = 0,1,2,5,11,25,... (this sequence with its initial 0 deleted) and {w(n)} = {u(n)} prefixed by an extra 0 = A077998 with an extra initial 0. - Benoit Cloitre, Apr 05 2002. Also u(k)^2+v(k)^2+w(k)^2 = u(2k). - Gary W. Adamson, Dec 23 2003
Form the graph with matrix A=[1, 1, 1; 1, 0, 0; 1, 0, 1]. Then A006054 counts walks of length n between the vertex of degree 1 and the vertex of degree 3. - Paul Barry, Oct 02 2004
Form the digraph with matrix [1,1,0; 1,0,1; 1,1,1]. A006054(n) counts walks of length n between the vertices with loops. - Paul Barry, Oct 15 2004
Nonzero terms = INVERT transform of (1, 1, 2, 2, 3, 3, ...). Example: 56 = (1, 1, 2, 5, 11, 25) dot (3, 3, 2, 2, 1, 1) = (3 + 3 + 4 + 10 + 11 + 25). - Gary W. Adamson, Apr 20 2009
-a(n+1) appears in the formula for the nonpositive powers of rho:= 2*cos(Pi/7), the ratio of the smaller diagonal in the heptagon to the side length s=2*sin(Pi/7), when expressed in the basis <1,rho,sigma>, with sigma:=rho^2-1, the ratio of the larger heptagon diagonal to the side length, as follows. rho^(-n) = C(n)*1 + C(n-1)*rho - a(n+1)*sigma, n >= 0, with C(n)=A077998(n), C(-1):=0. See the Steinbach reference, and a comment under A052547.
If, with the above notations, the power basis of the field Q(rho) is taken one has for nonpositive powers of rho, rho^(-n) = a(n+2)*1 + A077998(n-1)*rho - a(n+1)*rho^2. For nonnegative powers see A006053. See also the Steinbach reference. - Wolfdieter Lang, May 06 2011
a(n) appears also in the nonnegative powers of sigma,(defined in the above comment, where also the basis is given). See a comment in A106803.
The sequence b(n):=(-1)^(n+1)*a(n) forms the negative part (i.e., with nonpositive indices) of the sequence (-1)^n*A006053(n+1). In this way we obtain what we shall call the Ramanujan-type sequence number 2a for the argument 2*Pi/7 (see the comment to Witula's formula in A006053). We have b(n) = -2*b(n-1) + b(n-2) + b(n-3) and b(n) * 49^(1/3) = (c(1)/c(4))^(1/3) * (c(1))^(-n) + (c(2)/c(1))^(1/3) * (c(2))^(-n) + (c(4)/c(2))^(1/3) * (c(4))^(-n) = (c(2)/c(1))^(1/3) * (c(1))^(-n+1) + (c(4)/c(2))^(1/3) * (c(2))^(-n+1) + (c(1)/c(4))^(1/3) * (c(4))^(-n+1), where c(j) := 2*cos(2*Pi*j/7) (for the proof, see the comments to A215112). - Roman Witula, Aug 06 2012
(1, 1, 2, 5, 11, 25, 56, ...) * (1, 0, 1, 0, 1, ...) = the variant of A006356: (1, 1, 3, 6, 14, 31, ...). - Gary W. Adamson, May 15 2013
The limit of a(n+1)/a(n) for n -> infinity is, for all generic sequences with this recurrence of signature (2,1,-1), sigma = rho^2-1, approximately 2.246979603, the length ratio (largest diagonal)/side in the regular heptagon (7-gon). For rho = 2*cos(Pi/7) and sigma see a comment above, and the P. Steinbach reference. Proof: a(n+1)/a(n) = 2 + 1/(a(n)/a(n-1)) - 1/((a(n)/a(n-1))*(a(n-1)/a(n-2))), leading in the limit to sigma^3 -2*sigma^2 - sigma + 1, which is solved by sigma = rho^2-1, due to C(7, rho) = 0 , with the minimal polynomial C(7, x) = x^3 - x^2 - 2*x + 1 of rho (see A187360). - Wolfdieter Lang, Nov 07 2013
Numbers of straight-chain aliphatic amino acids involving single, double or triple bonds (allowing adjacent double bonds) when cis/trans isomerism is neglected. - Stefan Schuster, Apr 19 2018
Let A(r,n) be the total number of ordered arrangements of an n+r tiling of r red squares and white tiles of total length n, where the individual tile lengths can range from 1 to n. A(r,0) corresponds to a tiling of r red squares only, and so A(r,0) = 1. Also, A(r,n)=0 for n<0. Let A_1(r,n) = Sum_{j=0..n} A(r,j). Then the expansion of 1/(1 - 2*x - x^2 + x^3) is A_1(0,n) + A_1(1,n-2) + A_1(n-4) + ... = a(n) without the initial two 0's. In general, the expansion of 1/(1 - 2*x -x^k + x^(k+1)) is equal to Sum_{j>=0} A_1(j, n-j*k). - Gregory L. Simay, May 25 2018
For n>1, a(n) is the number of ways to tile a strip of length n-1 with one color of squares and dominos, two colors of trominos and quadrominos, 3 colors of 5-minos and 6-minos, and so on. - Greg Dresden and Zhiyu Zhang, Jun 26 2025

Examples

			G.f. = x^2 + 2*x^3 + 5*x^4 + 11*x^5 + 25*x^6 + 56*x^7 + 126*x^8 + 283*x^9 + ... - _Michael Somos_, Jun 25 2018
		

References

  • Jay Kappraff, Beyond Measure, A Guided Tour Through Nature, Myth and Number, World Scientific, 2002.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a006054 n = a006053_list !! n
    a006054_list = 0 : 0 : 1 : zipWith (+) (map (2 *) $ drop 2 a006054_list)
       (zipWith (-) (tail a006054_list) a006054_list)
    -- Reinhard Zumkeller, Oct 14 2011
  • Maple
    A006054:=z**2/(1-2*z-z**2+z**3); # Simon Plouffe in his 1992 dissertation
  • Mathematica
    LinearRecurrence[{2, 1, -1}, {0, 0, 1}, 60] (* Vladimir Joseph Stephan Orlovsky, Feb 10 2012 *)
  • Maxima
    a(n):=if n<2 then 0 else if n=2 then 1 else b(n-2);
    b(n):=sum(sum(binomial(j,n-3*k+2*j)*(-1)^(j-k)*binomial(k,j)*2^(-n+3*k-j),j,0,k),k,1,n); /* Vladimir Kruchinin, May 05 2011 */
    
  • PARI
    x='x+O('x^66);
    concat([0, 0], Vec(x^2/(1-2*x-x^2+x^3))) \\ Joerg Arndt, May 05 2011
    

Formula

G.f.: x^2/(1-2*x-x^2+x^3).
Sum_{k=0..n+2} a(k) = A077850(n). - Philippe Deléham, Sep 07 2006
Let M = the 3 X 3 matrix [1,1,0; 1,2,1; 0,1,2], then M^n*[1,0,0] = [A080937(n-1), A094790(n), A006054(n-1)]. E.g., M^3*[1,0,0] = [5,9,5] = [A080937(2), A094790(3), A006054(2)]. - Gary W. Adamson, Feb 15 2006
a(n) = round(k*A006356(n-1)), for n>1, where k = 0.3568958678... = 1/(1+2*cos(Pi/7)). - Gary W. Adamson, Jun 06 2008
a(n+1) = A187070(2n+1) = A187068(2n+3). - L. Edson Jeffery, Mar 10 2011
a(n+3) = Sum_{k=1..n} Sum_{j=0..k} binomial(j,n-3*k+2*j)*(-1)^(j-k)*binomial(k,j)*2^(-n+3*k-j); a(0)=0, a(1)=0, a(2)=1. - Vladimir Kruchinin, May 05 2011
7*a(n) = (c(2)-c(4))*(1+c(1))^n + (c(4)-c(1))*(1+c(2))^n + (c(1)-c(2))*(1+c(4))^n, where c(j):=2*cos(2*Pi*j/7) - for the proof see Witula et al. papers. - Roman Witula, Aug 07 2012
a(n) = -A006053(1-n) for all n in Z. - Michael Somos, Jun 25 2018

A077998 Expansion of (1-x)/(1-2*x-x^2+x^3).

Original entry on oeis.org

1, 1, 3, 6, 14, 31, 70, 157, 353, 793, 1782, 4004, 8997, 20216, 45425, 102069, 229347, 515338, 1157954, 2601899, 5846414, 13136773, 29518061, 66326481, 149034250, 334876920, 752461609, 1690765888, 3799116465, 8536537209, 19181424995, 43100270734, 96845429254
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Comments

Let u(k), v(k), w(k) be defined by u(1)=1, v(1)=0, w(1)=0 and u(k+1)=u(k)+v(k)+w(k), v(k+1)=u(k)+v(k), w(k+1)=u(k); then {u(n)} = 1,1,3,6,14,31,... (A006356 with an extra initial 1), {v(n)} = 0,1,2,5,11,25,... (A006054 with its initial 0 deleted) and {w(n)} = {u(n)} prefixed by an extra 0 = this sequence with an extra initial 0. - Benoit Cloitre, Apr 05 2002 [Also u(k)^2+v(k)^2+w(k)^2 = u(2k). - Gary W. Adamson, Dec 23 2003]
Form the graph with matrix A=[1, 1, 1; 1, 0, 0; 1, 0, 1]. Then A077998 counts closed walks of length n at the vertex of degree 4. - Paul Barry, Oct 02 2004
a(n) is the number of Motzkin (n+2)-sequences with no flatsteps at ground level and whose height is <=2. For example, a(3)=6 counts UDUFD, UFDUD, UFFFD, UFUDD, UUDFD, UUFDD. - David Callan, Dec 09 2004
Number of compositions of n if there are two kinds of part 2. Example: a(3)=6 because we have (3),(1,2),(1,2'),(2,1),(2',1) and (1,1,1). Row sums of A105477. - Emeric Deutsch, Apr 09 2005
Diagonal sums of A056242. - Paul Barry, Dec 26 2007
Diagonal sums of triangle in A105306. - Philippe Deléham, Nov 16 2008
a(n) appears in the formula for the nonpositive powers of rho:= 2*cos(Pi/7), the ratio of the smaller diagonal in the heptagon to the side length s=2*sin(Pi/7), when expressed in the basis <1,rho,sigma>, with sigma:=rho^2-1, the ratio of the larger heptagon diagonal to the side length, as follows. rho^(-n) = a(n)*1 + a(n-1)*rho - C(n)*sigma, n>=0, with C(n)=A006054(n+1). Put a(-1):=0. See the Steinbach reference, and a comment under A052547.
The limit a(n+1)/a(n) for n -> infinity is sigma = rho^2-1, approximately 2.246979603. See a Nov 07 2013 comment on A006054 for the proof, and the preceding comment for rho and sigma and the P. Steinbach reference. - Wolfdieter Lang, Nov 07 2013
From Greg Dresden and Aaron Zhou, Jun 15 2023: (Start)
a(n) is the number of ways to tile a skew double-strip of 3*n cells using all possible "trominos". Here is the skew double-strip corresponding to n=4, with 12 cells:
_ ___ _ ___ _ ___
| | | | | | |
|__|___|_|___| |___|
| | | | | | |
|_|___|_|___|_|___|,
and here are the three possible "tromino" tiles, which can be rotated or reflected as needed:
_ _
| | | |
|__|_ ___|___| _________
| | | | | | | | | |
|_|___|, |_|___| , |_|___|_|.
As an example, here is one of the a(4) = 14 ways to tile the skew double-strip of 12 cells:
_ ___ _____ _______
| | | | |
| | |___ | |
| | | | |
|_____|_______|_|___|. (End)

Examples

			G.f. = 1 + x + 3*x^2 + 6*x^3 + 14*x^4 + 31*x^5 + 70*x^6 + 157*x^7 + 353*x^8 + ... - _Michael Somos_, Dec 12 2023
		

References

  • Kenneth Edwards, Michael A. Allen, A new combinatorial interpretation of the Fibonacci numbers squared, Part II, Fib. Q., 58:2 (2020), 169-177.
  • Jay Kappraff, Beyond Measure, A Guided Tour Through Nature, Myth and Number, World Scientific, 2002.

Crossrefs

Apart from initial term, same as A006356, which is the main entry for this sequence. A106803 is yet another version.

Programs

  • GAP
    a:=[1,1,3];; for n in [4..40] do a[n]:=2*a[n-1]+a[n-2]-a[n-3]; od; a; # G. C. Greubel, Jun 27 2019
  • Magma
    I:=[1,1,3]; [n le 3 select I[n] else 2*Self(n-1)+Self(n-2)-Self(n-3): n in [1..40]]; // Vincenzo Librandi, Jun 01 2017
    
  • Mathematica
    CoefficientList[Series[(1-x)/(1-2*x-x^2+x^3), {x, 0, 40}], x] (* Stefan Steinerberger, Sep 11 2006 *)
    LinearRecurrence[{2,1,-1},{1,1,3},40] (* Roman Witula, Aug 07 2012 *)
    a[ n_] := {1, 0, 0} . MatrixPower[{{0, 1, 0}, {0, 0, 1}, {-1, 1, 2}}, n] . {1, 1, 3}; (* Michael Somos, Dec 12 2023 *)
  • PARI
    a(n)=([0,1,0; 0,0,1; -1,1,2]^n*[1;1;3])[1,1] \\ Charles R Greathouse IV, May 10 2016
    
  • SageMath
    ((1-x)/(1-2*x-x^2+x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jun 27 2019
    

Formula

a(0)=a(1)=1, a(2)=3, a(n+1) = 2*a(n) + a(n-1) - a(n-2) for n>=2. - Philippe Deléham, Sep 07 2006
7*a(n) = (s(2))^2*(1+c(1))^n + (s(4))^2*(1+c(2))^n + (s(1))^2(1+c(4))^n, where c(j) = 2*Cos(2Pi*j/7) and s(j) = 2*Sin(2Pi*j/7) - for the proof of this one and many other relations for the sequences u(k), v(k) and w(k) defined on the top of the comments by Benoit Cloitre - see Witula et al.'s paper. - Roman Witula, Aug 07 2012
a(n) = b(n+2)- b(n+1), first differences of b(n) = A006054(n). - Wolfdieter Lang, Nov 07 2013; corrected by Kai Wang, May 31 2017
a(n) = A096976(-n) for all n in Z. - Michael Somos, Dec 12 2023

Extensions

Edited by N. J. A. Sloane, Aug 08 2008 at the suggestion of R. J. Mathar

A056939 Array read by antidiagonals: number of antichains (or order ideals) in the poset 3*m*n or plane partitions with rows <= m, columns <= n and entries <= 3.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 10, 10, 1, 1, 20, 50, 20, 1, 1, 35, 175, 175, 35, 1, 1, 56, 490, 980, 490, 56, 1, 1, 84, 1176, 4116, 4116, 1176, 84, 1, 1, 120, 2520, 14112, 24696, 14112, 2520, 120, 1, 1, 165, 4950, 41580, 116424, 116424, 41580, 4950, 165, 1
Offset: 0

Views

Author

Keywords

Comments

Triangle of generalized binomial coefficients (n,k)A342889.%20This%20array%20is%20the%20main%20subject%20of%20the%20long%20article%20by%20Felsner%20et%20al.%20(2011).%20-%20_N.%20J.%20A.%20Sloane">3; cf. A342889. This array is the main subject of the long article by Felsner et al. (2011). - _N. J. A. Sloane, Apr 03 2021
This triangle is mentioned by Hoggatt (1977). - N. J. A. Sloane, Mar 27 2021
Determinants of 3 X 3 subarrays of Pascal's triangle A007318 (a matrix entry being set to 0 when not present). - Gerald McGarvey, Feb 24 2005
Also determinants of 3 X 3 arrays whose entries come from a single row: T(n,k) = det [C(n,k),C(n,k-1),C(n,k-2); C(n,k+1),C(n,k),C(n,k-1); C(n,k+2),C(n,k+1),C(n,k)]. - Peter Bala, May 10 2012
From Gary W. Adamson, Jul 10 2012: (Start)
The triangular view of this triangle is
1;
1, 1;
1, 4, 1;
1, 10, 10, 1;
1, 20, 50, 20, 1;
The n-th row of this triangle is generated by applying the ConvOffs transform to the first n terms of 1, 4, 10, 20, ... (A000292 without leading zero). See A214281 for a procedural definition of the transformation and search "ConvOffs" for more examples. (End)
Define polynomials p(n, x) = hypergeom([-1 - n, -n, 1 - n], [2, 3], -x). If the triangle is extended by the diagonal 1, 0, 0,... on the right side the resulting (0, 0)-based triangle is T*(n, k) = [x^k] p(n, x). The polynomials evaluated at x = 1 gives the number of Baxter permutations of length n (see the formula given by Richard L. Ollerton in A001181). - Peter Luschny, Dec 28 2022

Examples

			The initial rows of the array are:
     1      1      1      1      1      1 ...
     1      4     10     20     35     56 ...
     1     10     50    175    490   1176 ...
     1     20    175    980   4116  14112 ...
     1     35    490   4116  24696 116424 ...
     1     56   1176  14112 116424 731808 ...
     ...
Considered as a triangle, the initial rows are:
  [1],
  [1, 1],
  [1, 4, 1],
  [1, 10, 10, 1],
  [1, 20, 50, 20, 1],
  [1, 35, 175, 175, 35, 1],
  [1, 56, 490, 980, 490, 56, 1],
  [1, 84, 1176, 4116, 4116, 1176, 84, 1],
  [1, 120, 2520, 14112, 24696, 14112, 2520, 120, 1],
  [1, 165, 4950, 41580, 116424, 116424, 41580, 4950, 165, 1],
  [1, 220, 9075, 108900, 457380, 731808, 457380, 108900, 9075, 220, 1]
  ...
		

References

  • Berman and Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), p. 103-124
  • R. P. Stanley, Theory and application of plane partitions. II. Studies in Appl. Math. 50 (1971), p. 259-279. Thm. 18.1

Crossrefs

Antidiagonals sum to A001181 (Baxter permutations). Cf. A197208.
Triangles of generalized binomial coefficients (n,k)_m (or generalized Pascal triangles) for m = 1..12: A007318 (Pascal), A001263, A056939, A056940, A056941, A142465, A142467, A142468, A174109, A342889, A342890, A342891.

Programs

  • Maple
    # To get initial terms of the array - N. J. A. Sloane, Apr 20 2021
    bb := (k,l) -> binomial(k+l,k)*binomial(k+l+1,k)*binomial(k+l+2,k)*2/((k+1)^2*(k+2));
    for k from 0 to 8 do
    lprint([seq(bb(k,l),l=0..8)]);
    od:
  • Mathematica
    t[n_, m_] = 2*Binomial[n, m]*Binomial[n + 1, m + 1]* Binomial[n + 2, m + 2]/((n - m + 1)^2*(n - m + 2)); Flatten[Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}]] (* Roger L. Bagula, Jan 28 2009 *)
  • PARI
    \\ cf. A359363
    C=binomial;
    T(n,k)=if(n==0&&k==0,1,(C(n+1,k-1)*C(n+1,k)*C(n+1,k+1))/(C(n+1,1)*C(n+1,2)));
    for(n=1,10,for(k=1,n,print1(T(n,k),", "));print()); \\ Joerg Arndt, Jan 04 2024

Formula

Product_{k=0..2} binomial(n+m+k, m+k)/binomial(n+k, k) gives the array as a square.
T(n,m) = 2*binomial(n, m)*binomial(n+1, m+1)*binomial(n+2, m+2)/((n-m+1)^2*(n-m+2)). - Roger L. Bagula, Jan 28 2009
From Peter Bala, Oct 13 2011: (Start)
T(n,k) = 2/((n+1)*(n+2)*(n+3))*C(n+1,k)*C(n+2,k+2)*C(n+3,k+1);
T(n,k) = 2/((n+1)*(n+2)*(n+3))*C(n+1,k+1)*C(n+2,k)*C(n+3,k+2). Cf. A197208.
T(n-1,k-1)*T(n,k+1)*T(n+1,k) = T(n-1,k)*T(n,k-1)*T(n+1,k+1).
Define a(r,n) = n!*(n+1)!*...*(n+r)!. The triangle whose (n,k)-th entry is a(r,0)*a(r,n)/(a(r,k)*a(r,n-k)) is A007318 (r = 0), A001263 (r = 1), A056939 (r = 2), A056940 (r = 3) and A056941 (r = 4). (End)
The column generating functions of the square array (starting at column 1) are 1/(1 - x)^4, (1 + 3*x + x^2)/(1 - x)^7, (1 + 10*x + 20*x^2 + 10*x^3 + x^4)/(1 - x)^10, ..., where the numerator polynomials are the row polynomials of A087647. See Barry p. 31. - Peter Bala, Oct 18 2023

A050446 Table read by ascending antidiagonals: T(n, m) giving total degree of n-th-order elementary symmetric polynomials in m variables.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 5, 6, 4, 1, 1, 8, 14, 10, 5, 1, 1, 13, 31, 30, 15, 6, 1, 1, 21, 70, 85, 55, 21, 7, 1, 1, 34, 157, 246, 190, 91, 28, 8, 1, 1, 55, 353, 707, 671, 371, 140, 36, 9, 1, 1, 89, 793, 2037, 2353, 1547, 658, 204, 45, 10, 1, 1, 144, 1782, 5864, 8272, 6405, 3164, 1086, 285, 55, 11, 1
Offset: 0

Views

Author

N. J. A. Sloane, Dec 23 1999

Keywords

Comments

T(n, m) is a polynomial of degree n in m. For example, T(2, m) = (m + 1)(m + 2)/2. For the polynomials corresponding to n = 1, 2, ..., 10, see the Cyvin-Gutman reference (p. 143). Kekulé numbers for certain benzenoids. - Emeric Deutsch, Jun 12 2005
Let LOOP X C_k, k >= 1, be the graph constructed by attaching a loop to each vertex of the cycle graph C_k. Let G_n, n >= 0, be the graph obtained by deleting one edge from LOOP X C_{n+1} while retaining the n + 1 loops; e.g., for n = 4, see the graph G_4 at the top of the page in the Stanley link below. Then T(n, m) equals the number of magic labelings of G_n having magic sum m. (See the second Mathematica program below which requires the "Omega" package authored by Axel Riese and which can be downloaded from the link provided in the article by Andrews et al.) - L. Edson Jeffery, Oct 19 2017
For n != 1, T(n, m) is the number of up-down words of length n over an alphabet of size m. - Sela Fried, Apr 08 2025
Conjecture: T(n,m) is the number of words of length n over the alphabet [m] such that any pair of adjacent letters sum to at most m + 1. - John Tyler Rascoe, Jun 06 2025

Examples

			Array begins:
  [0]  1  1    1     1      1      1       1       1        1        1
  [1]  1  2    3     4      5      6       7       8        9       10
  [2]  1  3    6    10     15     21      28      36       45       55
  [3]  1  5   14    30     55     91     140     204      285      385
  [4]  1  8   31    85    190    371     658    1086     1695     2530
  [5]  1 13   70   246    671   1547    3164    5916    10317    17017
  [6]  1 21  157   707   2353   6405   15106   31998    62349   113641
  [7]  1 34  353  2037   8272  26585   72302  173502   377739   760804
  [8]  1 55  793  5864  29056 110254  345775  940005  2286648  5089282
  [9]  1 89 1782 16886 102091 457379 1654092 5094220 13846117 34053437
  ...
Triangle starts:
  [0] 1;
  [1] 1,  1;
  [2] 1,  2,  1;
  [3] 1,  3,  3,  1;
  [4] 1,  5,  6,  4,  1;
  [5] 1,  8, 14, 10,  5, 1;
  [6] 1, 13, 31, 30, 15, 6, 1;
		

References

  • J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124.
  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (pp. 142-144).

Crossrefs

Columns give A000012, A000045, A000045, A006356, A006357, A006358, ...
Cf. A050447.

Programs

  • Maple
    A050446 := proc(n,m)
        option remember;
        if m=0 then
            1;
        else
            procname(n,m-1)+add( procname(2*k,m-1) *procname(n-1-2*k,m), k=0..floor((n-1)/2) );
        end if;
    end proc:
    for d from 0 to 12 do
        for m from 0 to d do
            printf("%d,",A050446(d-m,m)) ;
        end do:
    end do: # R. J. Mathar, Dec 14 2011
    A050446 := := (n, m) -> evalf(abs(add(tan(2*j*Pi/(2*m + 1))^2*sec(2*j*Pi/(2*m + 1))^(n - 1), j = 1 .. m))/(2^(n - 1)*(2*m + 1))): # Sela Fried, Apr 28 2025
  • Mathematica
    t[n_, m_?Positive] := t[n, m] = t[n, m-1] + Sum[t[2k, m-1]*t[n-1 - 2k, m], {k, 0, (n-1)/2}]; t[n_, 0] = 1; Flatten[Table[t[i-k , k-1], {i, 1, 12}, {k, 1, i}]] (* Jean-François Alcover, Jul 25 2011, after formula *)
    << Omega.m; nmax = 9; Do[cond[n_] = {}; If[n == 0, cond[n] = {a[1] == a[2]}, AppendTo[cond[n], {a[1] + a[2] == a[2 n + 2], a[2 n] + a[2 n + 1] == a[2 n + 2]}]; If[n > 1, Do[AppendTo[cond[n], a[2 j] + a[2 j + 1] + a[2 j + 2] == a[2 n + 2]], {j, n - 1}]]]; cond[n] = Flatten[cond[n]]; f[n_] = OEqSum[Product[x[i]^a[i], {i, 2 n + 2}], cond[n], u][[1]] /. x[2 n + 2] -> y /. x[] -> 1; Do[f[n] = OEqR[f[n], Subscript[u, j]], {j, Length[cond[n]]}], {n, 0, nmax}]; Grid[Table[CoefficientList[Series[f[n], {y, 0, nmax}], y], {n, 0, nmax}]] (* _L. Edson Jeffery, Oct 19 2017 *)
  • Python
    from functools import cache
    @cache
    def T(n, k):
        return T(n, k - 1) + sum(T(2 * j, k - 1) * T(n - 1 - 2 * j, k)
            for j in range(1 + (n - 1) // 2)) if k > 0 else 1
    for n in range(6): print([T(n - k, k) for k in range(n + 1)])
    # Peter Luschny, Jun 08 2024

Formula

T(n, m) = T(n, m - 1) + Sum_{k=0..(n-1)/2} T(2*k, m - 1)*T(n - 1 - 2*k, m).
From Sela Fried, Apr 08 2025: (Start)
T(n, m) = 1/(2^(n-1)*(2*m+1))*|Sum_{j = 1..m} tan^2(2*j*Pi/(2*m+1))*sec^(n+1)(2*j*Pi/(2*m+1)))|.
G.f. for words of odd length over an alphabet of size m: x*U_{m-1}(1-x^2/2)/V_{m-1}(1-x^2/2),
g.f. for words of even length over an alphabet of size m: 1/V_{m-1}(1-x^2/2),
where U_k(x) and V_k(x) are the Chebyshev polynomials of the second and third kind, respectively. (End)

Extensions

More terms from Naohiro Nomoto, Jul 03 2001

A050447 Table T(n,m) giving total degree of n-th-order elementary symmetric polynomials in m variables, -1 <= n, 1 <= m, transposed and read by upward antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 5, 1, 1, 5, 10, 14, 8, 1, 1, 6, 15, 30, 31, 13, 1, 1, 7, 21, 55, 85, 70, 21, 1, 1, 8, 28, 91, 190, 246, 157, 34, 1, 1, 9, 36, 140, 371, 671, 707, 353, 55, 1, 1, 10, 45, 204, 658, 1547, 2353, 2037, 793, 89, 1, 1, 11, 55, 285, 1086, 3164, 6405, 8272, 5864, 1782, 144, 1
Offset: 0

Views

Author

N. J. A. Sloane, Dec 23 1999

Keywords

Examples

			Table begins
.    1   1   1    1     1      1       1       1        1         1
.    1   2   3    5     8     13      21      34       55        89
.    1   3   6   14    31     70     157     353      793      1782
.    1   4  10   30    85    246     707    2037     5864     16886
.    1   5  15   55   190    671    2353    8272    29056    102091
.    1   6  21   91   371   1547    6405   26585   110254    457379
.    1   7  28  140   658   3164   15106   72302   345775   1654092
.    1   8  36  204  1086   5916   31998  173502   940005   5094220
.    1   9  45  285  1695  10317   62349  377739  2286648  13846117
.    1  10  55  385  2530  17017  113641  760804  5089282  34053437
		

References

  • J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124.
  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 120).
  • Manfred Goebel, Rewriting Techniques and Degree Bounds for Higher Order Symmetric Polynomials, Applicable Algebra in Engineering, Communication and Computing (AAECC), Volume 9, Issue 6 (1999), 559-573.

Crossrefs

Columns give A000012, A000027, A000217, A000330, A006322, ...

Programs

  • Mathematica
    nmax = 12; t[n_, m_?Positive] := t[n, m] = t[n, m-1] + Sum[t[2k, m-1]*t[n-1-2k, m], {k, 0, (n-1)/2}]; t[n_, 0]=1; Flatten[ Table[ t[k-1, n-k], {n, 1, nmax}, {k, 1, n}]] (* Jean-François Alcover, Nov 14 2011 *)
    nmax = 10; f[0, x_] := 1; f[1, x_] := 1/(1 - x); f[n_, x_] := (x + f[n - 2, x])/(1 - x^2 - x*f[n - 2, x]); t[n_, m_] := Coefficient[Series[f[n, x], {x, 0, m}], x, m]; Grid[Table[t[n, m], {n, nmax}, {m, 0, nmax - 1}]] (* L. Edson Jeffery, Oct 19 2017 *)
  • PARI
    M(n)=matrix(n,n,i,j,if(sign(i+j-n)-1,0,1)); V(n)=vector(n,i,1); P(r,n)=vecmax(V(r)*M(r)^n) \\ P(r,n) is T(n,k); Benoit Cloitre, Jan 27 2003

Formula

See PARI code. See A050446 for recurrence.
G.f. for row n >= 0: f(n, x) = (x + f(n-2, x))/(1 - x^2 - x*f(n-2, x)), where f(0, x) = 1 and f(1, x) = 1/(1 - x) [R. P. Stanley]. - L. Edson Jeffery, Oct 19 2017

Extensions

More terms from Naohiro Nomoto, Jul 03 2001

A006359 Number of distributive lattices; also number of paths with n turns when light is reflected from 6 glass plates.

Original entry on oeis.org

1, 6, 21, 91, 371, 1547, 6405, 26585, 110254, 457379, 1897214, 7869927, 32645269, 135416457, 561722840, 2330091144, 9665485440, 40093544735, 166312629795, 689883899612, 2861717685450, 11870733787751, 49241167758705, 204258021937291, 847285745315256
Offset: 0

Views

Author

Keywords

Comments

Let M denotes the 6 X 6 matrix = row by row (1,1,1,1,1,1)(1,1,1,1,1,0)(1,1,1,1,0,0)(1,1,1,0,0,0)(1,1,0,0,0,0)(1,0,0,0,0,0) and A(n) the vector (x(n),y(n),z(n),t(n),u(n),v(n)) = M^n*A where A is the vector (1,1,1,1,1,1) then a(n) = x(n). - Benoit Cloitre, Apr 02 2002

References

  • J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124.
  • Manfred Goebel, Rewriting Techniques and Degree Bounds for Higher Order Symmetric Polynomials, Applicable Algebra in Engineering, Communication and Computing (AAECC), Volume 9, Issue 6 (1999), 559-573.
  • J. Haubrich, Multinacci Rijen [Multinacci sequences], Euclides (Netherlands), Vol. 74, Issue 4, 1998, pp. 131-133.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    A=seq(a.j,j=0..5):grammar1:=[Q5,{ seq(Q.i=Union(Epsilon,seq(Prod(a.j,Q.j),j=5-i..5)),i=0..5), seq(a.j=Z,j=0..5) }, unlabeled]: seq(count(grammar1,size=j),j=0..22); # Zerinvary Lajos, Mar 09 2007
  • Mathematica
    LinearRecurrence[{3,6,-4,-5,1,1},{1,6,21,91,371,1547},30] (* Harvey P. Dale, Sep 03 2016 *)
  • PARI
    k=5; M(k)=matrix(k,k,i,j,if(1-sign(i+j-k),0,1)); v(k)=vector(k,i,1); a(n)=vecmax(v(k)*M(k)^n)
    
  • PARI
    {a(n)=local(p=6);polcoeff(sum(k=0,p-1,(-1)^((k+1)\2)*binomial((p+k-1)\2,k)* (-x)^k)/sum(k=0,p,(-1)^((k+1)\2)*binomial((p+k)\2,k)*x^k+x*O(x^n)),n)} \\ Paul D. Hanna, Feb 06 2006

Formula

G.f.: -(z^4 + z^3 - 3z^2 - 2z + 1) / (-1 + 3z + 6z^2 - 4z^3 - 5z^4 + z^5 + z^6). - M. Goebel (manfredg(AT)ICSI.Berkeley.EDU) Jul 26 1997
a(n) = 3*a(n-1) + 6*a(n-2) - 4*a(n-3) - 5*a(n-4) + a(n-5) + a(n-6).
a(n) is asymptotic to z(6)*w(6)^n where w(6) = (1/2)/cos(6*Pi/13) and z(6) is the root 1 < x < 2 of P(6, X) = -1 - 91*X + 2366*X^2 + 26364*X^3 - 142805*X^4 - 371293*X^5 + 371293*X^6 - Benoit Cloitre, Oct 16 2002
G.f.: A(x) = (1 + 3*x - 3*x^2 - 4*x^3 + x^4 + x^5)/(1 - 3*x - 6*x^2 + 4*x^3 + 5*x^4 - x^5 - x^6). - Paul D. Hanna, Feb 06 2006
G.f.: 1/(-x-1/(-x-1/(-x-1/(-x-1/(-x-1/(-x-1)))))). - Paul Barry, Mar 24 2010

Extensions

Alternative description from Jacques Haubrich (jhaubrich(AT)freeler.nl)
More terms from James Sellers, Dec 24 1999

A033304 Expansion of (2 + 2*x - 3*x^2) / (1 - 2*x - x^2 + x^3).

Original entry on oeis.org

2, 6, 11, 26, 57, 129, 289, 650, 1460, 3281, 7372, 16565, 37221, 83635, 187926, 422266, 948823, 2131986, 4790529, 10764221, 24186985, 54347662, 122118088, 274396853, 616564132, 1385407029, 3112981337, 6994805571, 15717185450
Offset: 0

Views

Author

Keywords

Comments

From L. Edson Jeffery, Mar 22 2011: (Start)
Let A be the unit-primitive matrix (see [Jeffery])
A=A_(7,2)=
(0 0 1)
(0 1 1)
(1 1 1).
Let B={b(n)} be this sequence shifted to the right one place and setting b(0)=3. Then B=(3,2,6,11,26,...) with generating function (3-4*x-x^2)/(1-2*x-x^2+x^3) and b(n)=Trace(A^n). (End)
The following identity hold true (a(n)^2 - a(2n+2))/2 = A094648(n+1) = (-1)^(n+1)*A096975(n+1) - for the proof see Witula et al.'s papers - Roman Witula, Jul 25 2012
We note that the joined sequences (-1)^(n+1)*a(n) and A094648(n) form a two-sided sequence defined either by the recurrence formula x(n+3) + x(n+2) - 2x(n+1) - x(n) = 0, n in Z, x(0)=3, x(-1)=-2, x(1)=-1, or by the following trigonometric identities: x(n) = (c(1))^n + (c(2))^n + (c(4))^n = (c(1)c(2))^(-n) + (c(1)c(4))^(-n) + (c(2)c(4))^(-n) = (s(2)/s(1))^n + (s(4)/s(2))^n + (s(1)/s(4))^n, for n in Z, where c(j) := 2*cos(2Pi*j/7) and s(j) := sin(2*Pi*j/7) - for the proof see Witula's and Witula et al.'s papers. - Roman Witula, Jul 25 2012
We have 4*a(n+2) - a(n) = 7*A077998(n+2). - Roman Witula, Aug 13 2012
Two very intriguing identities of trigonometric nature hold: (-1)^n*(a(n)-a(n-1)) = c(1)*c(2)^(-n) + c(2)*c(4)^(-n) + c(4)*c(1)^(-n), and (-1)^(n+1)*(a(n-1)-a(n+1)) = c(1)*c(4)^(-n-1) + c(2)*c(1)^(-n-1) + c(4)*c(2)^(-n-1), where a(-1):=3 and c(j) is defined as above. For the proof see Remark 6 in the first Witula's paper. - Roman Witula, Aug 14 2012
With respect to the form of the trigonometric formulas describing a(n), we call this sequence the Berndt-type sequence number 20 for the argument 2Pi/7. The A-numbers of other Berndt-type sequences numbers are given in below. - Roman Witula, Sep 30 2012

References

  • R. P. Stanley, Enumerative Combinatorics I, p. 244, Eq. (36).

Crossrefs

Programs

  • Magma
    I:=[2,6,11]; [n le 3 select I[n] else 2*Self(n-1) +Self(n-2) - Self(n-3): n in [1..30]]; // G. C. Greubel, Apr 19 2018
  • Mathematica
    CoefficientList[Series[(2+2x-3x^2)/(1-2x-x^2+x^3),{x,0,50}], x]  (* Harvey P. Dale, Mar 14 2011 *)
    LinearRecurrence[{2, 1, -1}, {2, 6, 11}, 29] (* Jean-François Alcover, Sep 27 2017 *)
  • PARI
    {a(n)=if(n<0, n=-n; polsym(x^3-x^2-2*x+1,n-1)[n], n+=2; polsym(1-x-2*x^2+x^3,n-1)[n])} /* Michael Somos, Aug 03 2006 */
    
  • PARI
    x='x+O('x^99); Vec((2+2*x-3*x^2)/(1-2*x-x^2+x^3)) \\ Altug Alkan, Apr 19 2018
    

Formula

a(-1-n) = A096975(n).
a(n) = (1-2*cos(1/7*Pi))^(n+1)+(1+2*cos(2/7*Pi))^(n+1)+(1-2*cos(3/7*Pi))^(n+1). - Vladeta Jovovic, Jun 27 2001
a(n) = trace of (n+1)-th power of the 3 X 3 matrix (in the example of A066170): [1 1 1 / 1 1 0 / 1 0 0]. Alternatively, the sum of the (n+1)st powers of the roots of the corresponding characteristic polynomial: x^3 - 2*x^2 - x + 1 = 0. a(n) = A006356(n) + A006356(n-1) + 2*A006356(n-2). E.g., a(3) = 26 = the trace of M^4. The characteristic polynomial of this matrix (see A066170) is x^3 - 2*x^2 - x + 1 and the roots are 2.24697960372..., -0.8019377358... and 0.55495813208... = a, b, c. Then Sum(a^4 + b^4 + c^4) = 26. - Gary W. Adamson, Feb 01 2004
(-1)^(n+1)*a(n) = (c(1))^(-n-1) + (c(2))^(-n-1) + (c(3))^(-n-1) = (c(1)c(2))^(n+1) + (c(1)c(4))^(n+1) + (c(2)c(4))^(n+1) = (s(1)/s(2))^(n+1) + (s(2)/s(4))^(n+1) + (s(4)/s(1))^(n+1), where c(j) := 2*cos(2*Pi*j/7) and s(j) := sin(2*Pi*j/7) - for the proof see Witula's and Witula et al.'s papers. - Roman Witula, Jul 25 2012
a(n) = 3*A077998(n+1) - A006054(n+2) - A006054(n+1). - Roman Witula, Aug 13 2012
a(n)*(-1)^(n+1) = (A094648(n+1)^2 - A094648(2*(n+1)))/2. - Roman Witula, Sep 30 2012

A056941 Number of antichains (or order ideals) in the poset 5*m*n or plane partitions with not more than m rows, n columns and entries <= 5.

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 21, 21, 1, 1, 56, 196, 56, 1, 1, 126, 1176, 1176, 126, 1, 1, 252, 5292, 14112, 5292, 252, 1, 1, 462, 19404, 116424, 116424, 19404, 462, 1, 1, 792, 60984, 731808, 1646568, 731808, 60984, 792, 1, 1, 1287, 169884, 3737448, 16818516, 16818516, 3737448, 169884, 1287, 1
Offset: 0

Views

Author

Keywords

Comments

Triangle of generalized binomial coefficients (n,k)A342889.%20-%20_N.%20J.%20A.%20Sloane">5; cf. A342889. - _N. J. A. Sloane, Apr 03 2021

Examples

			The array starts:
  [1    1      1        1          1           1            1 ...]
  [1    6     21       56        126         252          462 ...]
  [1   21    196     1176       5292       19404        60984 ...]
  [1   56   1176    14112     116424      731808      3737448 ...]
  [1  126   5292   116424    1646568    16818516    133613766 ...]
  [1  252  19404   731808   16818516   267227532   3184461423 ...]
  [1  462  60984  3737448  133613766  3184461423  55197331332 ...]
  [...]
Considered as a triangle, the initial rows are:
   1;
   1,   1;
   1,   6,     1;
   1,  21,    21,      1;
   1,  56,   196,     56,       1;
   1, 126,  1176,   1176,     126,      1;
   1, 252,  5292,  14112,    5292,    252,     1;
   1, 462, 19404, 116424,  116424,  19404,   462,   1;
   1, 792, 60984, 731808, 1646568, 731808, 60984, 792, 1; ...
		

References

  • Berman and Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), p. 103-124
  • P. A. MacMahon, Combinatory Analysis, Section 495, 1916.
  • R. P. Stanley, Theory and application of plane partitions. II. Studies in Appl. Math. 50 (1971), p. 259-279. Thm. 18.1

Crossrefs

Antidiagonals sum to A005363 (Hoggatt sequence).
Triangles of generalized binomial coefficients (n,k)_m (or generalized Pascal triangles) for m = 1,...,12: A007318 (Pascal), A001263, A056939, A056940, A056941, A142465, A142467, A142468, A174109, A342889, A342890, A342891.

Programs

  • Magma
    A056941:= func< n,k | (&*[Binomial(n+j,k)/Binomial(k+j,k): j in [0..4]]) >;
    [A056941(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 14 2022
    
  • Mathematica
    T[n_, k_] := Product[Binomial[n+j, k]/Binomial[k+j, k], {j,0,4}];
    Table[T[n, k], {n,0,13}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 14 2022 *)
  • PARI
    A056941(n,m)=prod(k=0,4,binomial(n+m+k,m+k)/binomial(n+k,k)) \\ as an array \\ M. F. Hasler, Sep 26 2018
    
  • SageMath
    def A056941(n,k): return product(binomial(n+j,k)/binomial(k+j,k) for j in (0..4))
    flatten([[A056941(n,k) for k in range(n+1)] for n in range(14)]) # G. C. Greubel, Nov 14 2022

Formula

From Peter Bala, Oct 13 2011: (Start)
A(n, k) = Product_{j=0..4} C(n+k+j, k+j)/C(n+j, j) gives the array as a square.
g(n-1, k-1)*g(n, k+1)*g(n+1, k) = g(n-1, k)*g(n, k-1)*g(n+1, k+1) where g(n, k) is the array A(n, k) and triangle T(n, k).
Define f(r,n) = n!*(n+1)!*...*(n+r)!. The triangle whose (n,k)-th entry is f(r,0)*f(r,n)/(f(r,k)*f(r,n-k)) is A007318 (r = 0), A001263 (r = 1), A056939 (r = 2), A056940 (r = 3) and A056941 (r = 4). (End)
From Peter Bala, May 10 2012: (Start)
Determinants of 5 X 5 subarrays of Pascal's triangle A007318 (a matrix entry being set to 0 when not present).
Also determinants of 5 X 5 arrays whose entries come from a single row:
det [C(n,k), C(n,k-1), C(n,k-2), C(n,k-3), C(n,k-4); C(n,k+1), C(n,k), C(n,k-1), C(n,k-2), C(n,k-3); C(n,k+2), C(n,k+1), C(n,k), C(n,k-1), C(n,k-2); C(n,k+3), C(n,k+2), C(n,k+1), C(n,k), C(n,k-1); C(n,k+4), C(n,k+3), C(n,k+2), C(n,k+1), C(n,k)]. (End)
From G. C. Greubel, Nov 14 2022: (Start)
T(n, k) = Product_{j=0..4} binomial(n+j, k)/binomial(k+j, k) (gives the triangle).
Sum_{k=0..n} T(n, k) = A005363(n). (End)

Extensions

Edited by M. F. Hasler, Sep 26 2018

A056940 Number of antichains (or order ideals) in the poset 4*m*n or plane partitions with at most m rows and n columns and entries <= 4.

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 15, 15, 1, 1, 35, 105, 35, 1, 1, 70, 490, 490, 70, 1, 1, 126, 1764, 4116, 1764, 126, 1, 1, 210, 5292, 24696, 24696, 5292, 210, 1, 1, 330, 13860, 116424, 232848, 116424, 13860, 330, 1, 1, 495, 32670, 457380, 1646568, 1646568, 457380, 32670, 495, 1
Offset: 0

Views

Author

Keywords

Comments

Triangle of generalized binomial coefficients (n,k)A342889.%20-%20_N.%20J.%20A.%20Sloane">4; cf. A342889. - _N. J. A. Sloane, Apr 03 2021
Determinants of 4 X 4 subarrays of Pascal's triangle A007318 (a matrix entry being set to 0 when not present). - Gerald McGarvey, Feb 24 2005
Row sums are: {1, 2, 7, 32, 177, 1122, 7898, 60398, 494078, 4274228, 38763298, ...}. - Roger L. Bagula, Mar 08 2010
Also determinants of 4x4 arrays whose entries come from a single row: T(n,k) = det [C(n,k), C(n,k-1), C(n,k-2), C(n,k-3); C(n,k+1), C(n,k), C(n,k-1), C(n,k-2); C(n,k+2), C(n,k+1), C(n,k), C(n,k-1); C(n,k+3), C(n,k+2), C(n,k+1), C(n,k)]. - Peter Bala, May 10 2012

Examples

			Triangle begins as:
  1.
  1,   1.
  1,   5,     1.
  1,  15,    15,      1.
  1,  35,   105,     35,      1.
  1,  70,   490,    490,     70,      1.
  1, 126,  1764,   4116,   1764,    126,     1.
  1, 210,  5292,  24696,  24696,   5292,   210,   1.
  1, 330, 13860, 116424, 232848, 116424, 13860, 330, 1. - _Roger L. Bagula_, Mar 08 2010
		

Crossrefs

Antidiagonals sum to A005362 (Hoggatt sequence).
Cf. A056939 (q=2), A056940 (q=3), A056941 (q=4), A142465 (q=5), A142467 (q=6), A142468 (q=7), A174109 (q=8).
Triangles of generalized binomial coefficients (n,k)_m (or generalized Pascal triangles) for m = 1,...,12: A007318 (Pascal), A001263, A056939, A056940, A056941, A142465, A142467, A142468, A174109, A342889, A342890, A342891.

Programs

  • Mathematica
    c[n_, q_] = Product[i + j, {j, 0, q}, {i, 1, n}];
    T[n_, m_, q_] = c[n, q]/(c[m, q]*c[n - m, q]);
    Table[T[n, k, 3], {n, 0, 10}, {k, 0, n}]//Flatten (* Roger L. Bagula, Mar 08 2010 *)(* modified by G. C. Greubel, Apr 13 2019 *)
  • PARI
    A056940(n,m)=prod(k=0,3,binomial(n+m+k,m+k)/binomial(n+k,k)) \\ M. F. Hasler, Sep 26 2018

Formula

Product_{k=0..3} C(n+m+k, m+k)/C(n+k, k) gives the array as a square.
T(n,m,q) = c(n,q)/(c(m,q)*c(n-m,q)) with c(n,q) = Product_{i=1..n, j=0..q} (i + j), q = 3. - Roger L. Bagula, Mar 08 2010
From Peter Bala, Oct 13 2011: (Start)
T(n-1,k-1)*T(n,k+1)*T(n+1,k) = T(n-1,k)*T(n,k-1)*T(n+1,k+1).
Define f(r,n) = n!*(n+1)!*...*(n+r)!. The triangle whose (n,k)-th entry is f(r,0)*f(r,n)/(f(r,k)*f(r,n-k)) is A007318 (r = 0), A001263 (r = 1), A056939 (r = 2), A056940 (r = 3) and A056941 (r = 4). (End)

Extensions

Edited by M. F. Hasler, Sep 26 2018

A006357 Number of distributive lattices; also number of paths with n turns when light is reflected from 4 glass plates.

Original entry on oeis.org

1, 4, 10, 30, 85, 246, 707, 2037, 5864, 16886, 48620, 139997, 403104, 1160693, 3342081, 9623140, 27708726, 79784098, 229729153, 661478734, 1904652103, 5484227157, 15791202736, 45468956106, 130922641160, 376976720745, 1085461206128, 3125460977225
Offset: 0

Views

Author

Keywords

Comments

Let M denotes the 4 X 4 matrix = row by row (1,1,1,1)(1,1,1,0)(1,1,0,0)(1,0,0,0) and A(n) the vector (x(n),y(n),z(n),t(n))=M^n*A where A is the vector (1,1,1,1) then a(n)=x(n). - Benoit Cloitre, Apr 02 2002
In general, the g.f. for p glass plates is A(x) = F_{p-1}(-x)/F_p(x) where F_p(x) = Sum_{k=0,p} (-1)^[(k+1)/2]*C([(p+k)/2],k)*x^k. - Paul D. Hanna, Feb 06 2006
a(n)/a(n-1) tends to 2.879385..., the longest diagonal of a nonagon with edge 1; or: sin(4*Pi/9)/sin(Pi/9). The sequence is the INVERT transform of (1, 3, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...). - Gary W. Adamson, Jul 16 2015

References

  • J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124.
  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 120).
  • J. Haubrich, Multinacci Rijen [Multinacci sequences], Euclides (Netherlands), Vol. 74, Issue 4, 1998, pp. 131-133.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2,3,-1,-1},{1,4,10,30},30] (* Harvey P. Dale, Nov 18 2013 *)
  • PARI
    a(n)=local(p=4);polcoeff(sum(k=0,p-1,(-1)^((k+1)\2)*binomial((p+k-1)\2,k)* (-x)^k)/sum(k=0,p,(-1)^((k+1)\2)*binomial((p+k)\2,k)*x^k+x*O(x^n)),n) \\ Paul D. Hanna

Formula

G.f.: (1 + 2*x - x^2 - x^3)/( (1 +x)*(1 -3*x +x^3) ). - Simon Plouffe in his 1992 dissertation
a(n) = 2*a(n-1) + 3*a(n-2) - a(n-3) - a(n-4).
a(n) is asymptotic to z(4)*w(4)^n where w(4) = (1/2)/cos(4*Pi/9) and z(4) is the root 1 < x < 2 of P(4, X) = 1 + 27*X - 324*X^2 + 243*X^3. - Benoit Cloitre, Oct 16 2002
Binomial transform of A122167(unsigned): (1, 3, 3, 11, 10, 40, 33, 146, ...). - Gary W. Adamson, Nov 24 2007
G.f.: 1/(-x-1/(-x-1/(-x-1/(-x-1)))). - Paul Barry, Mar 24 2010

Extensions

Recurrence, alternative description from Jacques Haubrich (jhaubrich(AT)freeler.nl)
More terms from James Sellers, Dec 24 1999
More terms from Paul D. Hanna, Feb 06 2006
Previous Showing 11-20 of 57 results. Next