cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 223 results. Next

A071269 Terms of A007908 which are divisible by their index.

Original entry on oeis.org

1, 12, 123, 12345, 123456, 123456789, 12345678910, 123456789101112, 123456789101112131415, 123456789101112131415161718, 1234567891011121314151617181920, 12345678910111213141516171819202122232425
Offset: 1

Views

Author

Amarnath Murthy, Jun 01 2002

Keywords

Crossrefs

Cf. A007908.

Extensions

More terms from Sascha Kurz, Jan 02 2003

A137197 Decimal expansion of the sum of the reciprocals of the elements of A007908.

Original entry on oeis.org

1, 0, 9, 2, 3, 6, 3, 7, 9, 1, 0, 9, 5, 1, 2, 2, 7, 8, 8, 8, 0, 1, 3, 8, 0, 4, 2, 4, 4, 8, 9, 0, 9, 7, 0, 5, 8, 8, 7, 1, 5, 0, 4, 6, 4, 4, 7, 1, 0, 8, 1, 4, 2, 4, 4, 2, 3, 8, 0, 5, 4, 9, 7, 5, 5, 0, 2, 2, 7, 2, 8, 4, 7, 3, 0, 1, 8, 8, 5, 5, 4, 8, 5, 9, 2, 0, 6, 0, 3, 6, 5, 9, 4, 6, 6, 2, 2, 8, 1, 3, 0
Offset: 1

Views

Author

Keywords

Examples

			1 + 1/12 + 1/123 + 1/1234 + 1/12345 + 1/123456 + .....= 1.0923637910951227888013796063072721016963921894258793349801635199721622546190953748287037568512919456
		

Crossrefs

Cf. A007908.

Programs

  • Maple
    > readlib(log10); P:=proc(n) local a,i,j,k; a:=1; k:=2; j:=1; for i from 1 by 1 to n do j:=j*10^(trunc(evalf(log10(k)))+1)+k; a:=a+1/j; k:=k+1; lprint(evalf(a,101)); od; end: P(1000);

A355420 Integers whose third power is a digital permutation of a term in A007908.

Original entry on oeis.org

1, 2326, 308344, 416308, 22330489, 23584549, 25262887, 100369113, 103697628, 112085871, 117764571, 123236271, 128235558, 480765411, 487901778, 492021537, 498423726, 507761406, 520620501, 552317646, 622410993, 2231515936, 2245722316, 2259865441, 2277355234
Offset: 1

Views

Author

Keywords

Examples

			2326 is a term since 2326^3 = 12584301976 is a digital permutation of 12345678910 = A007908(10).
308344 is a term since 308344^3 = 29316121031171584 is a permutation of the digits of A007908(13).
		

Crossrefs

A033307 Decimal expansion of Champernowne constant (or Mahler's number), formed by concatenating the positive integers.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 0, 1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 1, 8, 1, 9, 2, 0, 2, 1, 2, 2, 2, 3, 2, 4, 2, 5, 2, 6, 2, 7, 2, 8, 2, 9, 3, 0, 3, 1, 3, 2, 3, 3, 3, 4, 3, 5, 3, 6, 3, 7, 3, 8, 3, 9, 4, 0, 4, 1, 4, 2, 4, 3, 4, 4, 4, 5, 4, 6, 4, 7, 4, 8, 4, 9, 5, 0, 5, 1, 5, 2, 5, 3, 5, 4, 5, 5, 5, 6, 5
Offset: 0

Views

Author

Keywords

Comments

This number is known to be normal in base 10.
Named after David Gawen Champernowne (July 9, 1912 - August 19, 2000). - Robert G. Wilson v, Jun 29 2014

Examples

			0.12345678910111213141516171819202122232425262728293031323334353637383940414243...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 6.9, p. 442.
  • G. Harman, One hundred years of normal numbers, in M. A. Bennett et al., eds., Number Theory for the Millennium, II (Urbana, IL, 2000), 149-166, A K Peters, Natick, MA, 2002.
  • C. A. Pickover, The Math Book, Sterling, NY, 2009; see p. 364.
  • H. M. Stark, An Introduction to Number Theory. Markham, Chicago, 1970, p. 172.

Crossrefs

See A030167 for the continued fraction expansion of this number.
A007376 is the same sequence but with a different interpretation.
Cf. A007908, A000027, A001191 (concatenate squares).
Tables in which the n-th row lists the base b digits of n: A030190 and A030302 (b = 2), A003137 and A054635 (b = 3), A030373 (b = 4), A031219 (b = 5), A030548 (b = 6), A030998 (b = 7), A031035 and A054634 (b = 8), A031076 (b = 9), A007376 and this sequence (b = 10). - Jason Kimberley, Dec 06 2012
Cf. A065648.
Cf. A365237 (reciprocal).

Programs

  • Haskell
    a033307 n = a033307_list !! n
    a033307_list = concatMap (map (read . return) . show) [1..] :: [Int]
    -- Reinhard Zumkeller, Aug 27 2013, Mar 28 2011
    
  • Magma
    &cat[Reverse(IntegerToSequence(n)):n in[1..50]]; // Jason Kimberley, Dec 07 2012
    
  • Mathematica
    Flatten[IntegerDigits/@Range[0, 57]] (* Or *)
    almostNatural[n_, b_] := Block[{m = 0, d = n, i = 1, l, p}, While[m <= d, l = m; m = (b - 1) i*b^(i - 1) + l; i++]; i--; p = Mod[d - l, i]; q = Floor[(d - l)/i] + b^(i - 1); If[p != 0, IntegerDigits[q, b][[p]], Mod[q - 1, b]]]; Array[ almostNatural[#, 10] &, 105] (* Robert G. Wilson v, Jul 23 2012 and modified Jul 04 2014 *)
    intermediate[n_] := Ceiling[FullSimplify[ProductLog[Log[10]/10^(1/9) (n - 1/9)] / Log[10] + 1/9]]; champerDigit[n_] := Mod[Floor[10^(Mod[n + (10^intermediate[n] - 10)/9, intermediate[n]] - intermediate[n] + 1) Ceiling[(9n + 10^intermediate[n] - 1)/(9intermediate[n]) - 1]], 10]; (* David W. Cantrell, Feb 18 2007 *)
    First[RealDigits[ChampernowneNumber[], 10, 100]] (* Paolo Xausa, May 02 2024 *)
  • PARI
    { default(realprecision, 20080); x=0; y=1; d=10.0; e=1.0; n=0; while (y!=x, y=x; n++; if (n==d, d=d*10); e=e*d; x=x+n/e; ); d=0; for (n=0, 20000, x=(x-d)*10; d=floor(x); write("b033307.txt", n, " ", d)); } \\ Harry J. Smith, Apr 20 2009
    
  • Python
    from itertools import count
    def agen():
        for k in count(1): yield from list(map(int, str(k)))
    a = agen()
    print([next(a) for i in range(104)]) # Michael S. Branicky, Sep 13 2021
  • Scala
    val numerStr = (1 to 100).map(Integer.toString()).toList.reduce( + _)
    numerStr.split("").map(Integer.parseInt()).toList // _Alonso del Arte, Nov 04 2019
    

Formula

Let "index" i = ceiling( W(log(10)/10^(1/9) (n - 1/9))/log(10) + 1/9 ) where W denotes the principal branch of the Lambert W function. Then a(n) = (10^((n + (10^i - 10)/9) mod i - i + 1) * ceiling((9n + 10^i - 1)/(9i) - 1)) mod 10. See also Mathematica code. - David W. Cantrell, Feb 18 2007

A011655 Period 3: repeat [0, 1, 1].

Original entry on oeis.org

0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1
Offset: 0

Views

Author

Keywords

Comments

A binary m-sequence: expansion of reciprocal of x^2+x+1 (mod 2).
A Chebyshev transform of the Jacobsthal numbers A001045: if A(x) is the g.f. of a sequence, map it to ((1-x^2)/(1+x^2))*A(x/(1+x^2)). - Paul Barry, Feb 16 2004
This is the r = 1 member of the r-family of sequences S_r(n) defined in A092184 where more information can be found.
This is the Fibonacci sequence (A000045) modulo 2. - Stephen Jordan (sjordan(AT)mit.edu), Sep 10 2007
For n > 0: a(n) = A084937(n-1) mod 2. - Reinhard Zumkeller, Dec 16 2007
This is also the Lucas numbers (A000032) mod 2. In general, this is the parity of any Lucas sequence associated with any pair (P,Q) when P and Q are odd; i.e., a(n) = U_n(P,Q) mod 2 = V_n(P,Q) mod 2. See Ribenboim. - Rick L. Shepherd, Feb 07 2009
Starting with offset 1: (1, 1, 0, 1, 1, 0, ...) = INVERTi transform of the tribonacci sequence A001590 starting (1, 2, 3, 6, 11, 20, 37, ...). - Gary W. Adamson, May 04 2009
From Reinhard Zumkeller, Nov 30 2009: (Start)
Characteristic function of numbers coprime to 3.
a(n) = 1 - A079978(n); a(A001651(n)) = 1; a(A008585(n)) = 0;
A000212(n) = Sum_{k=0..n} a(k)*(n-k). (End)
Sum_{k>0} a(k)/k/2^k = log(7)/3. - Jaume Oliver Lafont, Jun 01 2010
The sequence is the principal Dirichlet character of the reduced residue system mod 3 (the other is A102283). Associated Dirichlet L-functions are L(2,chi) = Sum_{n>=1} a(n)/n^2 = 4*Pi^2/27 = A214549, and L(3,chi) = Sum_{n>=1} a(n)/n^3 = 1.157536... = -(psi''(1/3) + psi''(2/3))/54 where psi'' is the tetragamma function. [Jolley eq 309 and arXiv:1008.2547, L(m = 3, r = 1, s)]. - R. J. Mathar, Jul 15 2010
a(n+1), n >= 0, is the sequence of the row sums of the Riordan triangle A158454. - Wolfdieter Lang, Dec 18 2010
Removing the first two elements and keeping the offset at 0, this is a periodic sequence (1, 0, 1, 1, 0, 1, ...). Its INVERTi transform is (1, -1, 2, -2, 2, -2, ...) with period (2,-2). - Gary W. Adamson, Jan 21 2011
Column k = 1 of triangle in A198295. - Philippe Deléham, Jan 31 2012
The set of natural numbers, A000027: (1, 2, 3, ...); is the INVERT transform of the signed periodic sequence (1, 1, 0, -1, -1, 0, 1, 1, 0, ...). - Gary W. Adamson, Apr 28 2013
Any integer sequence s(n) = |s(n-1) - s(n-2)| (equivalently, max(s(n-1), s(n-2)) - min(s(n-1), s(n-2))) for n > i + 1 with s(i) = j and s(i+1) = k, where j and k are not both 0, is or eventually becomes a multiple of this sequence, namely, the sequence repeat gcd(j, k), gcd(j, k), 0 (at some offset). In particular, if j and k are coprime, then s(n) is or eventually becomes this sequence (see, e.g., A110044). - Rick L. Shepherd, Jan 21 2014
For n >= 1, a(n) is also the characteristic function for rational g-adic integers (+n/3)A001651).%20See%20the%20definition%20in%20the%20Mahler%20reference,%20p.%207%20and%20also%20p.%2010.%20-%20_Wolfdieter%20Lang">g and also (-n/3)_g for all integers g >= 2 without a factor 3 (A001651). See the definition in the Mahler reference, p. 7 and also p. 10. - _Wolfdieter Lang, Jul 11 2014
Characteristic function for A007908(n+1) being divisible by 3. a(n) = bit flipped A007908(n+1) (mod 3) = bit flipped A079978(n). - Wolfdieter Lang, Jun 12 2017
Also Jacobi or Kronecker symbol (n/9) (or (n/9^e) for all e >= 1). - Jianing Song, Jul 09 2018
The binomial trans. is 0, 1, 3, 6, 11, 21, 42, 85, 171, 342,.. (see A024495). - R. J. Mathar, Feb 25 2023

Examples

			G.f. = x + x^2 + x^4 + x^5 + x^7 + x^8 + x^10 + x^11 + x^13 + x^14 + x^16 + x^17 + ...
		

References

  • S. W. Golomb, Shift-Register Sequences, Holden-Day, San Francisco, 1967.
  • H. D. Lueke, Korrelationssignale, Springer 1992, pp. 43-48.
  • F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier/North Holland, 1978, p. 408.
  • K. Mahler, p-adic numbers and their functions, 2nd ed., Cambridge University press, 1981.
  • Paulo Ribenboim, The Little Book of Big Primes. Springer-Verlag, NY, 1991, p. 46. [Rick L. Shepherd, Feb 07 2009]

Crossrefs

Partial sums of A057078 give A011655(n+1).
Cf. A035191 (Mobius transform), A001590, A002487, A049347.
Cf. A000027, A000045, A004523 (partial sums), A057078 (first differences).
Cf. A007908, A079978 (bit flipped).
Cf. A011656 - A011751 for other binary m-sequences.
Cf. A002264.

Programs

Formula

G.f.: (x + x^2) / (1 - x^3) = Sum_{k>0} (x^k - x^(3*k)).
G.f.: x / (1 - x / (1 + x / (1 + x / (1 - 2*x / (1 + x))))). - Michael Somos, Apr 02 2012
a(n) = a(n+3) = a(-n), a(3*n) = 0, a(3*n + 1) = a(3*n + 2) = 1 for all n in Z.
a(n) = (1/2)*( (-1)^(floor((2n + 4)/3)) + 1 ). - Mario Catalani (mario.catalani(AT)unito.it), Oct 22 2003
a(n) = Fibonacci(n) mod 2. - Paul Barry, Nov 12 2003
a(n) = (2/3)*(1 - cos(2*Pi*n/3)). - Ralf Stephan, Jan 06 2004
a(n) = 1 - a(n-1)*a(n-2), a(n) = n for n < 2. - Reinhard Zumkeller, Feb 28 2004
a(n) = 2*(1 - T(n, -1/2))/3 with Chebyshev's polynomials T(n, x) of the first kind; see A053120. - Wolfdieter Lang, Oct 18 2004
a(n) = n*Sum_{k=0..floor(n/2)} (-1)^k*binomial(n-k, k)*A001045(n-2k)/(n-k). - Paul Barry, Oct 31 2004
a(n) = A002487(n) mod 2. - Paul Barry, Jan 14 2005
From Bruce Corrigan (scentman(AT)myfamily.com), Aug 08 2005: (Start)
a(n) = n^2 mod 3.
a(n) = (1/3)*(2 - (r^n + r^(2*n))) where r = (-1 + sqrt(-3))/2. (End)
From Michael Somos, Sep 23 2005: (Start)
Euler transform of length 3 sequence [ 1, -1, 1].
Moebius transform is length 3 sequence [ 1, 0, -1].
Multiplicative with a(3^e) = 0^e, a(p^e) = 1 otherwise. (End)
From Hieronymus Fischer, Jun 27 2007: (Start)
a(n) = (4/3)*(|sin(Pi*(n-2)/3)| + |sin(Pi*(n-1)/3)|)*|sin(Pi*n/3)|.
a(n) = ((n+1) mod 3 + 1) mod 2 = (1 - (-1)^(n - 3*floor((n+1)/3)))/2. (End)
a(n) = 2 - a(n-1) - a(n-2) for n > 1. - Reinhard Zumkeller, Apr 13 2008
a(2*n+1) = a(n+1) XOR a(n), a(2*n) = a(n), a(1) = 1, a(0) = 0. - Reinhard Zumkeller, Dec 27 2008
Sum_{n>=1} a(n)/n^s = (1-1/3^s)*Riemann_zeta(s), s > 1. - R. J. Mathar, Jul 31 2010
a(n) = floor((4*n-5)/3) mod 2. - Gary Detlefs, May 15 2011
a(n) = (a(n-1) - a(n-2))^2 with a(0) = 0, a(1) = 1. - Francesco Daddi, Aug 02 2011
Convolution of A040000 with A049347. - R. J. Mathar, Jul 21 2012
G.f.: Sum_{k>0} x^A001651(k). - L. Edson Jeffery, Dec 05 2012
G.f.: x/(G(0) - x^2) where G(k) = 1 - x/(x + 1/(1 - x/G(k+1))); (recursively defined continued fraction). - Sergei N. Gladkovskii, Feb 15 2013
For the general case: The characteristic function of numbers that are not multiples of m is a(n) = floor((n-1)/m) - floor(n/m) + 1, with m,n > 0. - Boris Putievskiy, May 08 2013
a(n) = sign(n mod 3). - Wesley Ivan Hurt, Jun 22 2013
a(n) = A000035(A000032(n)) = A000035(A000045(n)). - Omar E. Pol, Oct 28 2013
a(n) = (-n mod 3)^((n-1) mod 3). - Wesley Ivan Hurt, Apr 16 2015
a(n) = (2/3) * (1 - sin((Pi/6) * (4*n + 3))) for n >= 0. - Werner Schulte, Jul 20 2017
a(n) = a(n-1) XOR a(n-2) with a(0) = 0, a(1) = 1. - Chunqing Liu, Dec 18 2022
a(n) = floor((n+2)/3) - floor(n/3) = A002264(n+2) - A002264(n). - Aaron J Grech, Jul 30 2024
E.g.f.: 2*(exp(x) - exp(-x/2)*cos(sqrt(3)*x/2))/3. - Stefano Spezia, Mar 30 2025
Dirichlet g.f.: zeta(s)*(1-1/3^s). - R. J. Mathar, Aug 10 2025

Extensions

Better name from Omar E. Pol, Oct 28 2013

A007376 The almost-natural numbers: write n in base 10 and juxtapose digits.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 0, 1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 1, 8, 1, 9, 2, 0, 2, 1, 2, 2, 2, 3, 2, 4, 2, 5, 2, 6, 2, 7, 2, 8, 2, 9, 3, 0, 3, 1, 3, 2, 3, 3, 3, 4, 3, 5, 3, 6, 3, 7, 3, 8, 3, 9, 4, 0, 4, 1, 4, 2, 4, 3, 4, 4, 4, 5, 4, 6, 4, 7, 4, 8, 4, 9, 5, 0, 5, 1, 5, 2, 5, 3, 5, 4, 5, 5, 5, 6, 5, 7
Offset: 0

Views

Author

Keywords

Comments

Also called the Barbier infinite word.
This is an example of a non-morphic sequence.
a(n) = A162711(n,1); A136414(n) = 10*a(n) + a(n+1). - Reinhard Zumkeller, Jul 11 2009
a(A031287(n)) = 0, a(A031288(n)) = 1, a(A031289(n)) = 2, a(A031290(n)) = 3, a(A031291(n)) = 4, a(A031292(n)) = 5, a(A031293(n)) = 6, a(A031294(n)) = 7, a(A031295(n)) = 8, a(A031296(n)) = 9. - Reinhard Zumkeller, Jul 28 2011
May be regarded as an irregular table in which the n-th row lists the digits of n. - Jason Kimberley, Dec 07 2012
The digits of the integer n start at index A117804(n). The digit a(n) at index n belongs to the number A100470(n). - M. F. Hasler, Oct 23 2019
See also the Copeland-Erdős constant A033308, equivalent using primes instead of all numbers. - M. F. Hasler, Oct 24 2019
Decimal expansion of Sum_{k>=1} k/10^(A058183(k) + 1). - Stefano Spezia, Nov 30 2022

References

  • J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, pp. 114, 336.
  • R. Honsberger, Mathematical Chestnuts from Around the World, MAA, 2001; see p. 163.
  • M. Kraitchik, Mathematical Recreations. Dover, NY, 2nd ed., 1953, p. 49.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987, p. 26.

Crossrefs

Considered as a sequence of digits, this is the same as the decimal expansion of the Champernowne constant, A033307. See that entry for a formula for a(n), further references, etc.
Cf. A054632 (partial sums), A023103.
Cf. A193428, A256100, A001477 (the nonnegative integers), A117804, A100470.
Tables in which the n-th row lists the base b digits of n: A030190 and A030302 (b=2), A003137 and A054635 (b=3), A030373 (b=4), A031219 (b=5), A030548 (b=6), A030998 (b=7), A031035 and A054634 (b=8), A031076 (b=9), this sequence and A033307 (b=10). - Jason Kimberley, Dec 06 2012
Row lengths in A055642.
For primes here see A071620. See A007908 for a very similar sequence.

Programs

  • Haskell
    a007376 n = a007376_list !! (n-1)
    a007376_list = concatMap (map (read . return) . show) [0..] :: [Int]
    -- Reinhard Zumkeller, Nov 11 2013, Dec 17 2011, Mar 28 2011
    
  • Magma
    &cat[Reverse(IntegerToSequence(n)):n in[0..31]]; // Jason Kimberley, Dec 07 2012
    
  • Maple
    c:=proc(x,y) local s: s:=proc(m) nops(convert(m,base,10)) end: if y=0 then 10*x else x*10^s(y)+y: fi end: b:=proc(n) local nn: nn:=convert(n,base,10):[seq(nn[nops(nn)+1-i],i=1..nops(nn))] end: A:=0: for n from 1 to 75 do A:=c(A,n) od: b(A); # c concatenates 2 numbers while b converts a number to the sequence of its digits - Emeric Deutsch, Jul 27 2006
    #alternative
    A007376 := proc(n) option remember ; local aprev, dOld,N ; if n <=9 then RETURN([n,n,1]) ; else aprev := A007376(n-1) ; dOld := op(3,aprev) ; N := op(2,aprev) ; if dOld < A055642(N) then RETURN([op(-dOld-1,convert(N,base,10)),N,dOld+1]) ; else RETURN([op(-1,convert(N+1,base,10)),N+1,1]) ; fi ; fi ; end: # R. J. Mathar, Jan 21 2008
  • Mathematica
    Flatten[ IntegerDigits /@ Range@ 57] (* Or *)
    almostNatural[n_, b_] := Block[{m = 0, d = n, i = 1, l, p}, While[m <= d, l = m; m = (b - 1) i*b^(i - 1) + l; i++]; i--; p = Mod[d - l, i]; q = Floor[(d - l)/i] + b^(i - 1); If[p != 0, IntegerDigits[q, b][[p]], Mod[q - 1, b]]]; Array[ almostNatural[#, 10] &, 105] (* updated Jun 29 2014 *)
    With[{nn=120},RealDigits[N[ChampernowneNumber[],nn],10,nn]][[1]] (* Harvey P. Dale, Mar 13 2018 *)
  • PARI
    for(n=0,90,v=digits(n);for(i=1,#v,print1(v[i]", "))) \\ Charles R Greathouse IV, Nov 20 2012
    
  • PARI
    apply( A007376(n)={for(k=1,n, k*10^k>n&& return(digits(n\k)[n%k+1]); n+=10^k)}, [0..200]) \\ M. F. Hasler, Nov 03 2019
    
  • Python
    A007376_list = [int(d) for n in range(10**2) for d in str(n)] # Chai Wah Wu, Feb 04 2015

Extensions

Extended to a(0) = 0 by M. F. Hasler, Oct 23 2019

A079978 Characteristic function of multiples of three.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0
Offset: 0

Views

Author

Vladimir Baltic, Feb 17 2003

Keywords

Comments

Period 3: repeat [1, 0, 0].
a(n)=1 if n=3k, a(n)=0 otherwise.
Decimal expansion of 1/999.
Number of permutations satisfying -k <= p(i)-i <= r and p(i)-i not in I, i=1..n, with k=1, r=2, I={0,1}.
a(n) is also the number of partitions of n with every part being three (a(0)=1 because the empty partition has no parts). Hence a(n) is also the number of 2-regular graphs on n vertices with each component having girth 3. - Jason Kimberley, Oct 02 2011
Euler transformation of A185013. - Jason Kimberley, Oct 02 2011
If b(0)=0 and for n > 0, b(n)=a(n), then starting at n=0, b(n) is the number of incongruent equilateral triangles formed from the vertices of a regular n-gon. The number of incongruent isosceles triangles (strictly two equal sides) is A174257(n) and the number of incongruent scalene triangles is A069905(n-3) for n > 2, otherwise 0. The total number of incongruent triangles is A069905(n). - Frank M Jackson, Nov 19 2022

References

  • D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), pp. 755-770. North-Holland, Amsterdam, 1970.

Crossrefs

Essentially the same as A022003.
Partial sums are given by A002264(n+3).
Characteristic function of multiples of g: A000007 (g=0), A000012 (g=1), A059841 (g=2), this sequence (g=3), A121262 (g=4), A079998 (g=5), A079979 (g=6), A082784 (g=7). - Jason Kimberley, Oct 14 2011
Cf. A007908, A011655 (bit flipped).

Programs

Formula

a(n) = a(n-3) for n > 2.
G.f.: 1/(1-x^3) = 1/( (1-x)*(1+x+x^2)).
a(n) = (1 + e^(i*Pi*A002487(n)))/2, i=sqrt(-1). - Paul Barry, Jan 14 2005
Additive with a(p^e) = 1 if p = 3, 0 otherwise.
a(n) = ((n+1) mod 3) mod 2. Also: a(n) = (1/2)*(1 + (-1)^(n + floor((n+1)/3))). - Hieronymus Fischer, May 29 2007
a(n) = 1 - A011655(n). - Reinhard Zumkeller, Nov 30 2009
a(n) = (1 + (-1)^(2*n/3) + (-1)^(-2*n/3))/3. - Jaume Oliver Lafont, May 13 2010
For the general case: the characteristic function of numbers that are multiples of m is a(n) = floor(n/m) - floor((n-1)/m), m,n > 0. - Boris Putievskiy, May 08 2013
a(n) = floor( ((n-1) mod 3)/2 ). - Wesley Ivan Hurt, Jun 29 2013
a(n) = 2^(n mod 3) mod 2. - Olivier Gérard, Jul 04 2013
a(n) = (w^(2*n) + w^n + 1)/3, w = (-1 + i*sqrt(3))/2 (w is a primitive 3rd root of unity). - Bogart B. Strauss, Jul 20 2013
E.g.f.: (exp(x) + 2*exp(-x/2)*cos(sqrt(3)*x/2))/3. - Geoffrey Critzer, Nov 03 2014
a(n) = (sin(Pi*(n+1)/3)^2)*(2/3) + sin(Pi*(n+1)*2/3)/sqrt(3). - Mikael Aaltonen, Jan 03 2015
a(n) = (2*n^2 + 1) mod 3. The characteristic function of numbers that are multiples of 2k+1 is (2*k*n^(2*k) + 1) mod (2k+1). Example: A058331(n) mod 3 for k=1, A211412(n) mod 5 for k=2, ... - Eric Desbiaux, Dec 25 2015
a(n) = floor(2*(n-1)/3) - 2*floor((n-1)/3). - Wesley Ivan Hurt, Jul 25 2016
a(n) == A007908(n+1) (mod 3), n >= 0. See A011655 (bit flipped). - Wolfdieter Lang, Jun 12 2017
a(n) = 1/3 + (2/3)*cos((2/3)*n*Pi). - Ridouane Oudra, Jan 22 2021
a(n) = A000217(n+1) mod 3. - Christopher Adams, Jan 05 2025

Extensions

Name simplified by Ralf Stephan, Nov 22 2010
Name changed by Jason Kimberley, Oct 14 2011

A000042 Unary representation of natural numbers.

Original entry on oeis.org

1, 11, 111, 1111, 11111, 111111, 1111111, 11111111, 111111111, 1111111111, 11111111111, 111111111111, 1111111111111, 11111111111111, 111111111111111, 1111111111111111, 11111111111111111, 111111111111111111, 1111111111111111111, 11111111111111111111
Offset: 1

Views

Author

Keywords

Comments

Or, numbers written in base 1.
If p is a prime > 5 then d_{a(p)} == 1 (mod p) where d_{a(p)} is a divisor of a(p). This also gives an alternate elementary proof of the infinitude of prime numbers by the fact that for every prime p there exists at least one prime of the form k*p + 1. - Amarnath Murthy, Oct 05 2002
11 = 1*9 + 2; 111 = 12*9 + 3; 1111 = 123*9 + 4; 11111 = 1234*9 + 5; 111111 = 12345*9 + 6; 1111111 = 123456*9 + 7; 11111111 = 1234567*9 + 8; 111111111 = 12345678*9 + 9. - Vincenzo Librandi, Jul 18 2010

References

  • Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See pp. 57-58.
  • K. G. Kroeber, Mathematik der Palindrome; p. 348; 2003; ISBN 3 499 615762; Rowohlt Verlag; Germany.
  • D. Olivastro, Ancient Puzzles. Bantam Books, NY, 1993, p. 276.
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 32.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    A000042 n = (10^n-1) `div` 9 -- James Spahlinger, Oct 08 2012
    (Common Lisp) (defun a000042 (n) (truncate (expt 10 n) 9)) ; James Spahlinger, Oct 12 2012
    
  • Magma
    [(10^n - 1)/9: n in [1..20]]; // G. C. Greubel, Nov 04 2018
    
  • Maple
    a:= n-> parse(cat(1$n)):
    seq(a(n), n=1..25);  # Alois P. Heinz, Mar 23 2018
  • Mathematica
    Table[(10^n - 1)/9, {n, 1, 18}]
    FromDigits/@Table[PadLeft[{},n,1],{n,20}] (* Harvey P. Dale, Aug 21 2011 *)
  • PARI
    a(n)=if(n<0,0,(10^n-1)/9)
    
  • Python
    def a(n): return int("1"*n) # Michael S. Branicky, Jan 01 2021
  • Sage
    [gaussian_binomial(n, 1, 10) for n in range(1, 19)]  # Zerinvary Lajos, May 28 2009
    

Formula

a(n) = (10^n - 1)/9.
G.f.: 1/((1-x)*(1-10*x)).
Binomial transform of A003952. - Paul Barry, Jan 29 2004
From Paul Barry, Aug 24 2004: (Start)
a(n) = 10*a(n-1) + 1, n > 1, a(1)=1. [Offset 1.]
a(n) = Sum_{k=0..n} binomial(n+1, k+1)*9^k. [Offset 0.] (End)
a(2n) - 2*a(n) = (3*a(n))^2. - Amarnath Murthy, Jul 21 2003
a(n) is the binary representation of the n-th Mersenne number (A000225). - Ross La Haye, Sep 13 2003
The Hankel transform of this sequence is [1,-10,0,0,0,0,0,0,0,0,...]. - Philippe Deléham, Nov 21 2007
E.g.f.: (exp(10*x) - exp(x))/9. - G. C. Greubel, Nov 04 2018
a(n) = 11*a(n-1) - 10*a(n-2). - Wesley Ivan Hurt, May 28 2021
a(n+m-2) = a(m)*a(n-1) - (a(m)-1)*a(n-2), n>1, m>0. - Matej Veselovac, Jun 07 2021
Sum_{n>=1} 1/a(n) = A065444. - Stefano Spezia, Jul 30 2024

Extensions

More terms from Paul Barry, Jan 29 2004

A000422 Concatenation of numbers from n down to 1.

Original entry on oeis.org

1, 21, 321, 4321, 54321, 654321, 7654321, 87654321, 987654321, 10987654321, 1110987654321, 121110987654321, 13121110987654321, 1413121110987654321, 151413121110987654321, 16151413121110987654321, 1716151413121110987654321, 181716151413121110987654321
Offset: 1

Views

Author

R. Muller

Keywords

Comments

The first prime term in this sequence is a(82) (see A176024). - Artur Jasinski, Mar 30 2008
For n < 10^4, a(n)/A000217(n) is an integer for n = 1, 2, and 18. The integers are 1, 7 (prime), and 1062667552123515268933651, respectively. - Derek Orr, Sep 04 2014

References

  • F. Smarandache, "Properties of the Numbers", University of Craiova Archives, 1975; Arizona State University Special Collections, Tempe, AZ

Crossrefs

Programs

  • Maple
    a[1]:= 1:
    for n from 2 to 100 do
    a[n]:= n*10^(1+ilog10(a[n-1])) + a[n-1]
    od:
    seq(a[n],n=1..100); # Robert Israel, Sep 05 2014
    # second Maple program:
    a:= proc(n) a(n):= `if`(n=1, 1, parse(cat(n, a(n-1)))) end:
    seq(a(n), n=1..22);  # Alois P. Heinz, Jan 12 2021
  • Mathematica
    b = {}; a = {}; Do[w = RealDigits[n]; w = First[w]; Do[PrependTo[a, w[[Length[w] - k + 1]]], {k, 1, Length[w]}]; p = FromDigits[a]; AppendTo[b, p], {n, 1, 30}]; b (* Artur Jasinski, Mar 30 2008 *)
    Table[FromDigits[Flatten[IntegerDigits/@Range[n,1,-1]]],{n,20}] (* Harvey P. Dale, Jul 06 2019 *)
  • PARI
    a(n)=my(t=n);forstep(k=n-1,1,-1,t=t*10^#Str(k)+k);t \\ Charles R Greathouse IV, Jul 15 2011
    
  • PARI
    A000422(n,p=1,L=1)=sum(k=1,n,k*p*=L+(k==L&&!L*=10)) \\ M. F. Hasler, Nov 02 2016
    
  • Python
    def a(n): return int("".join(map(str, range(n, 0, -1))))
    print([a(n) for n in range(1, 19)]) # Michael S. Branicky, Dec 08 2021

Formula

a(n+1) = (n+1)*10^len(a(n)) + a(n), where len(k) = number of digits in k.
a(n) = Sum_{k=1..n} k*10^(A058183(k) - (1+floor(log10(k)))). - Alexander Goebel, Mar 07 2020
From Serge Batalov, Dec 08 2021: (Start)
a(n) = ((n*9-1)*10^n+1)/9^2 for n < 10,
a(n) = ((n*99-1)*10^(2*n-19)-89)/99^2*10^10 + (8*10^10+1)/9^2 for 10 <= n < 100,
a(n) = ((n*999-1)*10^(3*n-299)-989)/999^2*10^191 + c2 for 10^2 <= n < 10^3,
a(n) = ((n*9999-1)*10^(4*n-3999)-9989)/9999^2*10^2892 + c3 for 10^3 <= n < 10^4,
a(n) = ((n*99999-1)*10^(5*n-49999)-99989)/99999^2*10^38893 + c4 for 10^4 <= n < 10^5,
a(n) = ((n*999999-1)*10^(6*n-599999)-999989)/999999^2*10^488894 + c5 for 10^5 <= n < 10^6,
where
c2 = (98*10^191 + 879*10^10 + 121)/99^2 = a(99),
c3 = (998*10^2701 - 989)/999^2*10^191 + c2 = a(999),
c4 = (9998*10^36001 - 9989)/9999^2*10^2892 + c3 = a(9999),
c5 = (99998*10^450001 - 99989)/99999^2*10^38893 + c4 = a(99999).
(End)

Extensions

Edited by N. J. A. Sloane, Dec 03 2021

A014824 a(0) = 0; for n>0, a(n) = 10*a(n-1) + n.

Original entry on oeis.org

0, 1, 12, 123, 1234, 12345, 123456, 1234567, 12345678, 123456789, 1234567900, 12345679011, 123456790122, 1234567901233, 12345679012344, 123456790123455, 1234567901234566, 12345679012345677, 123456790123456788, 1234567901234567899, 12345679012345679010, 123456790123456790121
Offset: 0

Views

Author

Keywords

Comments

The square roots of these numbers have some remarkable properties - see the link to Schizophrenic numbers.
Partial sums of A002275. - Jonathan Vos Post, Apr 25 2010
This sequence is the particular case of a(0) = 0, a(n) = r*a(n-1) + n, when r = 10. If now the first N terms are computed for (r > N) then the resulting set of numbers is readable as the smallest k-digits permutations (1 <= k <= N): Those built from the concatenation of the first k digits in base-r (see links). - R. J. Cano, Jan 09 2013
There is also an interesting structure to the decimal expansion of 1/sqrt(a(2*n+1)), which has long strings of 0's (that gradually shorten in length until they disappear) interspersed with strings of what, at first sight, appear to be random digits. However, if we factorize these blocks of 'random' digits we find they are related to each other. An example illustrating this is given below. - Peter Bala, Sep 13 2015
From Peter Bala, Sep 15 2015: (Start)
Extending the previous empirical observation, it appears that the decimal expansions of the numbers 1/ (a(4*n+1))^(1/2), 1/a((4*n+3))^(1/4), 1/(10*a(4*n))^(1/2), 1/(10*a(4*n+2))^(1/4), and their powers, have the same pattern of beginning with long strings of 0's (that gradually shorten in length until they disappear) interlaced with strings of digits which, when read as integers and factorized, turn out to be related to each other.
The following result, which is a consequence of Bottomley's explicit formula for a(n), should be helpful in explaining these observations: the decimal expansion of 1/a(2*n-1) for n >= 5 begins with long strings of 0's interlaced successively with the digits of the numbers 81*(18*n + 1)^k for k going from 0 up to approximately n/log_10(18*n). For example, for n = 7 we have 1/a(13) = 0.00000000000081000000000102870000000130644900000 165919023..., with 10287 = 81*127, 1306449 = 81*127^2 and 165919023 = 81*127^3. A similar result holds for the decimal expansion of the number 1/a(2*n).
It appears that a(4*n+3)^(1/4), a(4*n+3)^(3/4), (10*a(4*n))^(1/2), (10*a(4*n+2))^(1/4) and (10*a(4*n+2))^(3/4) are further examples of Brown's schizophrenic numbers.
A theorem of Kuzmin in the measure theory of continued fractions says that for a random real number alpha, the probability that some given partial quotient of alpha is equal to a positive integer k is given by 1/log(2)*( log(1 + 1/k) - log(1 + 1/(k+1)) ). Thus large partial quotients are the exception in continued fraction expansions. Empirically, we observe the presence of unexpectedly large partial quotients early in the continued fraction expansions of the numbers (a(4*n+1))^(1/2), (a(4*n+3))^(1/4), (10*a(4*n))^(1/2), (10*a(4*n+2))^(1/4) and their powers. An example is given below. (End)
From Ya-Ping Lu, Dec 21 2024: (Start)
To get a(n), concatenate the first n digits in the cyclic string '123456790' and subtract the number of occurrences of '9' from the concatenated number. For example, a(8) = 12345679 - 1 = 12345678.
There are 2 prime terms for n <= 20000: a(2497) and a(3301). (End)

Examples

			From _Peter Bala_, Sep 13 2015: (Start)
The decimal expansion of 1/sqrt(a(51)) begins 9.0...0211050...07423683750...02901423065625000... x 10^(-26). The long strings of 0's gradually shorten in length and are interspersed with eleven blocks of digits  [9, 21105, 742368375, 2901423065625, 1190671490555859375, 5025824361636282421875, 216068565680679841787109375, 940978603539360710982861328125, 4137365297437126626102768402099609375, 18326229731370116994398540261077880859375, 816525165681195562685426961332324981689453125]. Read as ordinary integers these numbers factorize as [3^2, (3^2)*5*7*67, (3^3)*(5^3)*(7^2)*(67^2), (3^2)*(5^5)*(7^3)*(67^3), (3^2)*(5^8)*(7^5)*(67^4), (3^4)*(5^8)*(7^6)*(67^5), (3^3)*(5^10)*(7^7)*11*(67^6), (3^3)*(5^11)*(7^7)*11*13*(67^7), (3^4)*(5^16)*(7^8)*11*13*(67^8), (3^2)*(5^17)*(7^9)*11*13*17*(67^9), (3^2)*(5^18)*(7^10)*11*13*17*19*(67^10)]. (End)
From _Peter Bala_, Sep 15 2015: (Start)
The continued fraction expansion of 1/sqrt(a(51)) begins [0; 11111111111111111111111111, 9, 47382136934375740345889, 2, 21, 3, 1, 7, 2, 1, 101028010521057015662, 5, 14, 9, 1, 1, 2, 2, 8, 5, 1, 1, 1, 1, 215411536292232442, 5, 1, 5, 1, 1, 2, 1, 1, 8, 1, 4, 3, 1, 4, 2, 1, 8, 1, 1, 3, 10, 459299650942926, 4, 1, 1, 4, 1, 20, 64, 5, 9, 2, 2, 1, 2, 1, 1, 1, 1, 30, 1, 11, 3, 979316952969, 1, 2, 93, 1, 5, 1, 1, 11, 1, 1, 1, 1, 5, 1, 29, 1, 29, 1, 1, 1, 2, 4, 1, 37, 1, 1, 2, 8, 2, 2088095848, 12, 1, 3, 1, 3, 2, 2, 3, 1, 5, 6, 1, 3, 1, 4, 2, 2, 1, 2, 2, 14, 4, 1, 2, 1, 50, 2, 6, 1, 11, 135, 4452229, 1, ...] and has several unexpectedly large partial quotients early on. (End)
For n=5, a(5) = 1*15 + 9*20 + 9^2*15 + 9^3*6 + 9^4*1 + 9^5*0 = 12345. - _Bruno Berselli_, Nov 13 2015
		

Crossrefs

Cf. A060011.
Cf. A002275. - Jonathan Vos Post, Apr 25 2010
Similar sequences in other bases are: (base-2) A000295, (base-3) A000340, (base-4) A014825, (base-5) A014827, (base-6) A014829. - R. J. Cano, Jan 11 2013
Differs from A007908, A035239, A057137, A060555, A138957 from n=10 on. - M. F. Hasler, Jan 17 2013
Cf. A030512.

Programs

  • Magma
    [(10^n-1)*(10/81)-n/9: n in [0..20]]; // Vincenzo Librandi, Aug 23 2011
    
  • Maple
    a:=n->sum((10^(n-j)-1^(n-j))/9,j=0..n): seq(a(n), n=0..17); # Zerinvary Lajos, Jan 15 2007
    a:=n->sum(10^(n-j)*j,j=0..n): seq(a(n), n=0..16); # Zerinvary Lajos, Jun 05 2008
  • Mathematica
    Table[Sum[10^i - 1, {i, n}]/9, {n, 18}] (* Robert G. Wilson v, Nov 20 2004 *)
    CoefficientList[Series[x/(1 - 12*x + 21*x^2 - 10*x^3), {x, 0, 20}], x] (* Wesley Ivan Hurt, Sep 15 2015 *)
  • PARI
    linrec01(p,u,base)={my(r=!p,A=1);for(j=2,u,A=A*base+r+p*j); A};
    a(n)=(n!=0)*linrec01(1, n, 10); \\ R. J. Cano, Jan 09 2011; With (0, n, 10) it generates repunit numbers.
    
  • PARI
    A014824(n)=(10^(n+1)\9-n)\9  \\ M. F. Hasler, Jan 17 2013
    
  • Python
    def A014824(n): s = ''.join('123456790'[i%9] for i in range(n)); q, r = divmod(n, 9); return int(s) - q - r//8 # Ya-Ping Lu, Dec 21 2024

Formula

a(n) = (10^n-1)*(10/81) - n/9. - Henry Bottomley, Jul 04 2000
a(n)/10^n converges to 10/81 = 0.123456790123456790...
Let b(n) = if(n = 0, 1, if(n = 1, 10, 10*9^(n-2))). Then a(n) = Sum_{k=0..n} C(n, k)*b(k) (Binomial transform). - Paul Barry, Jan 29 2004
G.f.: x/(1-12*x+21*x^2-10*x^3). - Colin Barker, Jan 08 2012
a(n) = 12*a(n-1) - 21*a(n-2) + 10*a(n-3), n>2. - Wesley Ivan Hurt, Sep 15 2015
a(n) = Sum_{i=0..n} 9^i*binomial(n+1,n-1-i). - Bruno Berselli, Nov 13 2015
a(n) = Sum_{i=0..n} 10^(n-i)*i. - Ya-Ping Lu, Dec 21 2024
E.g.f.: exp(x)*(10*exp(9*x) - 9*x - 10)/81. - Elmo R. Oliveira, Mar 29 2025
Previous Showing 21-30 of 223 results. Next