cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 141 results. Next

A001845 Centered octahedral numbers (crystal ball sequence for cubic lattice).

Original entry on oeis.org

1, 7, 25, 63, 129, 231, 377, 575, 833, 1159, 1561, 2047, 2625, 3303, 4089, 4991, 6017, 7175, 8473, 9919, 11521, 13287, 15225, 17343, 19649, 22151, 24857, 27775, 30913, 34279, 37881, 41727, 45825, 50183, 54809, 59711, 64897, 70375, 76153, 82239
Offset: 0

Views

Author

Keywords

Comments

Number of points in simple cubic lattice at most n steps from origin.
If X is an n-set and Y_i (i=1,2,3) mutually disjoint 2-subsets of X then a(n-6) is equal to the number of 6-subsets of X intersecting each Y_i (i=1,2,3). - Milan Janjic, Aug 26 2007
Equals binomial transform of [1, 6, 12, 8, 0, 0, 0, ...] where (1, 6, 12, 8) = row 3 of the Chebyshev triangle A013609. - Gary W. Adamson, Jul 19 2008
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=2,(i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n >= 4, a(n-2) = -coeff(charpoly(A,x),x^(n-3)). - Milan Janjic, Jan 26 2010
a(n) = A005408(n) * A097080(n-1) / 3. - Reinhard Zumkeller, Dec 15 2013
a(n) = D(3,n) where D are the Delannoy numbers (A008288). As such, a(n) gives the number of grid paths from (0,0) to (3,n) using steps that move one unit north, east, or northeast. - David Eppstein, Sep 07 2014
The first comment above can be re-expressed and generalized as follows: a(n) is the number of points in Z^3 that are L1 (Manhattan) distance <= n from any given point. Equivalently, due to a symmetry that is easier to see in the Delannoy numbers array (A008288), as a special case of Dmitry Zaitsev's Dec 10 2015 comment on A008288, a(n) is the number of points in Z^n that are L1 (Manhattan) distance <= 3 from any given point. - Shel Kaphan, Jan 02 2023

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 81.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Sums of 2 consecutive terms give A008412.
(1/12)*t*(2*n^3 - 3*n^2 + n) + 2*n - 1 for t = 2, 4, 6, ... gives A049480, A005894, A063488, A001845, A063489, A005898, A063490, A057813, A063491, A005902, A063492, A005917, A063493, A063494, A063495, A063496.
Partial sums of A005899.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
Row/column 3 of A008288.

Programs

Formula

G.f.: (1+x)^3 /(1-x)^4. [conjectured (correctly) by Simon Plouffe in his 1992 dissertation]
a(n) = (2*n+1)*(2*n^2 + 2*n + 3)/3.
First differences of A014820(n). - Alexander Adamchuk, May 23 2006
a(n) = a(n-1) + 4*n^2 + 2, a(0)=1. - Vincenzo Librandi, Mar 27 2011
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), with a(0)=1, a(1)=7, a(2)=25, a(3)=63. - Harvey P. Dale, Jun 05 2013
a(n) = Sum_{k=0..min(3,n)} 2^k * binomial(3,k) * binomial(n,k). See Bump et al. - Tom Copeland, Sep 05 2014
From Luciano Ancora, Jan 08 2015: (Start)
a(n) = 2 * A000330(n) + A000330(n+1) + A000330(n-1).
a(n) = A005900(n) + A005900(n+1).
a(n) = A005900(n) + A000330(n) + A000330(n+1).
a(n) = A000330(n-1) + A000330(n) + A005900(n+1). (End)
a(n) = A002412(n+1) + A016061(n-1) for n > 0. - Bruce J. Nicholson, Nov 12 2017
E.g.f.: exp(x)*(3 + 18*x + 18*x^2 + 4*x^3)/3. - Stefano Spezia, Mar 14 2024
Sum_{n >= 1} (-1)^(n+1)/(n*a(n-1)*a(n)) = 5/6 - log(2) = (1 - 1/2 + 1/3) - log(2). - Peter Bala, Mar 21 2024

A204016 Symmetric matrix based on f(i,j) = max(j mod i, i mod j), by antidiagonals.

Original entry on oeis.org

0, 1, 1, 1, 0, 1, 1, 2, 2, 1, 1, 2, 0, 2, 1, 1, 2, 3, 3, 2, 1, 1, 2, 3, 0, 3, 2, 1, 1, 2, 3, 4, 4, 3, 2, 1, 1, 2, 3, 4, 0, 4, 3, 2, 1, 1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 0, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 6, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 0, 6, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 7, 7
Offset: 1

Views

Author

Clark Kimberling, Jan 10 2012

Keywords

Comments

A204016 represents the matrix M given by f(i,j) = max{(j mod i), (i mod j)} for i >= 1 and j >= 1. See A204017 for characteristic polynomials of principal submatrices of M, with interlacing zeros.
Guide to symmetric matrices M based on functions f(i,j) and characteristic polynomial sequences (c.p.s.) with interlaced zeros:
f(i,j)..........................M.........c.p.s.
C(i+j,j)........................A007318...A045912
min(i,j)........................A003983...A202672
max(i,j)........................A051125...A203989
(i+j)*min(i,j)..................A203990...A203991
|i-j|...........................A049581...A203993
max(i-j+1,j-i+1)................A143182...A203992
min(i-j+1,j-i+1)................A203994...A203995
min(i(j+1),j(i+1))..............A203996...A203997
max(i(j+1)-1,j(i+1)-1)..........A203998...A203999
min(i(j+1)-1,j(i+1)-1)..........A204000...A204001
min(2i+j,i+2j)..................A204002...A204003
max(2i+j-2,i+2j-2)..............A204004...A204005
min(2i+j-2,i+2j-2)..............A204006...A204007
max(3i+j-3,i+3j-3)..............A204008...A204011
min(3i+j-3,i+3j-3)..............A204012...A204013
min(3i-2,3j-2)..................A204028...A204029
1+min(j mod i, i mod j).........A204014...A204015
max(j mod i, i mod j)...........A204016...A204017
1+max(j mod i, i mod j).........A204018...A204019
min(i^2,j^2)....................A106314...A204020
min(2i-1, 2j-1).................A157454...A204021
max(2i-1, 2j-1).................A204022...A204023
min(i(i+1)/2,j(j+1)/2)..........A106255...A204024
gcd(i,j)........................A003989...A204025
gcd(i+1,j+1)....................A204030...A204111
min(F(i+1),F(j+1)),F=A000045....A204026...A204027
gcd(F(i+1),F(j+1)),F=A000045....A204112...A204113
gcd(L(i),L(j)),L=A000032........A204114...A204115
gcd(2^i-1,2^j-2)................A204116...A204117
gcd(prime(i),prime(j))..........A204118...A204119
gcd(prime(i+1),prime(j+1))......A204120...A204121
gcd(2^(i-1),2^(j-1))............A144464...A204122
max(floor(i/j),floor(j/i))......A204123...A204124
min(ceiling(i/j),ceiling(j/i))..A204143...A204144
Delannoy matrix.................A008288...A204135
max(2i-j,2j-i)..................A204154...A204155
-1+max(3i-j,3j-i)...............A204156...A204157
max(3i-2j,3j-2i)................A204158...A204159
floor((i+1)/2)..................A204164...A204165
ceiling((i+1)/2)................A204166...A204167
i+j.............................A003057...A204168
i+j-1...........................A002024...A204169
i*j.............................A003991...A204170
..abbreviation below: AOE means "all 1's except"
AOE f(i,i)=i....................A204125...A204126
AOE f(i,i)=A000045(i+1).........A204127...A204128
AOE f(i,i)=A000032(i)...........A204129...A204130
AOE f(i,i)=2i-1.................A204131...A204132
AOE f(i,i)=2^(i-1)..............A204133...A204134
AOE f(i,i)=3i-2.................A204160...A204161
AOE f(i,i)=floor((i+1)/2).......A204162...A204163
...
Other pairs (M, c.p.s.): (A204171, A204172) to (A204183, A204184)
See A202695 for a guide to choices of symmetric matrix M for which the zeros of the characteristic polynomials are all positive.

Examples

			Northwest corner:
  0 1 1 1 1 1 1 1
  0 1 2 2 2 2 2 2
  1 2 0 3 3 3 3 3
  1 2 3 0 4 4 4 4
  1 2 3 4 0 5 5 5
  1 2 3 4 5 0 6 6
  1 2 3 4 5 6 0 7
		

Crossrefs

Programs

  • Mathematica
    f[i_, j_] := Max[Mod[i, j], Mod[j, i]];
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[8]] (* 8x8 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
    {n, 1, 12}, {i, 1, n}]]  (* A204016 *)
    p[n_] := CharacteristicPolynomial[m[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]               (* A204017 *)
    TableForm[Table[c[n], {n, 1, 10}]]

A143007 Square array, read by antidiagonals, where row n equals the crystal ball sequence for the 2*n-dimensional lattice A_n x A_n.

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 13, 13, 1, 1, 25, 73, 25, 1, 1, 41, 253, 253, 41, 1, 1, 61, 661, 1445, 661, 61, 1, 1, 85, 1441, 5741, 5741, 1441, 85, 1, 1, 113, 2773, 17861, 33001, 17861, 2773, 113, 1, 1, 145, 4873, 46705, 142001, 142001, 46705, 4873, 145, 1
Offset: 0

Views

Author

Peter Bala, Jul 22 2008

Keywords

Comments

The A_n lattice consists of all vectors v = (x_1,...,x_(n+1)) in Z^(n+1) such that x_1 + ... + x_(n+1) = 0. The lattice is equipped with the norm ||v|| = 1/2*(|x_1| + ... + |x_(n+1)|). Pairs of lattice points (v,w) in the product lattice A_n x A_n have norm ||(v,w)|| = ||v|| + ||w||. Then the k-th term in the crystal ball sequence for the A_n x A_n lattice gives the number of such pairs (v,w) for which ||(v,w)|| is less than or equal to k.
This array has a remarkable relationship with Apery's constant zeta(3). The row (or column) and main diagonal entries of the array occur in series acceleration formulas for zeta(3). For row n entries there holds zeta(3) = (1+1/2^3+...+1/n^3) + Sum_{k >= 1} 1/(k^3*T(n,k-1)*T(n,k)). Also, as consequence of Apery's proof of the irrationality of zeta(3), we have a series acceleration formula along the main diagonal of the table: zeta(3) = 6 * sum {n >= 1} 1/(n^3*T(n-1,n-1)*T(n,n)). Apery's result appears to generalize to the other diagonals of the table. Calculation suggests the following result may hold: zeta(3) = 1 + 1/2^3 + ... + 1/k^3 + Sum_{n >= 1} (2*n+k)*(3*n^2 +3*n*k +k^2)/(n^3*(n+k)^3*T(n-1,n+k-1)*T(n,n+k)).
For the corresponding results for the constant zeta(2), related to the crystal ball sequences of the lattices A_n, see A108625. For corresponding results for log(2), coming from either the crystal ball sequences of the hypercubic lattices A_1 x ... x A_1 or the lattices of type C_n, see A008288 and A142992 respectively.

Examples

			The table begins
n\k|0...1.....2......3.......4.......5
======================================
0..|1...1.....1......1.......1.......1
1..|1...5....13.....25......41......61 A001844
2..|1..13....73....253.....661....1441 A143008
3..|1..25...253...1445....5741...17861 A143009
4..|1..41...661...5741...33001..142001 A143010
5..|1..61..1441..17861..142001..819005 A143011
........
Example row 1 [1,5,13,...]:
The lattice A_1 x A_1 is equivalent to the square lattice of all integer lattice points v = (x,y) in Z x Z equipped with the taxicab norm ||v|| = (|x| + |y|). There are 4 lattice points (marked with a 1 on the figure below) satisfying ||v|| = 1 and 8 lattice points (marked with a 2 on the figure) satisfying ||v|| = 2. Hence the crystal ball sequence for the A_1 x A_1 lattice begins 1, 1+4 = 5, 1+4+8 = 13, ... .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . 2 . . . . .
. . . . 2 1 2 . . . .
. . . 2 1 0 1 2 . . .
. . . . 2 1 2 . . . .
. . . . . 2 . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
Row 1 = [1,5,13,...] is the sequence of partial sums of A008574; row 2 = [1,13,73,...] is the sequence of partial sums of A008530, so row 2 is the crystal ball sequence for the lattice A_2 x A_2 (the 4-dimensional di-isohexagonal orthogonal lattice).
Read as a triangle the array begins
n\k|0...1....2....3...4...5
===========================
0..|1
1..|1...1
2..|1...5....1
3..|1..13...13....1
4..|1..25...73...25...1
5..|1..41..253..253..41...1
		

Crossrefs

Cf. A001844 (row 1), A005259 (main diagonal), A008288, A008530 (first differences of row 2), A008574 (first differences of row 1), A085478, A108625, A142992, A143003, A143004, A143005, A143006, A143008 (row 2), A143009 (row 3), A142010 (row 4), A143011 (row 5).
Cf. A227845 (antidiagonal sums), A246464.
The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)

Programs

  • Magma
    A:= func< n,k | (&+[(Binomial(n,j)*Binomial(n+k-j,k-j))^2: j in [0..n]]) >; // Array
    A143007:= func< n,k | A(n-k,k) >; // Antidiagonal triangle
    [A143007(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 05 2023
    
  • Maple
    with(combinat): T:= (n,k) -> add(binomial(n+j,2*j)*binomial(2*j,j)^2*binomial(k+j,2*j), j = 0..n): for n from 0 to 9 do seq(T(n,k),k = 0..9) end do;
  • Mathematica
    T[n_, k_]:= HypergeometricPFQ[{-k, k+1, -n, n+1}, {1, 1, 1}, 1]; Table[T[n-k, k], {n,0,12}, {k,0,n}]//Flatten (* Jean-François Alcover, Mar 06 2013 *)
  • PARI
    /* Print as a square array: */
    {T(n, k)=sum(j=0, n, binomial(n+j, 2*j)*binomial(2*j, j)^2*binomial(k+j, 2*j))}
    for(n=0, 10, for(k=0,10, print1(T(n,k), ", "));print(""))
    
  • PARI
    /* (1) G.f. A(x,y) when read as a triangle: */
    {T(n,k)=local(A=1+x); A=sum(m=0, n, x^m * y^m / (1-x +x*O(x^n))^(2*m+1) * sum(k=0, m, binomial(m, k)^2*x^k)^2 ); polcoeff(polcoeff(A, n,x), k,y)}
    for(n=0, 10, for(k=0,n, print1(T(n,k), ", "));print(""))
    
  • PARI
    /* (2) G.f. A(x,y) when read as a triangle: */
    {T(n,k)=local(A=1+x); A=sum(m=0, n, x^m/(1-x*y +x*O(x^n))^(2*m+1) * sum(k=0, m, binomial(m, k)^2 * x^k * y^k)^2 ); polcoeff(polcoeff(A, n,x), k,y)}
    for(n=0, 10, for(k=0,n, print1(T(n,k), ", "));print(""))
    
  • PARI
    /* (3) G.f. A(x,y) when read as a triangle: */
    {T(n,k)=local(A=1+x); A=sum(m=0, n, x^m*sum(k=0, m, binomial(m , k)^2 * y^k * sum(j=0, k, binomial(k, j)^2 * x^j)+x*O(x^n))); polcoeff(polcoeff(A, n,x), k,y)}
    for(n=0, 10, for(k=0,n, print1(T(n,k), ", "));print(""))
    
  • PARI
    /* (4) G.f. A(x,y) when read as a triangle: */
    {T(n,k)=local(A=1+x); A=sum(m=0, n, x^m*sum(k=0, m, binomial(m, k)^2 * y^(m-k) * sum(j=0, k, binomial(k, j)^2 * x^j * y^j)+x*O(x^n))); polcoeff(polcoeff(A, n,x), k,y)}
    for(n=0, 10, for(k=0,n, print1(T(n,k), ", "));print(""))
    /* End */
    
  • SageMath
    def A(n,k): return sum((binomial(n,j)*binomial(n+k-j,k-j))^2 for j in range(n+1)) # array
    def A143007(n,k): return A(n-k,k) # antidiagonal triangle
    flatten([[A143007(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Oct 05 2023

Formula

T(n,k) = Sum_{j = 0..n} C(n+j,2*j)*C(2*j,j)^2*C(k+j,2*j).
The array is symmetric T(n,k) = T(k,n).
The main diagonal [1,5,73,1445,...] is the sequence of Apery numbers A005259.
The entries in the k-th column satisfy the Apery-like recursion n^3*T(n,k) + (n-1)^3*T(n-2,k) = (2*n-1)*(n^2-n+1+2*k^2+2*k)*T(n-1,k).
The LDU factorization of the square array is L * D * transpose(L), where L is the lower triangular array A085478 and D is the diagonal matrix diag(C(2n,n)^2). O.g.f. for row n: The generating function for the coordination sequence of the lattice A_n is [Sum_{k = 0..n} C(n,k)^2*x^k ]/(1-x)^n. Thus the generating function for the coordination sequence of the product lattice A_n x A_n is {[Sum_{k = 0..n} C(n,k)^2*x^k]/(1-x)^n}^2 and hence the generating function for row n of this array, the crystal ball sequence of the lattice A_n x A_n, equals [Sum_{k = 0..n} C(n,k)^2*x^k]^2/(1-x)^(2n+1) = 1/(1-x)*[Legendre_P(n,(1+x)/(1-x))]^2. See [Conway & Sloane].
Series acceleration formulas for zeta(3): Row n: zeta(3) = (1 + 1/2^3 + ... + 1/n^3) + Sum_{k >= 1} 1/(k^3*T(n,k-1)*T(n,k)), n = 0,1,2,... . For example, the fourth row of the table (n = 3) gives zeta(3) = (1 + 1/2^3 + 1/3^3) + 1/(1^3*1*25) + 1/(2^3*25*253) + 1/(3^3*253*1445) + ... . See A143003 for further details.
Main diagonal: zeta(3) = 6 * Sum_{n >= 1} 1/(n^3*T(n-1,n-1)*T(n,n)). Conjectural result for other diagonals: zeta(3) = 1 + 1/2^3 + ... + 1/k^3 + Sum_{n >= 1} (2*n+k)*(3*n^2+3*n*k+k^2)/(n^3*(n+k)^3*T(n-1,n+k-1)*T(n,n+k)).
Sum_{k=0..n} T(n-k,k) = A227845(n) (antidiagonal sums). - Paul D. Hanna, Aug 27 2014
The main superdiagonal numbers S(n) := T(n,n+1) appear to satisfy the supercongruences S(m*p^r - 1) == S(m*p^(r-1) - 1) (mod p^(3*r)) for prime p >= 5 and m, r in N (this is true: see A352653. - Peter Bala, Apr 16 2022).
From Paul D. Hanna, Aug 27 2014: (Start)
G.f. A(x,y) = Sum_{n>=0, k=0..n} T(n,k)*x^n*y^k can be expressed by:
(1) Sum_{n>=0} x^n * y^n / (1-x)^(2*n+1) * [Sum_{k=0..n} C(n,k)^2 * x^k]^2,
(2) Sum_{n>=0} x^n / (1 - x*y)^(2*n+1) * [Sum_{k=0..n} C(n,k)^2 * x^k * y^k]^2,
(3) Sum_{n>=0} x^n * Sum_{k=0..n} C(n,k)^2 * y^k * Sum_{j=0..k} C(k,j)^2 * x^j,
(4) Sum_{n>=0} x^n * Sum_{k=0..n} C(n,k)^2 * y^(n-k) * Sum_{j=0..k} C(k,j)^2 * x^j * y^j. (End)
From Peter Bala, Jun 23 2023: (Start)
T(n,k) = Sum_{j = 0..n} C(n,j)^2 * C(n+k-j,k-j)^2.
T(n,k) = binomial(n+k,k)^2 * hypergeom([-n, -n, -k, -k],[-n - k, -n - k, 1], 1).
T(n,k) = hypergeom([n+1, -n, k+1, -k], [1, 1, 1], 1). (End)
From Peter Bala, Jun 28 2023: (Start)
T(n,k) = the coefficient of (x*z)^n*(y*t)^k in the expansion of 1/( (1 - x - y)*(1 - z - t) - x*y*z*t ).
T(n,k) = A(n, k, n, k) in the notation of Straub, equation 7.
The supercongruences T(n*p^r, k*p^r) == T(n*p^(r-1), k*p^(r-1)) (mod p^(3*r)) hold for all primes p >= 5 and positive integers n and k.
The formula T(n,k) = hypergeom([n+1, -n, k+1, -k], [1, 1, 1], 1) allows the table indexing to be extended to negative values of n and k; we have T(-n,k) = T(n-1,k) and T(n,-k) = T(n,k-1) leading to T(-n,-k) = T(n-1, k-1). (End)
From G. C. Greubel, Oct 05 2023: (Start)
Let t(n, k) = T(n-k, k) be the antidiagonal triangle, then:
t(n, k) = t(n, n-k).
Sum_{k=0..floor(n/2)} t(n-k,k) = A246563(n).
t(2*n+1, n+1) = A352653(n+1). (End)
From Peter Bala, Sep 27 2024: (Start)
The square array = A063007 * transpose(A063007) (LU factorization).
Let L denote the lower triangular array (l(n,k))n,k >= 0, where l(n, k) = (-1)^(n+k) * binomial(n, k)*binomial(n+k, k). (L is a signed version of A063007 and L = A063007 * A007318 ^(-1).)
Then the square array = L * transpose(A108625).
L^2 * transpose(A108625) = the Hadamard product of A108625 with itself (both identities can be verified using the MulZeil procedure in Doron Zeilberger's MultiZeilberger package to find recurrences for the double sums involved). (End)

Extensions

Spelling/notation corrections by Charles R Greathouse IV, Mar 18 2010

A108625 Square array, read by antidiagonals, where row n equals the crystal ball sequence for the A_n lattice.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 7, 5, 1, 1, 13, 19, 7, 1, 1, 21, 55, 37, 9, 1, 1, 31, 131, 147, 61, 11, 1, 1, 43, 271, 471, 309, 91, 13, 1, 1, 57, 505, 1281, 1251, 561, 127, 15, 1, 1, 73, 869, 3067, 4251, 2751, 923, 169, 17, 1, 1, 91, 1405, 6637, 12559, 11253, 5321, 1415, 217, 19, 1
Offset: 0

Views

Author

Paul D. Hanna, Jun 12 2005

Keywords

Comments

Compare to the corresponding array A108553 of crystal ball sequences for D_n lattice.
From Peter Bala, Jul 18 2008: (Start)
Row reverse of A099608.
This array has a remarkable relationship with the constant zeta(2). The row, column and diagonal entries of the array occur in series acceleration formulas for zeta(2).
For the entries in row n we have zeta(2) = 2*(1 - 1/2^2 + 1/3^2 - ... + (-1)^(n+1)/n^2) + (-1)^n*Sum_{k >= 1} 1/(k^2*T(n,k-1)*T(n,k)). For example, n = 4 gives zeta(2) = 2*(1 - 1/4 + 1/9 - 1/16) + 1/(1*21) + 1/(4*21*131) + 1/(9*131*471) + ... . See A142995 for further details.
For the entries in column k we have zeta(2) = (1 + 1/4 + 1/9 + ... + 1/k^2) + 2*Sum_{n >= 1} (-1)^(n+1)/(n^2*T(n-1,k)*T(n,k)). For example, k = 4 gives zeta(2) = (1 + 1/4 + 1/9 + 1/16) + 2*(1/(1*9) - 1/(4*9*61) + 1/(9*61*309) - ... ). See A142999 for further details.
Also, as consequence of Apery's proof of the irrationality of zeta(2), we have a series acceleration formula along the main diagonal of the table: zeta(2) = 5 * Sum_{n >= 1} (-1)^(n+1)/(n^2*T(n,n)*T(n-1,n-1)) = 5*(1/3 - 1/(2^2*3*19) + 1/(3^2*19*147) - ...).
There also appear to be series acceleration results along other diagonals. For example, for the main subdiagonal, calculation supports the result zeta(2) = 2 - Sum_{n >= 1} (-1)^(n+1)*(n^2+(2*n+1)^2)/(n^2*(n+1)^2*T(n,n-1)*T(n+1,n)) = 2 - 10/(2^2*7) + 29/(6^2*7*55) - 58/(12^2*55*471) + ..., while for the main superdiagonal we appear to have zeta(2) = 1 + Sum_{n >= 1} (-1)^(n+1)*((n+1)^2 + (2*n+1)^2)/(n^2*(n+1)^2*T(n-1,n)*T(n,n+1)) = 1 + 13/(2^2*5) - 34/(6^2*5*37) + 65/(12^2*37*309) - ... .
Similar series acceleration results hold for Apery's constant zeta(3) involving the crystal ball sequences for the product lattices A_n x A_n; see A143007 for further details. Similar results also hold between the constant log(2) and the crystal ball sequences of the hypercubic lattices A_1 x...x A_1 and between log(2) and the crystal ball sequences for lattices of type C_n ; see A008288 and A142992 respectively for further details. (End)
This array is the Hilbert transform of triangle A008459 (see A145905 for the definition of the Hilbert transform). - Peter Bala, Oct 28 2008

Examples

			Square array begins:
  1,   1,    1,     1,      1,       1,       1, ... A000012;
  1,   3,    5,     7,      9,      11,      13, ... A005408;
  1,   7,   19,    37,     61,      91,     127, ... A003215;
  1,  13,   55,   147,    309,     561,     923, ... A005902;
  1,  21,  131,   471,   1251,    2751,    5321, ... A008384;
  1,  31,  271,  1281,   4251,   11253,   25493, ... A008386;
  1,  43,  505,  3067,  12559,   39733,  104959, ... A008388;
  1,  57,  869,  6637,  33111,  124223,  380731, ... A008390;
  1,  73, 1405, 13237,  79459,  350683, 1240399, ... A008392;
  1,  91, 2161, 24691, 176251,  907753, 3685123, ... A008394;
  1, 111, 3191, 43561, 365751, 2181257, ...      ... A008396;
  ...
As a triangle:
  [0]  1
  [1]  1,  1
  [2]  1,  3,   1
  [3]  1,  7,   5,    1
  [4]  1, 13,  19,    7,    1
  [5]  1, 21,  55,   37,    9,    1
  [6]  1, 31, 131,  147,   61,   11,   1
  [7]  1, 43, 271,  471,  309,   91,  13,   1
  [8]  1, 57, 505, 1281, 1251,  561, 127,  15,  1
  [9]  1, 73, 869, 3067, 4251, 2751, 923, 169, 17, 1
       ...
Inverse binomial transform of rows yield rows of triangle A063007:
  1;
  1,  2;
  1,  6,   6;
  1, 12,  30,  20;
  1, 20,  90, 140,  70;
  1, 30, 210, 560, 630, 252; ...
Product of the g.f. of row n and (1-x)^(n+1) generates the symmetric triangle A008459:
  1;
  1,  1;
  1,  4,   1;
  1,  9,   9,   1;
  1, 16,  36,  16,  1;
  1, 25, 100, 100, 25, 1;
  ...
		

Crossrefs

Rows include: A003215 (row 2), A005902 (row 3), A008384 (row 4), A008386 (row 5), A008388 (row 6), A008390 (row 7), A008392 (row 8), A008394 (row 9), A008396 (row 10).
Cf. A063007, A099601 (n-th term of A_{2n} lattice), A108553.
Cf. A008459 (h-vectors type B associahedra), A145904, A145905.
Cf. A005258 (main diagonal), A108626 (antidiagonal sums).

Programs

  • Magma
    T:= func< n,k | (&+[Binomial(n,j)^2*Binomial(n+k-j,k-j): j in [0..k]]) >; // array
    A108625:= func< n,k | T(n-k,k) >; // antidiagonals
    [A108625(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 05 2023
    
  • Maple
    T := (n,k) -> binomial(n, k)*hypergeom([-k, k - n, k - n], [1, -n], 1):
    seq(seq(simplify(T(n,k)),k=0..n),n=0..10); # Peter Luschny, Feb 10 2018
  • Mathematica
    T[n_, k_]:= HypergeometricPFQ[{-n, -k, n+1}, {1, 1}, 1] (* Michael Somos, Jun 03 2012 *)
  • PARI
    T(n,k)=sum(i=0,k,binomial(n,i)^2*binomial(n+k-i,k-i))
    
  • SageMath
    def T(n,k): return sum(binomial(n,j)^2*binomial(n+k-j, k-j) for j in range(k+1)) # array
    def A108625(n,k): return T(n-k, k) # antidiagonals
    flatten([[A108625(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Oct 05 2023

Formula

T(n, k) = Sum_{i=0..k} C(n, i)^2 * C(n+k-i, k-i).
G.f. for row n: (Sum_{i=0..n} C(n, i)^2 * x^i)/(1-x)^(n+1).
Sum_{k=0..n} T(n-k, k) = A108626(n) (antidiagonal sums).
From Peter Bala, Jul 23 2008 (Start):
O.g.f. row n: 1/(1 - x)*Legendre_P(n,(1 + x)/(1 - x)).
G.f. for square array: 1/sqrt((1 - x)*((1 - t)^2 - x*(1 + t)^2)) = (1 + x + x^2 + x^3 + ...) + (1 + 3*x + 5*x^2 + 7*x^3 + ...)*t + (1 + 7*x + 19*x^2 + 37*x^3 + ...)*t^2 + ... . Cf. A142977.
Main diagonal is A005258.
Recurrence relations:
Row n entries: (k+1)^2*T(n,k+1) = (2*k^2+2*k+n^2+n+1)*T(n,k) - k^2*T(n,k-1), k = 1,2,3,... ;
Column k entries: (n+1)^2*T(n+1,k) = (2*k+1)*(2*n+1)*T(n,k) + n^2*T(n-1,k), n = 1,2,3,... ;
Main diagonal entries: (n+1)^2*T(n+1,n+1) = (11*n^2+11*n+3)*T(n,n) + n^2*T(n-1,n-1), n = 1,2,3,... .
Series acceleration formulas for zeta(2):
Row n: zeta(2) = 2*(1 - 1/2^2 + 1/3^2 - ... + (-1)^(n+1)/n^2) + (-1)^n*Sum_{k >= 1} 1/(k^2*T(n,k-1)*T(n,k));
Column k: zeta(2) = 1 + 1/2^2 + 1/3^2 + ... + 1/k^2 + 2*Sum_{n >= 1} (-1)^(n+1)/(n^2*T(n-1,k)*T(n,k));
Main diagonal: zeta(2) = 5 * Sum_{n >= 1} (-1)^(n+1)/(n^2*T(n-1,n-1)*T(n,n)).
Conjectural result for superdiagonals: zeta(2) = 1 + 1/2^2 + ... + 1/k^2 + Sum_{n >= 1} (-1)^(n+1) * (5*n^2 + 6*k*n + 2*k^2)/(n^2*(n+k)^2*T(n-1,n+k-1)*T(n,n+k)), k = 0,1,2... .
Conjectural result for subdiagonals: zeta(2) = 2*(1 - 1/2^2 + ... + (-1)^(k+1)/k^2) + (-1)^k*Sum_{n >= 1} (-1)^(n+1)*(5*n^2 + 4*k*n + k^2)/(n^2*(n+k)^2*T(n+k-1,n-1)*T(n+k,n)), k = 0,1,2... .
Conjectural congruences: the main superdiagonal numbers S(n) := T(n,n+1) appear to satisfy the supercongruences S(m*p^r - 1) = S(m*p^(r-1) - 1) (mod p^(3*r)) for all primes p >= 5 and all positive integers m and r. If p is prime of the form 4*n + 1 we can write p = a^2 + b^2 with a an odd number. Then calculation suggests the congruence S((p-1)/2) == 2*a^2 (mod p). (End)
From Michael Somos, Jun 03 2012: (Start)
T(n, k) = hypergeom([-n, -k, n + 1], [1, 1], 1).
T(n, n-1) = A208675(n).
T(n+1, n) = A108628(n). (End)
T(n, k) = binomial(n, k)*hypergeom([-k, k - n, k - n], [1, -n], 1). - Peter Luschny, Feb 10 2018
From Peter Bala, Jun 23 2023: (Start)
T(n, k) = Sum_{i = 0..k} (-1)^i * binomial(n, i)*binomial(n+k-i, k-i)^2.
T(n, k) = binomial(n+k, k)^2 * hypergeom([-n, -k, -k], [-n - k, -n - k], 1). (End)
From Peter Bala, Jun 28 2023; (Start)
T(n,k) = the coefficient of (x^n)*(y^k)*(z^n) in the expansion of 1/( (1 - x - y)*(1 - z ) - x*y*z ).
T(n,k) = B(n, k, n) in the notation of Straub, equation 24.
The supercongruences T(n*p^r, k*p^r) == T(n*p^(r-1), k*p^(r-1)) (mod p^(3*r)) hold for all primes p >= 5 and positive integers n and k.
The formula T(n,k) = hypergeom([n+1, -n, -k], [1, 1], 1) allows the table indexing to be extended to negative values of n and k; clearly, we find that T(-n,k) = T(n-1,k) for all n and k. It appears that T(n,-k) = (-1)^n*T(n,k-1) for n >= 0, while T(n,-k) = (-1)^(n+1)*T(n,k-1) for n <= -1 [added Sep 10 2023: these follow from the identities immediately below]. (End)
T(n,k) = Sum_{i = 0..n} (-1)^(n+i) * binomial(n, i)*binomial(n+i, i)*binomial(k+i, i) = (-1)^n * hypergeom([n + 1, -n, k + 1], [1, 1], 1). - Peter Bala, Sep 10 2023
From G. C. Greubel, Oct 05 2023: (Start)
Let t(n,k) = T(n-k, k) (antidiagonals).
t(n, k) = Hypergeometric3F2([k-n, -k, n-k+1], [1,1], 1).
T(n, 2*n) = A363867(n).
T(3*n, n) = A363868(n).
T(2*n, 2*n) = A363869(n).
T(n, 3*n) = A363870(n).
T(2*n, 3*n) = A363871(n). (End)
T(n, k) = Sum_{i = 0..n} binomial(n, i)*binomial(n+i, i)*binomial(k, i). - Peter Bala, Feb 26 2024
Sum_{k = 0..n} (-1)^(n+k)*binomial(n, k)*binomial(n+k, k)*T(n, k) = A005259(n), the Apéry numbers associated with zeta(3). - Peter Bala, Jul 18 2024
From Peter Bala, Sep 21 2024: (Start)
Sum_{k = 0..n} (-1)^(n+k)*binomial(n, k)*T(n, k) = binomial(2*n, n) = A000984(n).
Sum_{k = 0..n} (-1)^(n+k)*binomial(n, k)*binomial(n+k, k)*T(n-1, n-k) = A376458(n).
Sum_{k = 0..n} (-1)^(n+k)*binomial(n, k)*binomial(n+k, k)*T(i, k) = A143007(n, i). (End)
From Peter Bala, Oct 12 2024: (Start)
The square array = A063007 * transpose(A007318).
Conjecture: for positive integer m, Sum_{k = 0..n} (-1)^(n+k) * binomial(n, k) * T(m*n, k) = ((m+1)*n)!/( ((m-1)*n)!*n!^2) (verified up to m = 10 using the MulZeil procedure in Doron Zeilberger's MultiZeilberger package). (End)

A143003 a(0) = 0, a(1) = 1, a(n+1) = (2*n+1)*(n^2+n+5)*a(n) - n^6*a(n-1).

Original entry on oeis.org

0, 1, 21, 1091, 114520, 21298264, 6410456640, 2923097201856, 1920450126458880, 1747596822651334656, 2133806329230225408000, 3405545462439659704320000, 6950705677729940374290432000, 17807686090745585163974737920000
Offset: 0

Views

Author

Peter Bala, Jul 19 2008

Keywords

Comments

This is the case m = 1 of the general recurrence a(0) = 0, a(1) = 1, a(n+1) = (2*n+1)*(n^2+n+2*m^2+2*m+1)*a(n) - n^6*a(n-1) (we suppress the dependence of a(n) on m), which arises when accelerating the convergence of the series Sum_{k>=1} 1/k^3 for Apery's constant zeta(3). For other cases see A066989 (m=0), A143004 (m=2), A143005 (m=3) and A143006 (m=4).
The solution to the general recurrence may be expressed as a sum: a(n) = n!^3*p_m(n)*Sum_{k = 1..n} 1/(k^3*p_m(k-1)*p_m(k)), where p_m(x) = Sum_{k = 0..n} C(2*k,k)^2*C(n+k,2*k)*C(x+k,2*k) is a polynomial in x of degree 2*m.
The first few are p_0(x) = 1, p_1(x) = 2*x^2 + 2*x + 1, p_2(x) = (3*x^4 + 6*x^3 + 9*x^2 + 6*x + 2)/2 and p_3(x) = (10*x^6 + 30*x^5 + 85*x^4 + 120*x^3 + 121*x^2 + 66*x + 18)/18. For fixed n, the sequence [p_n(k)]k>=0 is the crystal ball sequence for the product lattice A_n x A_n. See A143007 for the table of values [p_n(k)] n,k >= 0. Observe that [p_n(n)] n >= 0 is the sequence of Apery numbers A005259.
The reciprocity law p_m(n) = p_n(m) holds for nonnegative integers m and n. In particular we have p_m(1) = 2*m^2 + 2*m + 1 and p_m(2) = (3*m^4 + 6*m^3 + 9*m^2 + 6*m + 2)/2.
The polynomial p_m(x) is the unique polynomial solution of the difference equation (x+1)^3*f(x+1) + x^3*f(x-1) = (2*x+1)*(x^2+x+2*m^2+2*m+1)*f(x), normalized so that f(0) = 1. The reciprocity law now yields the Apery-like recursion m^3*p_m(x) + (m-1)^3*p_(m-2)(x) = (2*m-1)*(m^2-m+1+2*x^2+2*x)*p_(m-1)(x).
The polynomial functions p_m(x) have their zeros on the vertical line Re x = -1/2 in the complex plane; that is, the polynomials p_m(x-1), m = 1,2,3,..., satisfy a Riemann hypothesis (adapt the proof of the lemma on p. 4 of [BUMP et al.]).
The general recurrence in the first paragraph above has a second solution b(n) = n!^3*p_m(n) with initial conditions b(0) = 1, b(1) = 2*m^2+2*m+1. Hence the behavior of a(n) for large n is given by lim_{n -> infinity} a(n)/b(n) = Sum_{k>=1} 1/(k^3*p_m(k-1)*p_m(k)) = 1/((2*m^2+2*m+1) - 1^6/(3*(2*m^2+2*m+3) - 2^6/(5*(2*m^2+2*m+7) - 3^6/(7*(2*m^2+2*m+13) - ...)))) = Sum_{k>=1} 1/(m+k)^3. The final equality follows from a result of Ramanujan; see [Berndt, Chapter 12, Entry 32(iii)].
For the corresponding results for the constant zeta(2) see A142995. For corresponding results for the constant log(2) see A142979 and A142992.

References

  • Bruce C. Berndt, Ramanujan's Notebooks Part II, Springer-Verlag.

Crossrefs

The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)

Programs

  • Maple
    p := n -> 2*n^2+2*n+1: a := n -> n!^3*p(n)*sum (1/(k^3*p(k-1)*p(k)), k = 1..n): seq(a(n), n = 0..14)
  • Mathematica
    RecurrenceTable[{a[0]==0,a[1]==1,a[n+1]==(2n+1)(n^2+n+5)a[n]- n^6 a[n-1]}, a[n],{n,15}] (* Harvey P. Dale, Jun 20 2011 *)

Formula

a(n) = n!^3*p(n)*Sum_{k = 1..n} 1/(k^3*p(k-1)*p(k)), where p(n) = 2*n^2 + 2*n + 1 = A001844(n).
Recurrence: a(0) = 0, a(1) = 1, a(n+1) = (2*n+1)*(n^2+n+5)*a(n) - n^6*a(n-1).
The sequence b(n):= n!^3*p(n) satisfies the same recurrence with the initial conditions b(0) = 1, b(1) = 5. Hence we obtain the finite continued fraction expansion a(n)/b(n) = 1/(5 - 1^6/(21 - 2^6/(55 - 3^6/(119 - ... - (n-1)^6/((2*n-1)*(n^2-n+5)))))), for n >= 2. The behavior of a(n) for large n is given by lim_{n -> infinity} a(n)/b(n) = Sum_{k>=1} 1/(k^3*(4*k^4 + 1)) = 1/(5 - 1^6/(21 - 2^6/(55 - 3^6/(119 - ... - n^6/((2*n+1)*(n^2+n+5) - ...))))) = zeta(3) - 1, where the final equality follows from a result of Ramanujan; see [Berndt, Chapter 12, Entry 32(iii) at x = 1].

A002002 a(n) = Sum_{k=0..n-1} binomial(n,k+1) * binomial(n+k,k).

Original entry on oeis.org

0, 1, 5, 25, 129, 681, 3653, 19825, 108545, 598417, 3317445, 18474633, 103274625, 579168825, 3256957317, 18359266785, 103706427393, 586889743905, 3326741166725, 18885056428537, 107347191941249, 610916200215241
Offset: 0

Views

Author

Keywords

Comments

From Benoit Cloitre, Jan 29 2002: (Start)
Array interpretation (first row and column are the natural numbers):
1 2 3 ..j ... if b(i,j) = b(i-1,j) + b(i-1,j-1) + b(i,j-1) then a(n+1) = b(n,n)
2 5 .........
.............
i........... b(i,j)
(End)
Number of ordered trees with 2n edges, having root of even degree, nonroot nodes of outdegree at most 2 and branches of odd length. - Emeric Deutsch, Aug 02 2002
Coefficient of x^n in ((1-x)/(1-2x))^n, n>0. - Michael Somos, Sep 24 2003
Number of peaks in all Schroeder paths (i.e., consisting of steps U=(1,1), D=(1,-1), H=(2,0) and never going below the x-axis) from (0,0) to (2n,0). Example: a(2)=5 because HH, HU*D, U*DH, UHD, U*DU*D, UU*DD contain 5 peaks (indicated by *). - Emeric Deutsch, Dec 06 2003
a(n) is the total number of HHs in all Schroeder (n+1)-paths. Example: a(2)=5 because UH*HD, H*H*H, UDH*H, H*HUD contain 5 HHs (indicated by *) and the other 18 Schroeder 3-paths contain no HHs. - David Callan, Jul 03 2006
a(n) is the total number of Hs in all Schroeder n-paths. Example: a(2)=5 as the Schroeder 2-paths are HH, DUH, DHU, HDU, DUDU and DDUU, and there are 5 H's. In general, a(n) is the total number of H..Hs (m+1 H's) in all Schroeder (n+m)-paths. - FUNG Cheok Yin, Jun 19 2021
a(n) is the number of points in Z^(n+1) that are L1 (Manhattan) distance <= n from the origin, or the number of points in Z^n that are L1 distance <= n+1 from the origin. These terms occur in the crystal ball sequences: a(n) here is the n-th term in the sequence for the (n+1)-dimensional cubic lattice as well as the (n+1)-st term in the sequence for the n-dimensional cubic lattice. See A008288 for a list of crystal ball sequences (rows or columns of A008288). - Shel Kaphan, Dec 25 2022 [Edited by Peter Munn, Jan 05 2023]

Examples

			G.f. = x + 5*x^2 + 25*x^3 + 129*x^4 + 681*x^5 + 3653*x^6 + 19825*x^7 + 108545*x^8 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Bisection of A002003, Cf. A047781, A001003.
a(n)=T(n, n+1), array T as in A050143.
a(n)=T(n, n+1), array T as in A064861.
Half the first differences of central Delannoy numbers (A001850).
a(n)=T(n, n+1), array T as in A008288.

Programs

  • Magma
    [&+[Binomial(n,k+1)*Binomial(n+k,k): k in [0..n]]: n in [0..21]];  // Bruno Berselli, May 19 2011
    
  • Maple
    A064861 := proc(n,k) option remember; if n = 1 then 1; elif k = 0 then 0; else A064861(n,k-1)+(3/2-1/2*(-1)^(n+k))*A064861(n-1,k); fi; end; seq(A064861(i,i+1),i=1..40);
  • Mathematica
    CoefficientList[Series[((1-x)/Sqrt[1-6x+x^2]-1)/2, {x,0,30}],x]  (* Harvey P. Dale, Mar 17 2011 *)
    a[ n_] := n Hypergeometric2F1[ n + 1, -n + 1, 2, -1] (* Michael Somos, Aug 09 2011 *)
    a[ n_] := With[{m = Abs@n}, Sign[n] Sum[ Binomial[ m, k] Binomial[ m + k - 1, m], {k, m}]]; (* Michael Somos, Aug 09 2011 *)
  • Maxima
    makelist(sum(binomial(n,k+1)*binomial(n+k,k), k, 0, n), n, 0, 21); /* Bruno Berselli, May 19 2011 */
    
  • PARI
    {a(n) = my(m = abs(n)); sign( n) * sum( k=0, m-1, binomial( m, k+1) * binomial( m+k, k))}; /* Michael Somos, Aug 09 2011 */
    
  • PARI
    /* L.g.f.: Sum_{n>=1} d^(n-1)/dx^(n-1) x^(2*n-1)*(1-x)^(-n)/n! */
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=1); A=(sum(m=1, n+1, Dx(m-1, x^(2*m-1)/(1-x)^m/m!)+x*O(x^n))); n*polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", ")) \\ Paul D. Hanna, May 17 2015
  • Sage
    a = lambda n: hypergeometric([1-n, -n], [1], 2) if n>0 else 0
    [simplify(a(n)) for n in range(22)] # Peter Luschny, Nov 19 2014
    

Formula

G.f.: ((1-x)/sqrt(1-6*x+x^2)-1)/2. - Emeric Deutsch, Aug 02 2002
E.g.f.: exp(3*x)*(BesselI(0, 2*sqrt(2)*x)+sqrt(2)*BesselI(1, 2*sqrt(2)*x)). - Vladeta Jovovic, Mar 28 2004
a(n) = Sum_{k=0..n-1} binomial(n-1, k)*binomial(n+k, k+1). - Paul Barry, Sep 20 2004
a(n) = n * hypergeom([n + 1, -n + 1], [2], -1) = ((n+1)*LegendreP(n+1,3) - (5*n+3)*LegendreP(n,3))/(2*n) for n > 0. - Mark van Hoeij, Jul 12 2010
G.f.: x*d/dx log(1/(1-x*A006318(x))). - Vladimir Kruchinin, Apr 19 2011
a(n) = -a(-n) for all n in Z. - Michael Somos, Aug 09 2011
G.f.: -1 + 1 / ( 1 - x / (1 - 4*x / (1 - x^2 / (1 - 4*x / (1 - x^2 / (1 - 4*x / ...)))))). - Michael Somos, Jan 03 2013
a(n) = Sum_{k=0..n} A201701(n,k)^2 = Sum_{k=0..n} A124182(n,k)^2 for n > 0. - Philippe Deléham, Dec 05 2011
D-finite with recurrence: 2*(6*n^2-12*n+5)*a(n-1)-(n-2)*(2*n-1)*a(n-2)-n*(2*n-3)*a(n)=0. - Vaclav Kotesovec, Oct 04 2012
a(n) ~ (3+2*sqrt(2))^n/(2^(5/4)*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 04 2012
D-finite (an alternative): n*a(n) = (6-n)*a(n-6) + (14*n-72)*a(n-5) + (264-63*n)*a(n-4) + 100*(n-3)*a(n-3) + (114-63*n)*a(n-2) + 2*(7*n-6)*a(n-1), n >= 7. - Fung Lam, Feb 05 2014
a(n) = (-1)^(n-1)*Sum_{k=0..n-1} (-2)^k*binomial(n-1,k)*binomial(n+k,k) and n^3*a(n) = Sum_{k=0..n-1} (4*k^3+4*k^2+4*k+1)*binomial(n-1,k)*binomial(n+k,k). For each of the two equalities, both sides satisfy the same recurrence -- this follows from the Zeilberger algorithm. - Zhi-Wei Sun, Aug 30 2014
a(n) = hypergeom([1-n, -n], [1], 2) for n >= 1. - Peter Luschny, Nov 19 2014
Logarithmic derivative of A001003 (little Schroeder numbers). - Paul D. Hanna, May 17 2015
L.g.f.: L(x) = Sum_{n>=1} d^(n-1)/dx^(n-1) x^(2*n-1) * (1-x)^(-n) / n! = Sum_{n>=1} a(n)*x^n/n where exp(L(x)) = g.f. of A001003. - Paul D. Hanna, May 17 2015
a(n+1) = (1/2^(n+1)) * Sum_{k >= 0} (1/2^k) * binomial(n + k, n)*binomial(n + k, n + 1). - Peter Bala, Mar 02 2017
2*a(n) = A110170(n), n > 0. - R. J. Mathar, Feb 10 2022
a(n) = (LegendreP(n,3) - LegendreP(n-1,3))/2. - Mark van Hoeij, Jul 14 2022
D-finite with recurrence n*a(n) +(-7*n+5)*a(n-1) +(7*n-16)*a(n-2) +(-n+3)*a(n-3)=0. - R. J. Mathar, Aug 01 2022
From Peter Bala, Nov 08 2022: (Start)
a(n) = (-1)^(n+1)*hypergeom( [n+1, -n+1], [1], 2) for n >= 1.
The Gauss congruences hold: a(n*p^r) == a(n^p^(r-1)) (mod p^r) for all primes p and all positive integers n and r. (End)
From Peter Bala, Apr 18 2024: (Start)
G.f.: Sum_{n >= 1} binomial(2*n-1, n)*x^n/(1 - x)^(2*n) = x + 5*x^2 + 25*x^3 + 129*x^4 + ....
Row sums of A253283. (End)

Extensions

More terms from Clark Kimberling

A081577 Pascal-(1,2,1) array read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 7, 7, 1, 1, 10, 22, 10, 1, 1, 13, 46, 46, 13, 1, 1, 16, 79, 136, 79, 16, 1, 1, 19, 121, 307, 307, 121, 19, 1, 1, 22, 172, 586, 886, 586, 172, 22, 1, 1, 25, 232, 1000, 2086, 2086, 1000, 232, 25, 1, 1, 28, 301, 1576, 4258, 5944, 4258, 1576, 301, 28, 1
Offset: 0

Views

Author

Paul Barry, Mar 23 2003

Keywords

Comments

One of a family of Pascal-like arrays. A007318 is equivalent to the (1,0,1)-array. A008288 is equivalent to the (1,1,1)-array. Rows include A016777, A038764, A081583, A081584. Coefficients of the row polynomials in the Newton basis are given by A013610.
As a number triangle, this is the Riordan array (1/(1-x), x(1+2x)/(1-x)). It has row sums A002605 and diagonal sums A077947. - Paul Barry, Jan 24 2005
All entries are == 1 mod 3. - Roger L. Bagula, Oct 04 2008
Row sums are A002605. - Roger L. Bagula, Dec 09 2008
As a number triangle T, T(2n,n)=A069835(n). - Philippe Deléham, Jan 10 2014

Examples

			Square array begins as:
  1,  1,  1,   1,   1, ... A000012;
  1,  4,  7,  10,  13, ... A016777;
  1,  7, 22,  46,  79, ... A038764;
  1, 10, 46, 136, 307, ... A081583;
  1, 13, 79, 307, 886, ... A081584;
From _Roger L. Bagula_, Dec 09 2008: (Start)
As a triangle this begins:
  1;
  1,  1;
  1,  4,   1;
  1,  7,   7,    1;
  1, 10,  22,   10,    1;
  1, 13,  46,   46,   13,    1;
  1, 16,  79,  136,   79,   16,    1;
  1, 19, 121,  307,  307,  121,   19,    1;
  1, 22, 172,  586,  886,  586,  172,   22,   1;
  1, 25, 232, 1000, 2086, 2086, 1000,  232,  25,  1;
  1, 28, 301, 1576, 4258, 5944, 4258, 1576, 301, 28, 1; (End)
		

Crossrefs

Cf. Pascal-(1,a,1) array: A123562 (a=-3), A098593 (=-2), A000012 (a=-1), A007318 (a=0), A008288 (a=1), A081577(a=2), A081578 (a=3), A081579 (a=4), A081580 (a=5), A081581 (a=6), A081582 (a=7), A143683(a=8). [From Roger L. Bagula, Dec 09 2008], Philippe Deléham, Jan 10 2014, Mar 16 2014.

Programs

  • Haskell
    a081577 n k = a081577_tabl !! n !! k
    a081577_row n = a081577_tabl !! n
    a081577_tabl = map fst $ iterate
        (\(us, vs) -> (vs, zipWith (+) (map (* 2) ([0] ++ us ++ [0])) $
                           zipWith (+) ([0] ++ vs) (vs ++ [0]))) ([1], [1, 1])
    -- Reinhard Zumkeller, Mar 16 2014
    
  • Magma
    A081577:= func< n,k | (&+[Binomial(k,j)*Binomial(n-j,k)*2^j: j in [0..n-k]]) >;
    [A081577(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 25 2021
    
  • Mathematica
    a[0]={1}; a[1]={1, 1}; a[n_]:= a[n]= 2*Join[{0}, a[n-2], {0}] + Join[{0}, a[n-1]] + Join[a[n-1], {0}]; Table[a[n], {n,0,10}]//Flatten (* Roger L. Bagula, Dec 09 2008 *)
    Table[Hypergeometric2F1[-k, k-n, 1, 3], {n,0,10}, {k,0,n}]//Flatten (* Jean-François Alcover, May 24 2013 *)
  • Sage
    flatten([[hypergeometric([-k, k-n], [1], 3).simplify() for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 25 2021

Formula

Square array T(n, k) defined by T(n, 0) = T(0, k) = 1, T(n, k) = T(n, k-1) + 2*T(n-1, k-1) + T(n-1, k).
Rows are the expansions of (1+2*x)^k/(1-x)^(k+1).
G.f.: 1/(1-x-y-2*x*y). - Ralf Stephan, Apr 28 2004
T(n,k) = Sum_{j=0..n} binomial(k,j-k)*binomial(n+k-j,k)*2^(j-k). - Paul Barry, Oct 23 2006
a(n) = 2*{0, a(n-2), 0} + {0, a(n-1)} + {a(n-1), 0}. - Roger L. Bagula, Dec 09 2008
T(n, k) = Hypergeometric2F1([-k, k-n], [1], 3). - Jean-François Alcover, May 24 2013
The e.g.f. for the n-th subdiagonal, n = 0,1,2,..., equals exp(x)*P(n,x), where P(n,x) is the polynomial Sum_{k = 0..n} binomial(n,k)*(3*x)^k/k!. For example, the e.g.f. for the second subdiagonal is exp(x)*(1 + 6*x + 9*x^2/2) = 1 + 7*x + 22*x^2/2! + 46*x^3/3! + 79*x^4/4! + 121*x^5/5! + .... - Peter Bala, Mar 05 2017
Sum_{k=0..n} T(n,k) = A002605(n). - G. C. Greubel, May 25 2021

A035607 Table a(d,m) of number of points of L1 norm m in cubic lattice Z^d, read by antidiagonals (d >= 1, m >= 0).

Original entry on oeis.org

1, 1, 2, 1, 4, 2, 1, 6, 8, 2, 1, 8, 18, 12, 2, 1, 10, 32, 38, 16, 2, 1, 12, 50, 88, 66, 20, 2, 1, 14, 72, 170, 192, 102, 24, 2, 1, 16, 98, 292, 450, 360, 146, 28, 2, 1, 18, 128, 462, 912, 1002, 608, 198, 32, 2, 1, 20, 162, 688, 1666, 2364, 1970, 952, 258, 36, 2, 1, 22, 200, 978, 2816
Offset: 0

Views

Author

Keywords

Comments

Table also gives coordination sequences of same lattices.
Rows sums are given by A001333. Rising and falling diagonals are the tribonacci numbers A000213, A001590. - Paul Barry, Feb 13 2003
a(d,m) also gives the number of ways to choose m squares from a 2 X (d-1) grid so that no two squares in the selection are (horizontally or vertically) adjacent. - Jacob A. Siehler, May 13 2006
Mirror image of triangle A113413. - Philippe Deléham, Oct 15 2006
The Ca1 sums lead to A126116 and the Ca2 sums lead to A070550, see A180662 for the definitions of these triangle sums. - Johannes W. Meijer, Aug 05 2011
A035607 is jointly generated with the Delannoy triangle A008288 as an array of coefficients of polynomials v(n,x): initially, u(1,x) = v(1,x) = 1; for n > 1, u(n,x) = x*u(n-1,x) + v(n-1) and v(n,x) = 2*x*u(n-1,x) + v(n-1,x). See the Mathematica section. - Clark Kimberling, Mar 05 2012
Also, the polynomial v(n,x) above is x + (x + 1)*f(n-1,x), where f(0,x) = 1. - Clark Kimberling, Oct 24 2014
Rows also give the coefficients of the independence polynomial of the n-ladder graph. - Eric W. Weisstein, Dec 29 2017
Considering both sequences as square arrays (offset by one row), the rows of A035607 are the first differences of the rows of A008288, and the rows of A008288 are the partial sums of the rows of A035607. - Shel Kaphan, Feb 23 2023
Considering only points with nonnegative coordinates, the number of points at L1 distance = m in d dimensions is the same as the number of ways of putting m indistinguishable balls into d distinguishable urns, binomial(m+d-1, d-1). This is one facet of the cross-polytope. Allowing for + and - coordinates, there are binomial(d,i)*2^i facets containing points with up to i nonzero coordinates. Eliminating double counting of points with any coordinates = 0, there are Sum_{i=1..d} (-1)^(d-i)*binomial(m+i-1,i-1)*binomial(d,i)*2^i points at distance m in d dimensions. One may avoid the alternating sum by using binomial(m-1,i-1) to count only the points per facet with exactly i nonzero coordinates, avoiding any double counting, but the result is the same. - Shel Kaphan, Mar 04 2023

Examples

			From _Clark Kimberling_, Oct 24 2014: (Start)
As a triangle of coefficients in polynomials v(n,x) in Comments, the first 6 rows are
  1
  1   2
  1   4   2
  1   6   8   2
  1   8  18  12   2
  1  10  32  38  16   2
  ... (End)
From _Shel Kaphan_, Mar 04 2023: (Start)
For d=3, m=4:
There are binomial(3,1)*2^1 = 6 facets (vertices) of binomial(4+1-1,1-1) = 1 point with <= one nonzero coordinate.
There are binomial(3,2)*2^2 = 12 facets (edges) of binomial(4+2-1,2-1) = 5 points with <= two nonzero coordinates.
There are binomial(3,3)*2^3 = 8 facets (faces) of binomial(4+3-1,3-1) = 15 points with <= three nonzero coordinates.
a(3,4) = 8*15 - 12*5 + 6*1 = 120 - 60 + 6 = 66. (End)
		

Crossrefs

Other versions: A113413, A119800, A122542, A266213.
Cf. A008288, which has g.f. 1/(1-x-x*y-x^2*y).
Cf. A078057 (row sums), A050146 (central terms).
Cf. A050146.

Programs

  • Haskell
    a035607 n k = a035607_tabl !! n !! k
    a035607_row n = a035607_tabl !! n
    a035607_tabl = map fst $ iterate
       (\(us, vs) -> (vs, zipWith (+) ([0] ++ us ++ [0]) $
                          zipWith (+) ([0] ++ vs) (vs ++ [0]))) ([1], [1, 2])
    -- Reinhard Zumkeller, Jul 20 2013
    
  • Maple
    A035607 := proc(d,m) local j: add(binomial(floor((d-1+j)/2),d-m-1)*binomial(d-m-1, floor((d-1-j)/2)),j=0..d-1) end: seq(seq(A035607(d,m),m=0..d-1),d=1..11); # d=dimension, m=norm # Johannes W. Meijer, Aug 05 2011
  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := x*u[n - 1, x] + v[n - 1, x];
    v[n_, x_] := 2 x*u[n - 1, x] + v[n - 1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A008288 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A035607 *)
    (* Clark Kimberling, Mar 09 2012 *)
    Reverse /@ CoefficientList[CoefficientList[Series[(1 + x)/(1 - x - x y - x^2 y), {x, 0, 10}], x], y] // Flatten (* Eric W. Weisstein, Dec 29 2017 *)
  • PARI
    T(n, k) = if (k==0, 1, sum(i=0, k-1, binomial(n-k,i+1)*binomial(k-1,i)*2^(i+1)));
    tabl(nn) = for (n=1, nn, for (k=0, n-1, print1(T(n, k), ", ")); print); \\ as a triangle; Michel Marcus, Feb 27 2018
  • Sage
    def A035607_row(n):
        @cached_function
        def prec(n, k):
            if k==n: return 1
            if k==0: return 0
            return prec(n-1,k-1)+2*sum(prec(n-i,k-1) for i in (2..n-k+1))
        return [prec(n, n-k) for k in (0..n-1)]
    for n in (1..10): print(A035607_row(n)) # Peter Luschny, Mar 16 2016
    

Formula

From Johannes W. Meijer, Aug 05 2011: (Start)
f(d,m) = Sum_{j=0..d-1} binomial(floor((d-1+j)/2), d-m-1)*binomial(d-m-1, floor((d-1-j)/2)), d >= 1 and 0 <= m <= d-1.
f(d,m) = f(d-1,m-1) + f(d-1,m) + f(d-2,m-1) (d >= 3 and 1 <= m <= d-1) with f(d,0) = 1 (d >= 1) and f(d,d-1) = 2 (d>=2). (End)
From Roger Cuculière, Apr 10 2006: (Start)
The generating function G(x,y) of this double sequence is the sum of a(n,p)*x^n*y^p, n=1..oo, p=0..oo, which is G(x,y) = x*(1+y)/(1-x-y-x*y).
The horizontal generating function H_n(y), which generates the rows of the table: (1, 2, 2, 2, 2, ...), (1, 4, 8, 12, 16, ...), (1, 6, 18, 38, 66, ...), is the sum of a(n,p)*y^p, p=0..oo, for each fixed n. This is H_n(y) = ((1+y)^n)/((1-y)^n).
The vertical generating function V_p(x), which generates the columns of the table: (1, 1, 1, 1, 1, ...), (2, 4, 6, 8, 10, ...), (2, 8, 18, 32, 50, ...), is the sum of a(n,p)*x^n, n=1..oo, for each fixed p. This is V_p(x) = 2*((1+x)^(p-1))/((1-x)^(p+1)) for p >= 1 and V_0(x) = x/(1-x). (End)
G.f.: (1+x)/(1-x-x*y-x^2*y). - Vladeta Jovovic, Apr 02 2002 (But see previous lines!)
T(2*n,n) = A050146(n+1). - Reinhard Zumkeller, Jul 20 2013
Seen as a triangle read by rows: T(n,0) = 1, for n > 1: T(n,n-1) = 2, T(n,k) = T(n-1,k-1) + T(n-1,k) + T(n-2,k-1), 0 < k < n. - Reinhard Zumkeller, Jul 20 2013
Seen as a triangle T(n,k) with 0 <= k < n read by rows: T(n,0)=1 for n > 0 and T(n,k) = Sum_{i=0..k-1} binomial(n-k,i+1)*binomial(k-1,i)*2^(i+1) for k > 0. - Werner Schulte, Feb 22 2018
With p >= 1 and q >= 0, as a square array a(p,q) = T(p+q-1,q) = 2*p*Hypergeometric2F1[1-p, 1-q, 2, 2] for q >= 1. Consequently, a(p,q) = a(q,p)*p/q. - Shel Kaphan, Feb 14 2023
For n >= 1, T(2*n,n) = A002003(n), T(3*n,2*n) = A103885(n) and T(4*n,3*n) = A333715(n). - Peter Bala, Jun 15 2023

Extensions

More terms from David W. Wilson
Maple program corrected and information added by Johannes W. Meijer, Aug 05 2011

A033877 Triangular array read by rows associated with Schroeder numbers: T(1,k) = 1; T(n,k) = 0 if k < n; T(n,k) = T(n,k-1) + T(n-1,k-1) + T(n-1,k).

Original entry on oeis.org

1, 1, 2, 1, 4, 6, 1, 6, 16, 22, 1, 8, 30, 68, 90, 1, 10, 48, 146, 304, 394, 1, 12, 70, 264, 714, 1412, 1806, 1, 14, 96, 430, 1408, 3534, 6752, 8558, 1, 16, 126, 652, 2490, 7432, 17718, 33028, 41586, 1, 18, 160, 938, 4080, 14002, 39152, 89898, 164512, 206098
Offset: 1

Views

Author

Keywords

Comments

A106579 is in some ways a better version of this sequence, but since this was entered first it will be the main entry for this triangle.
The diagonals of this triangle are self-convolutions of the main diagonal A006318: 1, 2, 6, 22, 90, 394, 1806, ... . - Philippe Deléham, May 15 2005
From Johannes W. Meijer, Sep 22 2010, Jul 15 2013: (Start)
Note that for the terms T(n,k) of this triangle n indicates the column and k the row.
The triangle sums, see A180662, link Schroeder's triangle with several sequences, see the crossrefs. The mirror of this triangle is A080247.
Quite surprisingly the Kn1p sums, p >= 1, are all related to A026003 and crystal ball sequences for n-dimensional cubic lattices (triangle offset is 0): Kn11(n) = A026003(n), Kn12(n) = A026003(n+2) - 1, Kn13(n) = A026003(n+4) - A005408(n+3), Kn14(n) = A026003(n+6) - A001844(n+4), Kn15(n) = A026003(n+8) - A001845(n+5), Kn16(n) = A026003(n+10) - A001846(n+6), Kn17(n) = A026003(n+12) - A001847(n+7), Kn18(n) = A026003(n+14) - A001848(n+8), Kn19(n) = A026003(n+16) - A001849(n+9), Kn110(n) = A026003(n+18) - A008417(n+10), Kn111(n) = A026003(n+20) - A008419(n+11), Kn112(n) = A026003(n+22) - A008421(n+12). (End)
T(n,k) is the number of normal semistandard Young tableaux with two columns, one of height k and one of height n. The recursion can be seen by performing jeu de taquin deletion on all instances of the smallest value. (If there are two instances of the smallest value, jeu de taquin deletion will always shorten the right column first and the left column second.) - Jacob Post, Jun 19 2018

Examples

			Triangle starts:
  1;
  1,    2;
  1,    4,    6;
  1,    6,   16,   22;
  1,    8,   30,   68,   90;
  1,   10,   48,  146,  304,  394;
  1,   12,   70,  264,  714, 1412, 1806;
  ... - _Joerg Arndt_, Sep 29 2013
		

Crossrefs

Essentially same triangle as A080247 and A080245 but with rows read in reversed order. Also essentially the same triangle as A106579.
Cf. A001003 (row sums), A026003 (antidiagonal sums).
Triangle sums (see the comments): A001003 (Row1, Row2), A026003 (Kn1p, p >= 1), A006603 (Kn21), A227504 (Kn22), A227505 (Kn23), A006603(2*n) (Kn3), A001850 (Kn4), A227506 (Fi1), A010683 (Fi2).

Programs

  • Haskell
    a033877 n k = a033877_tabl !! n !! k
    a033877_row n = a033877_tabl !! n
    a033877_tabl = iterate
       (\row -> scanl1 (+) $ zipWith (+) ([0] ++ row) (row ++ [0])) [1]
    -- Reinhard Zumkeller, Apr 17 2013
    
  • Magma
    function t(n,k)
      if k le 0 or k gt n then return 0;
      elif k eq 1 then return 1;
      else return t(n,k-1) + t(n-1,k-1) + t(n-1,k);
      end if;
    end function;
    [t(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 23 2023
  • Maple
    T := proc(n, k) option remember; if n=1 then return(1) fi; if kJohannes W. Meijer, Sep 22 2010, revised Jul 17 2013
  • Mathematica
    T[1, ]:= 1; T[n, k_]/;(k
    				
  • Sage
    def A033877_row(n):
        @cached_function
        def prec(n, k):
            if k==n: return 1
            if k==0: return 0
            return prec(n-1,k-1)-2*sum(prec(n,k+i-1) for i in (2..n-k+1))
        return [(-1)^k*prec(n, n-k) for k in (0..n-1)]
    for n in (1..10): print(A033877_row(n)) # Peter Luschny, Mar 16 2016
    
  • SageMath
    @CachedFunction
    def t(n, k): # t = A033847
        if (k<0 or k>n): return 0
        elif (k==1): return 1
        else: return t(n, k-1) + t(n-1, k-1) + t(n-1, k)
    flatten([[t(n,k) for k in range(1,n+1)] for n in range(1, 16)]) # G. C. Greubel, Mar 23 2023
    

Formula

As an upper right triangle: a(n, k) = a(n, k-1) + a(n-1, k-1) + a(n-1, k) if k >= n >= 0 and a(n, k) = 0 otherwise.
G.f.: Sum T(n, k)*x^n*y^k = (1-x*y-(x^2*y^2-6*x*y+1)^(1/2)) / (x*(2*y+x*y-1+(x^2*y^2-6*x*y+1)^(1/2))). - Vladeta Jovovic, Feb 16 2003
Another version of A000007 DELTA [0, 2, 1, 2, 1, 2, 1, 2, 1, 2, ...] = 1, 1, 0, 1, 2, 0, 1, 4, 6, 0, 1, 6, 16, 22, 0, 1, ..., where DELTA is Deléham's operator defined in A084938.
Sum_{n=1..floor((k+1)/2)} T(n+p-1, k-n+p) = A026003(2*p+k-3) - A008288(2*p+k-3, p-2), p >= 2, k >= 1. - Johannes W. Meijer, Sep 28 2013
From G. C. Greubel, Mar 23 2023: (Start)
(t(n, k) as a lower triangle)
t(n, k) = t(n, k-1) + t(n-1, k-1) + t(n-1, k) with t(n, 1) = 1.
t(n, n) = A006318(n-1).
t(2*n-1, n) = A330801(n-1).
t(2*n-2, n) = A103885(n-1), n > 1.
Sum_{k=1..n-1} t(n, k) = A238112(n), n > 1.
Sum_{k=1..n} t(n, k) = A001003(n).
Sum_{k=1..n-1} (-1)^(k-1)*t(n, k) = (-1)^n*A001003(n-1), n > 1.
Sum_{k=1..n} (-1)^(k-1)*t(n, k) = A080243(n-1).
Sum_{k=1..floor((n+1)/2)} t(n-k+1, k) = A026003(n-1). (End)

Extensions

More terms from David W. Wilson

A002003 a(n) = 2 * Sum_{k=0..n-1} binomial(n-1, k)*binomial(n+k, k).

Original entry on oeis.org

0, 2, 8, 38, 192, 1002, 5336, 28814, 157184, 864146, 4780008, 26572086, 148321344, 830764794, 4666890936, 26283115038, 148348809216, 838944980514, 4752575891144, 26964373486406, 153196621856192, 871460014012682, 4962895187697048, 28292329581548718
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of order-preserving partial self maps of {1,...,n}. For example, a(2) = 8 because there are 8 order-preserving partial self maps of {1,2}: (1 2), (1 1), (2 2), (1 -), (2 -), (- 1), (- 2), (- -). Here for example (2 -) represents the partial map which maps 1 to 2 but does not include 2 in its domain. - James East, Oct 25 2005
From Peter Bala, Mar 02 2020: (Start)
For fixed m = 1,2,3,..., we conjecture that the sequence b(n) := a(m*n) satisfies a recurrence of the form P(2*m,n)*b(n+1) + P(2*m,-n)*b(n-1) = Q(2*m,n)*b(n), where the polynomials P(2*m,n) and Q(2*m,n) have degree 2*m. Conjecturally, the polynomial Q(2*m,n) is an even function of n; its 2*m zeros seem to belong to the interval [-1, 1] and 2*m - 2 of these zeros appear to lie close to the rational numbers of the form +-(2*k + 1)/(2*m), where 0 <= k <= m - 2. Cf. A103885. (End)
a(n), n>0, is the number of points at L1 distance = n from any given point in Z^n. The sequence is also the difference between the central diagonal (A001850) and +-1 diagonal (A002002) of the Delannoy number triangle (A008288). - Shel Kaphan, Feb 15 2023

Examples

			G.f. = 2*x + 8*x^2 + 38*x^3 + 192*x^4 + 1002*x^5 + 5336*x^6 + 28814*x^7 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    A064861 := proc(n,k) option remember; if n = 1 then 1; elif k = 0 then 0; else A064861(n,k-1)+(3/2-1/2*(-1)^(n+k))*A064861(n-1,k); fi; end; seq(A064861(i,i-1),i=1..40);
  • Mathematica
    Flatten[{0,Table[SeriesCoefficient[((1+x)/Sqrt[1-6*x+x^2]-1)/2,{x,0,n}],{n,1,20}]}] (* Vaclav Kotesovec, Oct 04 2012 *)
    a[ n_] := If[ n < 1, 0, Hypergeometric2F1[ n, -n, 1, -1]]; (* Michael Somos, Aug 24 2014 *)
    Table[2*Sum[Binomial[n-1,k]Binomial[n+k,k],{k,0,n-1}],{n,0,30}] (* Harvey P. Dale, Sep 18 2024 *)
  • PARI
    {a(n) = if( n<1, 0, polcoeff( ((1 - x^2) / (1 - x)^2 + x * O(x^n))^n, n))} /* Michael Somos, Sep 24 2003 */
    
  • Python
    from math import comb
    def A002003(n): return sum(comb(n,k)**2*k<Chai Wah Wu, Mar 22 2023

Formula

a(n) = 2*A047781(n).
From Vladeta Jovovic, Mar 28 2004: (Start)
G.f.: ((1+x)/sqrt(1-6*x+x^2)-1)/2.
E.g.f.: exp(3*x)*(2*BesselI(0, 2*sqrt(2)*x)+sqrt(2)*BesselI(1, 2*sqrt(2)*x)). (End)
a(n) = T(n, n-1), array T as in A064861.
a(n) = T(n, n-2), array T as in A049600.
a(n+1) = A110110(2n+1). - Tilman Neumann, Feb 05 2009
a(n) = 2 * JacobiP(n-1,0,1,3) = ((7*n+3)*LegendreP(n,3) - (n+1)*LegendreP(n+1,3)) /(2*n) for n > 0. - Mark van Hoeij, Jul 12 2010
Logarithmic derivative of A006318, the large Schroeder numbers. - Paul D. Hanna, Oct 25 2010
D-finite with recurrence: 4*(3*n^2-6*n+2)*a(n-1) - (n-2)*(2*n-1)*a(n-2) - n*(2*n-3)*a(n)=0. - Vaclav Kotesovec, Oct 04 2012
a(n) ~ (3+2*sqrt(2))^n/(2^(3/4)*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 04 2012
Recurrence (an alternative): n*a(n) = (6-n)*a(n-6) + 2*(5*n-27)*a(n-5) + (84-15*n)*a(n-4) + 52*(3-n)*a(n-3) + 3*(2-5*n)*a(n-2) + 2*(5*n-3)*a(n-1), n>=7. - Fung Lam, Feb 05 2014
a(n) = Hyper2F1([-n, n], [1], -1) for n > 0. - Peter Luschny, Aug 02 2014
a(n) = [x^n] ((1+x)/(1-x))^n for n > 0. - Seiichi Manyama, Jun 07 2018
From Peter Bala, Mar 13 2020: (Start)
a(n) = 2 * Sum_{k = 0..n-1} 2^k*C(n,k+1)*C(n-1,k).
a(n) = 2 * (-1)^(n+1) * Sum_{k = 0..n-1} (-2)^k*C(n+k,n-1)*C(n-1,k).
a(n) = Sum_{k = 0..n} C(n,k)*C(2*n-k-1,n-1).
Conjecture: a(n) = - [x^n] (1 - F(x))^n, where F(x) = 2*x + 6*x^2 + 34*x^3 + 238*x^4 + ... is the o.g.f. of A108424. Equivalently, a(n) = -[x^n](G(x))^(-n), where G(x) = 1 + 2*x + 10*x^2 + 66*x^3 + 498*x^4 + ... is the o.g.f. of A027307.
a(p) == 2 ( mod p^3 ) for prime p >= 5. (End)
a(n) = Sum_{k = 1..n} C(n, k) * C(n-1, k-1) * 2^k. - Michael Somos, May 23 2021
a(n) = A001850(n) - A002002(n), for n > 0. - Shel Kaphan, Feb 15 2023

Extensions

More terms from Barbara Haas Margolius (b.margolius(AT)csuohio.edu), Oct 10 2001
Previous Showing 21-30 of 141 results. Next