cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 79 results. Next

A007661 Triple factorial numbers a(n) = n!!!, defined by a(n) = n*a(n-3), a(0) = a(1) = 1, a(2) = 2. Sometimes written n!3.

Original entry on oeis.org

1, 1, 2, 3, 4, 10, 18, 28, 80, 162, 280, 880, 1944, 3640, 12320, 29160, 58240, 209440, 524880, 1106560, 4188800, 11022480, 24344320, 96342400, 264539520, 608608000, 2504902400, 7142567040, 17041024000, 72642169600, 214277011200, 528271744000, 2324549427200
Offset: 0

Views

Author

Keywords

Comments

The triple factorial of a positive integer n is the product of the positive integers <= n that have the same residue modulo 3 as n. - Peter Luschny, Jun 23 2011

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • J. Spanier and K. B. Oldham, An Atlas of Functions, Hemisphere, NY, 1987, p. 23.

Crossrefs

Programs

  • GAP
    a:= function(n)
        if n<3 then return Fibonacci(n+1);
        else return n*a(n-3);
        fi;
      end;
    List([0..30], n-> a(n) ); # G. C. Greubel, Aug 21 2019
  • Haskell
    a007661 n k = a007661_list !! n
    a007661_list = 1 : 1 : 2 : zipWith (*) a007661_list [3..]
    -- Reinhard Zumkeller, Sep 20 2013
    
  • Magma
    I:=[1,1,2];[n le 3 select I[n] else (n-1)*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Nov 27 2015
    
  • Maple
    A007661 := n -> mul(k, k = select(k -> k mod 3 = n mod 3, [$1 .. n])): seq(A007661(n), n = 0 .. 29);  # Peter Luschny, Jun 23 2011
  • Mathematica
    multiFactorial[n_, k_] := If[n < 1, 1, If[n < k + 1, n, n*multiFactorial[n - k, k]]]; Array[ multiFactorial[#, 3] &, 30, 0] (* Robert G. Wilson v, Apr 23 2011 *)
    RecurrenceTable[{a[0]==a[1]==1,a[2]==2,a[n]==n*a[n-3]},a,{n,30}] (* Harvey P. Dale, May 17 2012 *)
    Table[With[{q = Quotient[n + 2, 3]}, 3^q q! Binomial[n/3, q]], {n, 0, 30}] (* Jan Mangaldan, Mar 21 2013 *)
    a[ n_] := With[{m = Mod[n, 3, 1], q = 1 + Quotient[n, 3, 1]}, If[n < 0, 0, 3^q Pochhammer[m/3, q]]]; (* Michael Somos, Feb 24 2019 *)
    Table[Times@@Range[n,1,-3],{n,0,30}] (* Harvey P. Dale, Sep 12 2020 *)
  • PARI
    A007661(n,d=3)=prod(i=0,(n-1)\d,n-d*i) \\ M. F. Hasler, Feb 16 2008
    
  • Sage
    def a(n):
        if (n<3): return fibonacci(n+1)
        else: return n*a(n-3)
    [a(n) for n in (0..30)] # G. C. Greubel, Aug 21 2019
    

Formula

a(n) = Product_{i=0..floor((n-1)/3)} (n-3*i). - M. F. Hasler, Feb 16 2008
a(n) ~ c * n^(n/3+1/2)/exp(n/3), where c = sqrt(2*Pi/3) if n=3*k, c = sqrt(2*Pi)*3^(1/6) / Gamma(1/3) if n=3*k+1, c = sqrt(2*Pi)*3^(-1/6) / Gamma(2/3) if n=3*k+2. - Vaclav Kotesovec, Jul 29 2013
a(3*n) = A032031(n); a(3*n+1) = A007559(n+1); a(3*n+2) = A008544(n+1). - Reinhard Zumkeller, Sep 20 2013
0 = a(n)*(a(n+1) -a(n+4)) +a(n+1)*a(n+3) for all n>=0. - Michael Somos, Feb 24 2019
Sum_{n>=0} 1/a(n) = A288055. - Amiram Eldar, Nov 10 2020

A094638 Triangle read by rows: T(n,k) = |s(n,n+1-k)|, where s(n,k) are the signed Stirling numbers of the first kind A008276 (1 <= k <= n; in other words, the unsigned Stirling numbers of the first kind in reverse order).

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 6, 11, 6, 1, 10, 35, 50, 24, 1, 15, 85, 225, 274, 120, 1, 21, 175, 735, 1624, 1764, 720, 1, 28, 322, 1960, 6769, 13132, 13068, 5040, 1, 36, 546, 4536, 22449, 67284, 118124, 109584, 40320, 1, 45, 870, 9450, 63273, 269325, 723680, 1172700, 1026576, 362880
Offset: 1

Views

Author

André F. Labossière, May 17 2004

Keywords

Comments

Triangle of coefficients of the polynomial (x+1)(x+2)...(x+n), expanded in decreasing powers of x. - T. D. Noe, Feb 22 2008
Row n also gives the number of permutation of 1..n with complexity 0,1,...,n-1. See the comments in A008275. - N. J. A. Sloane, Feb 08 2019
T(n,k) is the number of deco polyominoes of height n and having k columns. A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column. Example: T(2,1)=1 and T(2,2)=1 because the deco polyominoes of height 2 are the vertical and horizontal dominoes, having, respectively, 1 and 2 columns. - Emeric Deutsch, Aug 14 2006
Sum_{k=1..n} k*T(n,k) = A121586. - Emeric Deutsch, Aug 14 2006
Let the triangle U(n,k), 0 <= k <= n, read by rows, be given by [1,0,1,0,1,0,1,0,1,0,1,...] DELTA [1,1,2,2,3,3,4,4,5,5,6,...] where DELTA is the operator defined in A084938; then T(n,k) = U(n-1,k-1). - Philippe Deléham, Jan 06 2007
From Tom Copeland, Dec 15 2007: (Start)
Consider c(t) = column vector(1, t, t^2, t^3, t^4, t^5, ...).
Starting at 1 and sampling every integer to the right, we obtain (1,2,3,4,5,...). And T * c(1) = (1, 1*2, 1*2*3, 1*2*3*4,...), giving n! for n > 0. Call this sequence the right factorial (n+)!.
Starting at 1 and sampling every integer to the left, we obtain (1,0,-1,-2,-3,-4,-5,...). And T * c(-1) = (1, 1*0, 1*0*-1, 1*0*-1*-2,...) = (1, 0, 0, 0, ...), the left factorial (n-)!.
Sampling every other integer to the right, we obtain (1,3,5,7,9,...). T * c(2) = (1, 1*3, 1*3*5, ...) = (1,3,15,105,945,...), giving A001147 for n > 0, the right double factorial, (n+)!!.
Sampling every other integer to the left, we obtain (1,-1,-3,-5,-7,...). T * c(-2) = (1, 1*-1, 1*-1*-3, 1*-1*-3*-5,...) = (1,-1,3,-15,105,-945,...) = signed A001147, the left double factorial, (n-)!!.
Sampling every 3 steps to the right, we obtain (1,4,7,10,...). T * c(3) = (1, 1*4, 1*4*7,...) = (1,4,28,280,...), giving A007559 for n > 0, the right triple factorial, (n+)!!!.
Sampling every 3 steps to the left, we obtain (1,-2,-5,-8,-11,...), giving T * c(-3) = (1, 1*-2, 1*-2*-5, 1*-2*-5*-8,...) = (1,-2,10,-80,880,...) = signed A008544, the left triple factorial, (n-)!!!.
The list partition transform A133314 of [1,T * c(t)] gives [1,T * c(-t)] with all odd terms negated; e.g., LPT[1,T*c(2)] = (1,-1,-1,-3,-15,-105,-945,...) = (1,-A001147). And e.g.f. for [1,T * c(t)] = (1-xt)^(-1/t).
The above results hold for t any real or complex number. (End)
Let R_n(x) be the real and I_n(x) the imaginary part of Product_{k=0..n} (x + I*k). Then, for n=1,2,..., we have R_n(x) = Sum_{k=0..floor((n+1)/2)}(-1)^k*Stirling1(n+1,n+1-2*k)*x^(n+1-2*k), I_n(x) = Sum_{k=0..floor(n/2)}(-1)^(k+1)*Stirling1(n+1,n-2*k)*x^(n-2*k). - Milan Janjic, May 11 2008
T(n,k) is also the number of permutations of n with "reflection length" k (i.e., obtained from 12..n by k not necessarily adjacent transpositions). For example, when n=3, 132, 213, 321 are obtained by one transposition, while 231 and 312 require two transpositions. - Kyle Petersen, Oct 15 2008
From Tom Copeland, Nov 02 2010: (Start)
[x^(y+1) D]^n = x^(n*y) [T(n,1)(xD)^n + T(n,2)y (xD)^(n-1) + ... + T(n,n)y^(n-1)(xD)], with D the derivative w.r.t. x.
E.g., [x^(y+1) D]^4 = x^(4*y) [(xD)^4 + 6 y(xD)^3 + 11 y^2(xD)^2 + 6 y^3(xD)].
(xD)^m can be further expanded in terms of the Stirling numbers of the second kind and operators of the form x^j D^j. (End)
With offset 0, 0 <= k <= n: T(n,k) is the sum of products of each size k subset of {1,2,...,n}. For example, T(3,2) = 11 because there are three subsets of size two: {1,2},{1,3},{2,3}. 1*2 + 1*3 + 2*3 = 11. - Geoffrey Critzer, Feb 04 2011
The Kn11, Fi1 and Fi2 triangle sums link this triangle with two sequences, see the crossrefs. For the definitions of these triangle sums see A180662. The mirror image of this triangle is A130534. - Johannes W. Meijer, Apr 20 2011
T(n+1,k+1) is the elementary symmetric function a_k(1,2,...,n), n >= 0, k >= 0, (a_0(0):=1). See the T. D. Noe and Geoffrey Critzer comments given above. For a proof see the Stanley reference, p. 19, Second Proof. - Wolfdieter Lang, Oct 24 2011
Let g(t) = 1/d(log(P(j+1,-t)))/dt (see Tom Copeland's 2007 formulas). The Mellin transform (t to s) of t*Dirac[g(t)] gives Sum_{n=1..j} n^(-s), which as j tends to infinity gives the Riemann zeta function for Re(s) > 1. Dirac(x) is the Dirac delta function. The complex contour integral along a circle of radius 1 centered at z=1 of z^s/g(z) gives the same result. - Tom Copeland, Dec 02 2011
Rows are coefficients of the polynomial expansions of the Pochhammer symbol, or rising factorial, Pch(n,x) = (x+n-1)!/(x-1)!. Expansion of Pch(n,xD) = Pch(n,Bell(.,:xD:)) in a polynomial with terms :xD:^k=x^k*D^k gives the Lah numbers A008297. Bell(n,x) are the unsigned Bell polynomials or Stirling polynomials of the second kind A008277. - Tom Copeland, Mar 01 2014
From Tom Copeland, Dec 09 2016: (Start)
The Betti numbers, or dimension, of the pure braid group cohomology. See pp. 12 and 13 of the Hyde and Lagarias link.
Row polynomials and their products appear in presentation of the Jack symmetric functions of R. Stanley. See Copeland link on the Witt differential generator.
(End)
From Tom Copeland, Dec 16 2019: (Start)
The e.g.f. given by Copeland in the formula section appears in a combinatorial Dyson-Schwinger equation of quantum field theory in Yeats in Thm. 2 on p. 62 related to a Hopf algebra of rooted trees. See also the Green function on p. 70.
Per comments above, this array contains the coefficients in the expansion in polynomials of the Euler, or state number, operator xD of the rising factorials Pch(n,xD) = (xD+n-1)!/(xD-1)! = x [:Dx:^n/n!]x^{-1} = L_n^{-1}(-:xD:), where :Dx:^n = D^n x^n and :xD:^n = x^n D^n. The polynomials L_n^{-1} are the Laguerre polynomials of order -1, i.e., normalized Lah polynomials.
The Witt differential operators L_n = x^(n+1) D and the row e.g.f.s appear in Hopf and dual Hopf algebra relations presented by Foissy. The Witt operators satisfy L_n L_k - L_k L_n = (k-n) L_(n+k), as for the dual Hopf algebra. (End)

Examples

			Triangle starts:
  1;
  1,  1;
  1,  3,  2;
  1,  6, 11,  6;
  1, 10, 35, 50, 24;
...
		

References

  • M. Miyata and J. W. Son, On the complexity of permutations and the metric space of bijections, Tensor, 60 (1998), No. 1, 109-116 (MR1768839).
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 18, equations 18:4:2 - 18:4:8 at page 151.
  • R. P. Stanley, Enumerative Combinatorics, Vol. 1, Cambridge University Press, 1997.

Crossrefs

A008276 gives the (signed) Stirling numbers of the first kind.
Cf. A000108, A014137, A001246, A033536, A000984, A094639, A006134, A082894, A002897, A079727, A000217 (2nd column), A000914 (3rd column), A001303 (4th column), A000915 (5th column), A053567 (6th column), A000142 (row sums).
Triangle sums (see the comments): A124380 (Kn11), A001710 (Fi1, Fi2). - Johannes W. Meijer, Apr 20 2011

Programs

  • GAP
    Flat(List([1..10], n-> List([1..n], k-> Stirling1(n,n-k+1) ))); # G. C. Greubel, Dec 29 2019
  • Haskell
    a094638 n k = a094638_tabl !! (n-1) !! (k-1)
    a094638_row n = a094638_tabl !! (n-1)
    a094638_tabl = map reverse a130534_tabl
    -- Reinhard Zumkeller, Aug 01 2014
    
  • Magma
    [(-1)^(k+1)*StirlingFirst(n,n-k+1): k in [1..n], n in [1..10]]; // G. C. Greubel, Dec 29 2019
    
  • Maple
    T:=(n,k)->abs(Stirling1(n,n+1-k)): for n from 1 to 10 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form. # Emeric Deutsch, Aug 14 2006
  • Mathematica
    Table[CoefficientList[Series[Product[1 + i x, {i,n}], {x,0,20}], x], {n,0,6}] (* Geoffrey Critzer, Feb 04 2011 *)
    Table[Abs@StirlingS1[n, n-k+1], {n, 10}, {k, n}]//Flatten (* Michael De Vlieger, Aug 29 2015 *)
  • Maxima
    create_list(abs(stirling1(n+1,n-k+1)),n,0,10,k,0,n); /* Emanuele Munarini, Jun 01 2012 */
    
  • PARI
    {T(n,k)=if(n<1 || k>n,0,(n-1)!*polcoeff(polcoeff(x*y/(1 - x*y+x*O(x^n))^(1 + 1/y),n,x),k,y))} /* Paul D. Hanna, Jul 21 2011 */
    
  • Sage
    [[stirling_number1(n, n-k+1) for k in (1..n)] for n in (1..10)] # G. C. Greubel, Dec 29 2019
    

Formula

With P(n,t) = Sum_{k=0..n-1} T(n,k+1) * t^k = 1*(1+t)*(1+2t)...(1+(n-1)*t) and P(0,t)=1, exp[P(.,t)*x] = (1-tx)^(-1/t). T(n,k+1) = (1/k!) (D_t)^k (D_x)^n [ (1-tx)^(-1/t) - 1 ] evaluated at t=x=0. (1-tx)^(-1/t) - 1 is the e.g.f. for a plane m-ary tree when t=m-1. See Bergeron et al. in "Varieties of Increasing Trees". - Tom Copeland, Dec 09 2007
First comment and formula above rephrased as o.g.f. for row n: Product_{i=0...n} (1+i*x). - Geoffrey Critzer, Feb 04 2011
n-th row polynomials with alternate signs are the characteristic polynomials of the (n-1)x(n-1) matrices with 1's in the superdiagonal, (1,2,3,...) in the main diagonal, and the rest zeros. For example, the characteristic polynomial of [1,1,0; 0,2,1; 0,0,3] is x^3 - 6*x^2 + 11*x - 6. - Gary W. Adamson, Jun 28 2011
E.g.f.: A(x,y) = x*y/(1 - x*y)^(1 + 1/y) = Sum_{n>=1, k=1..n} T(n,k)*x^n*y^k/(n-1)!. - Paul D. Hanna, Jul 21 2011
With F(x,t) = (1-t*x)^(-1/t) - 1 an e.g.f. for the row polynomials P(n,t) of A094638 with P(0,t)=0, G(x,t)= [1-(1+x)^(-t)]/t is the comp. inverse in x. Consequently, with H(x,t) = 1/(dG(x,t)/dx) = (1+x)^(t+1),
P(n,t) = [(H(x,t)*d/dx)^n] x evaluated at x=0; i.e.,
F(x,t) = exp[x*P(.,t)] = exp[x*H(u,t)*d/du] u, evaluated at u = 0.
Also, dF(x,t)/dx = H(F(x,t),t). - Tom Copeland, Sep 20 2011
T(n,k) = |A008276(n,k)|. - R. J. Mathar, May 19 2016
The row polynomials of this entry are the reversed row polynomials of A143491 multiplied by (1+x). E.g., (1+x)(1 + 5x + 6x^2) = (1 + 6x + 11x^2 + 6x^3). - Tom Copeland, Dec 11 2016
Regarding the row e.g.f.s in Copeland's 2007 formulas, e.g.f.s for A001710, A001715, and A001720 give the compositional inverses of the e.g.f. here for t = 2, 3, and 4 respectively. - Tom Copeland, Dec 28 2019

Extensions

Edited by Emeric Deutsch, Aug 14 2006

A374848 Obverse convolution A000045**A000045; see Comments.

Original entry on oeis.org

0, 1, 2, 16, 162, 3600, 147456, 12320100, 2058386904, 701841817600, 488286500625000, 696425232679321600, 2038348954317776486400, 12259459134020160144810000, 151596002479762016373851690400, 3855806813438155578522841251840000
Offset: 0

Views

Author

Clark Kimberling, Jul 31 2024

Keywords

Comments

The obverse convolution of sequences
s = (s(0), s(1), ...) and t = (t(0), t(1), ...)
is introduced here as the sequence s**t given by
s**t(n) = (s(0)+t(n)) * (s(1)+t(n-1)) * ... * (s(n)+t(0)).
Swapping * and + in the representation s(0)*t(n) + s(1)*t(n-1) + ... + s(n)*t(0)
of ordinary convolution yields s**t.
If x is an indeterminate or real (or complex) variable, then for every sequence t of real (or complex) numbers, s**t is a sequence of polynomials p(n) in x, and the zeros of p(n) are the numbers -t(0), -t(1), ..., -t(n).
Following are abbreviations in the guide below for triples (s, t, s**t):
F = (0,1,1,2,3,5,...) = A000045, Fibonacci numbers
L = (2,1,3,4,7,11,...) = A000032, Lucas numbers
P = (2,3,5,7,11,...) = A000040, primes
T = (1,3,6,10,15,...) = A000217, triangular numbers
C = (1,2,6,20,70, ...) = A000984, central binomial coefficients
LW = (1,3,4,6,8,9,...) = A000201, lower Wythoff sequence
UW = (2,5,7,10,13,...) = A001950, upper Wythoff sequence
[ ] = floor
In the guide below, sequences s**t are identified with index numbers Axxxxxx; in some cases, s**t and Axxxxxx differ in one or two initial terms.
Table 1. s = A000012 = (1,1,1,1...) = (1);
t = A000012; 1 s**t = A000079; 2^(n+1)
t = A000027; n s**t = A000142; (n+1)!
t = A000040, P s**t = A054640
t = A000040, P (1/3) s**t = A374852
t = A000079, 2^n s**t = A028361
t = A000079, 2^n (1/3) s**t = A028362
t = A000045, F s**t = A082480
t = A000032, L s**t = A374890
t = A000201, LW s**t = A374860
t = A001950, UW s**t = A374864
t = A005408, 2*n+1 s**t = A000165, 2^n*n!
t = A016777, 3*n+1 s**t = A008544
t = A016789, 3*n+2 s**t = A032031
t = A000142, n! s**t = A217757
t = A000051, 2^n+1 s**t = A139486
t = A000225, 2^n-1 s**t = A006125
t = A032766, [3*n/2] s**t = A111394
t = A034472, 3^n+1 s**t = A153280
t = A024023, 3^n-1 s**t = A047656
t = A000217, T s**t = A128814
t = A000984, C s**t = A374891
t = A279019, n^2-n s**t = A130032
t = A004526, 1+[n/2] s**t = A010551
t = A002264, 1+[n/3] s**t = A264557
t = A002265, 1+[n/4] s**t = A264635
Sequences (c)**L, for c=2..4: A374656 to A374661
Sequences (c)**F, for c=2..6: A374662, A374662, A374982 to A374855
The obverse convolutions listed in Table 1 are, trivially, divisibility sequences. Likewise, if s = (-1,-1,-1,...) instead of s = (1,1,1,...), then s**t is a divisibility sequence for every choice of t; e.g. if s = (-1,-1,-1,...) and t = A279019, then s**t = A130031.
Table 2. s = A000027 = (0,1,2,3,4,5,...) = (n);
t = A000027, n s**t = A007778, n^(n+1)
t = A000290, n^2 s**t = A374881
t = A000040, P s**t = A374853
t = A000045, F s**t = A374857
t = A000032, L s**t = A374858
t = A000079, 2^n s**t = A374859
t = A000201, LW s**t = A374861
t = A005408, 2*n+1 s**t = A000407, (2*n+1)! / n!
t = A016777, 3*n+1 s**t = A113551
t = A016789, 3*n+2 s**t = A374866
t = A000142, n! s**t = A374871
t = A032766, [3*n/2] s**t = A374879
t = A000217, T s**t = A374892
t = A000984, C s**t = A374893
t = A038608, n*(-1)^n s**t = A374894
Table 3. s = A000290 = (0,1,4,9,16,...) = (n^2);
t = A000290, n^2 s**t = A323540
t = A002522, n^2+1 s**t = A374884
t = A000217, T s**t = A374885
t = A000578, n^3 s**t = A374886
t = A000079, 2^n s**t = A374887
t = A000225, 2^n-1 s**t = A374888
t = A005408, 2*n+1 s**t = A374889
t = A000045, F s**t = A374890
Table 4. s = t;
s = t = A000012, 1 s**s = A000079; 2^(n+1)
s = t = A000027, n s**s = A007778, n^(n+1)
s = t = A000290, n^2 s**s = A323540
s = t = A000045, F s**s = this sequence
s = t = A000032, L s**s = A374850
s = t = A000079, 2^n s**s = A369673
s = t = A000244, 3^n s**s = A369674
s = t = A000040, P s**s = A374851
s = t = A000201, LW s**s = A374862
s = t = A005408, 2*n+1 s**s = A062971
s = t = A016777, 3*n+1 s**s = A374877
s = t = A016789, 3*n+2 s**s = A374878
s = t = A032766, [3*n/2] s**s = A374880
s = t = A000217, T s**s = A375050
s = t = A005563, n^2-1 s**s = A375051
s = t = A279019, n^2-n s**s = A375056
s = t = A002398, n^2+n s**s = A375058
s = t = A002061, n^2+n+1 s**s = A375059
If n = 2*k+1, then s**s(n) is a square; specifically,
s**s(n) = ((s(0)+s(n))*(s(1)+s(n-1))*...*(s(k)+s(k+1)))^2.
If n = 2*k, then s**s(n) has the form 2*s(k)*m^2, where m is an integer.
Table 5. Others
s = A000201, LW t = A001950, UW s**t = A374863
s = A000045, F t = A000032, L s**t = A374865
s = A005843, 2*n t = A005408, 2*n+1 s**t = A085528, (2*n+1)^(n+1)
s = A016777, 3*n+1 t = A016789, 3*n+2 s**t = A091482
s = A005408, 2*n+1 t = A000045, F s**t = A374867
s = A005408, 2*n+1 t = A000032, L s**t = A374868
s = A005408, 2*n+1 t = A000079, 2^n s**t = A374869
s = A000027, n t = A000142, n! s**t = A374871
s = A005408, 2*n+1 t = A000142, n! s**t = A374872
s = A000079, 2^n t = A000142, n! s**t = A374874
s = A000142, n! t = A000045, F s**t = A374875
s = A000142, n! t = A000032, L s**t = A374876
s = A005408, 2*n+1 t = A016777, 3*n+1 s**t = A352601
s = A005408, 2*n+1 t = A016789, 3*n+2 s**t = A064352
Table 6. Arrays of coefficients of s(x)**t(x), where s(x) and t(x) are polynomials
s(x) t(x) s(x)**t(x)
n x A132393
n^2 x A269944
x+1 x+1 A038220
x+2 x+2 A038244
x x+3 A038220
nx x+1 A094638
1 x^2+x+1 A336996
n^2 x x+1 A375041
n^2 x 2x+1 A375042
n^2 x x+2 A375043
2^n x x+1 A375044
2^n 2x+1 A375045
2^n x+2 A375046
x+1 F(n) A375047
x+1 x+F(n) A375048
x+F(n) x+F(n) A375049

Examples

			a(0) = 0 + 0 = 0
a(1) = (0+1) * (1+0) = 1
a(2) = (0+1) * (1+1) * (1+0) = 2
a(3) = (0+2) * (1+1) * (1+1) * (2+0) = 16
As noted above, a(2*k+1) is a square for k>=0. The first 5 squares are 1, 16, 3600, 12320100, 701841817600, with corresponding square roots 1, 4, 60, 3510, 837760.
If n = 2*k, then s**s(n) has the form 2*F(k)*m^2, where m is an integer and F(k) is the k-th Fibonacci number; e.g., a(6) = 2*F(3)*(192)^2.
		

Crossrefs

Programs

  • Maple
    a:= n-> (F-> mul(F(n-j)+F(j), j=0..n))(combinat[fibonacci]):
    seq(a(n), n=0..15);  # Alois P. Heinz, Aug 02 2024
  • Mathematica
    s[n_] := Fibonacci[n]; t[n_] := Fibonacci[n];
    u[n_] := Product[s[k] + t[n - k], {k, 0, n}];
    Table[u[n], {n, 0, 20}]
  • PARI
    a(n)=prod(k=0, n, fibonacci(k) + fibonacci(n-k)) \\ Andrew Howroyd, Jul 31 2024

Formula

a(n) ~ c * phi^(3*n^2/4 + n) / 5^((n+1)/2), where c = QPochhammer(-1, 1/phi^2)^2/2 if n is even and c = phi^(1/4) * QPochhammer(-phi, 1/phi^2)^2 / (phi + 1)^2 if n is odd, and phi = A001622 is the golden ratio. - Vaclav Kotesovec, Aug 01 2024

A032031 Triple factorial numbers: (3n)!!! = 3^n*n!.

Original entry on oeis.org

1, 3, 18, 162, 1944, 29160, 524880, 11022480, 264539520, 7142567040, 214277011200, 7071141369600, 254561089305600, 9927882482918400, 416971064282572800, 18763697892715776000, 900657498850357248000, 45933532441368219648000, 2480410751833883860992000
Offset: 0

Views

Author

Keywords

Comments

For n >= 1 a(n) is the order of the wreath product of the symmetric group S_n and the elementary Abelian group (C_3)^n. - Ahmed Fares (ahmedfares(AT)my-deja.com), May 07 2001
Laguerre transform of double factorials 2^n*n! = A000165(n). - Paul Barry, Aug 08 2008
For positive n, a(n) equals the permanent of the n X n matrix consisting entirely of 3's. - John M. Campbell, May 26 2011
a(n) is the product of the positive integers <= 3*n that are multiples of 3. - Peter Luschny, Jun 23 2011
Partial products of A008585. - Reinhard Zumkeller, Sep 20 2013

Crossrefs

Cf. Subsequence of A007661.

Programs

  • Haskell
    a032031 n = a032031_list !! n
    a032031_list = scanl (*) 1 $ tail a008585_list
    -- Reinhard Zumkeller, Sep 20 2013
  • Magma
    [3^n*Factorial(n): n in [0..60]]; // Vincenzo Librandi, Apr 22 2011
    
  • Maple
    with(combstruct):ZL:=[T,{T=Union(Z,Prod(Epsilon,Z,T), Prod(T,Z,Epsilon), Prod(T,Z))},labeled]:seq(count(ZL,size=i)/i,i=1..17); # Zerinvary Lajos, Dec 16 2007
    A032031 := n -> mul(k, k = select(k-> k mod 3 = 0, [$1 .. 3*n])): seq(A032031(n), n = 0 .. 16); # Peter Luschny, Jun 23 2011
  • Mathematica
    Table[3^n*Gamma[1 + n], {n, 0, 20}] (* Roger L. Bagula, Oct 30 2008 *)
    Join[{1},FoldList[Times,3*Range[20]]] (* Harvey P. Dale, Feb 10 2019 *)
    Table[Times@@Range[3n,1,-3],{n,0,20}] (* Harvey P. Dale, Apr 14 2023 *)
  • PARI
    a(n)=3^n*n!;
    
  • PARI
    a(n)=prod(k=1,n, 3*k );
    
  • SageMath
    def A032031(n) : return mul(j for j in range(3,3*(n+1),3))
    [A032031(n) for n in (0..16)]  # Peter Luschny, May 20 2013
    

Formula

a(n) = 3^n*n!.
a(n) = Product_{k=1..n} 3*k.
E.g.f.: 1/(1-3*x).
a(n) = Sum_{k=0..n} C(n,k)*(n!/k!)*2^k*k!. - Paul Barry, Aug 08 2008
a(0) = 1, a(n) = 3*n*a(n-1). - Arkadiusz Wesolowski, Oct 04 2011
G.f.: 2/G(0), where G(k)= 1 + 1/(1 - 6*x*(k+1)/(6*x*(k+1) - 1 + 6*x*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 30 2013
G.f.: G(0)/2, where G(k)= 1 + 1/(1 - x*(3*k+3)/(x*(3*k+3) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 06 2013
G.f.: 1/Q(0), where Q(k) = 1 - 3*x*(2*k+1) - 9*x^2*(k+1)^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Sep 28 2013
From Amiram Eldar, Jun 25 2020: (Start)
Sum_{n>=0} 1/a(n) = e^(1/3) (A092041).
Sum_{n>=0} (-1)^n/a(n) = e^(-1/3) (A092615). (End)

A008542 Sextuple factorial numbers: Product_{k=0..n-1} (6*k+1).

Original entry on oeis.org

1, 1, 7, 91, 1729, 43225, 1339975, 49579075, 2131900225, 104463111025, 5745471106375, 350473737488875, 23481740411754625, 1714167050058087625, 135419196954588922375, 11510631741140058401875, 1047467488443745314570625, 101604346379043295513350625
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Comments

a(n), n>=1, enumerates increasing heptic (7-ary) trees with n vertices. - Wolfdieter Lang, Sep 14 2007; see a D. Callan comment on A007559 (number of increasing quarterny trees).

Crossrefs

Programs

  • GAP
    List([0..20], n-> Product([0..n-1], k-> (6*k+1) )); # G. C. Greubel, Aug 17 2019
  • Magma
    [1] cat [(&*[(6*k+1): k in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Aug 17 2019
    
  • Maple
    a := n -> mul(6*k+1, k=0..n-1);
    G(x):=(1-6*x)^(-1/6): f[0]:=G(x): for n from 1 to 29 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..15); # Zerinvary Lajos, Apr 03 2009
  • Mathematica
    Table[Product[(6*k+1), {k,0,n-1}], {n,0,20}] (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008, modified by G. C. Greubel, Aug 17 2019 *)
    FoldList[Times, 1, 6Range[0, 20] + 1] (* Vincenzo Librandi, Jun 10 2013 *)
    Table[6^n*Pochhammer[1/6, n], {n,0,20}] (* G. C. Greubel, Aug 17 2019 *)
  • PARI
    a(n)=prod(k=1,n-1,6*k+1) \\ Charles R Greathouse IV, Jul 19 2011
    
  • Sage
    [product((6*k+1) for k in (0..n-1)) for n in (0..20)] # G. C. Greubel, Aug 17 2019
    

Formula

E.g.f.: (1-6*x)^(-1/6).
a(n) ~ 2^(1/2)*Pi^(1/2)*Gamma(1/6)^-1*n^(-1/3)*6^n*e^-n*n^n*{1 + 1/72*n^-1 - ...}. - Joe Keane (jgk(AT)jgk.org), Nov 24 2001
a(n) = Sum_{k=0..n} (-6)^(n-k)*A048994(n, k). - Philippe Deléham, Oct 29 2005
G.f.: 1+x/(1-7x/(1-6x/(1-13x/(1-12x/(1-19x/(1-18x/(1-25x/(1-24x/(1-... (continued fraction). - Philippe Deléham, Jan 08 2012
a(n) = (-5)^n*Sum_{k=0..n} (6/5)^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
G.f.: 1/Q(0) where Q(k) = 1 - x*(6*k+1)/(1 - x*(6*k+6)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 20 2013
a(n) = A085158(6*n-5). - M. F. Hasler, Feb 23 2018
D-finite with recurrence: a(n) +(-6*n+5)*a(n-1)=0. - R. J. Mathar, Jan 17 2020
Sum_{n>=0} 1/a(n) = 1 + (e/6^5)^(1/6)*(Gamma(1/6) - Gamma(1/6, 1/6)). - Amiram Eldar, Dec 18 2022

A045754 7-fold factorials: a(n) = Product_{k=0..n-1} (7*k+1).

Original entry on oeis.org

1, 1, 8, 120, 2640, 76560, 2756160, 118514880, 5925744000, 337767408000, 21617114112000, 1534815101952000, 119715577952256000, 10175824125941760000, 936175819586641920000, 92681406139077550080000, 9824229050742220308480000, 1110137882733870894858240000
Offset: 0

Views

Author

Keywords

Crossrefs

See also A113134.
Unsigned row sums of triangle A051186 (scaled Stirling1).
First column of triangle A132056 (S2(8)).

Programs

  • GAP
    List([0..20], n-> Product([0..n-1], k-> 7*k+1) ); # G. C. Greubel, Aug 21 2019
  • Magma
    [1] cat [&*[7*j+1: j in [0..n-1]]: n in [1..20]]; // G. C. Greubel, Aug 21 2019
    
  • Maple
    f := n->product( (7*k+1), k=0..(n-1));
    G(x):=(1-7*x)^(-1/7): f[0]:=G(x): for n from 1 to 29 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..14); # Zerinvary Lajos, Apr 03 2009
  • Mathematica
    FoldList[Times, 1, 7Range[0, 20] + 1] (* Harvey P. Dale, Jan 21 2013 *)
  • PARI
    a(n)=prod(k=0,n-1,7*k+1)
    
  • Sage
    [7^n*rising_factorial(1/7, n) for n in (0..20)] # G. C. Greubel, Aug 21 2019
    

Formula

a(n) = Sum_{k=0..n} (-7)^(n-k)*A048994(n, k), where A048994 = Stirling-1 numbers.
E.g.f.: (1-7*x)^(-1/7).
G.f.: 1/(1-x/(1-7*x/(1-8*x/(1-14*x/(1-15*x/(1-21*x/(1-22*x/(1-... (continued fraction). - Philippe Deléham, Jan 08 2012
a(n) = (-6)^n*Sum_{k=0..n} (7/6)^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
G.f.: 1/G(0), where G(k)= 1 - x*(7*k+1)/(1 - x*(7*k+7)/G(k+1)); (continued fraction). - Sergei N. Gladkovskii, Jun 05 2013
G.f.: G(0)/2, where G(k)= 1 + 1/(1 - x*(7*k+1)/(x*(7*k+1) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 05 2013
a(n) = 7^n * Gamma(n + 1/7) / Gamma(1/7). - Artur Jasinski, Aug 23 2016
a(n) = A114799(7n-6). - M. F. Hasler, Feb 23 2018
D-finite with recurrence: a(n) +(-7*n+6)*a(n-1)=0. - R. J. Mathar, Jan 17 2020
Sum_{n>=0} 1/a(n) = 1 + (e/7^6)^(1/7)*(Gamma(1/7) - Gamma(1/7, 1/7)). - Amiram Eldar, Dec 19 2022

Extensions

Additional comments from Philippe Deléham and Paul D. Hanna, Oct 29 2005
Edited by N. J. A. Sloane, Oct 16 2008 at the suggestion of M. F. Hasler, Oct 14 2008
Corrected by Zerinvary Lajos, Apr 03 2009

A142458 Triangle T(n,k) read by rows: T(n,k) = 1 if k=1 or k=n, otherwise T(n,k) = (3*n-3*k+1)*T(n-1,k-1) + (3*k-2)*T(n-1,k).

Original entry on oeis.org

1, 1, 1, 1, 8, 1, 1, 39, 39, 1, 1, 166, 546, 166, 1, 1, 677, 5482, 5482, 677, 1, 1, 2724, 47175, 109640, 47175, 2724, 1, 1, 10915, 373809, 1709675, 1709675, 373809, 10915, 1, 1, 43682, 2824048, 23077694, 44451550, 23077694, 2824048, 43682, 1
Offset: 1

Views

Author

Roger L. Bagula, Sep 19 2008

Keywords

Comments

Consider the triangle T(n,k) given by T(n, 1) = T(n,n) = 1, otherwise T(n, k) = (m*n-m*k+1)*T(n-1,k-1) + (m*k-m+1)*T(n-1,k). For m = ...,-2,-1,0,1,2,3,... we get ..., A225372, A144431, A007318, A008292, A060187, A142458, ... - N. J. A. Sloane, May 08 2013

Examples

			The rows n >= 1 and columns 1 <= k <= n look as follows:
  1;
  1,     1;
  1,     8,       1;
  1,    39,      39,        1;
  1,   166,     546,      166,        1;
  1,   677,    5482,     5482,      677,        1;
  1,  2724,   47175,   109640,    47175,     2724,       1;
  1, 10915,  373809,  1709675,  1709675,   373809,   10915,     1;
  1, 43682, 2824048, 23077694, 44451550, 23077694, 2824048, 43682, 1;
		

Crossrefs

Cf. A225372 (m=-2), A144431 (m=-1), A007318 (m=0), A008292 (m=1), A060187 (m=2), this sequence (m=3), A142459 (m=4), A142560 (m=5), A142561 (m=6), A142562 (m=7), A167884 (m=8), A257608 (m=9).

Programs

  • Maple
    A142458 := proc(n,k) if n = k then 1; elif k > n or k < 1 then 0 ;else (3*n-3*k+1)*procname(n-1,k-1)+(3*k-2)*procname(n-1,k) ; end if; end proc:
    seq(seq(A142458(n,k),k=1..n),n=1..10) ; # R. J. Mathar, Jun 04 2011
  • Mathematica
    T[n_, k_, m_]:= T[n, k, m]= If[k==1 || k==n, 1, (m*n-m*k+1)*T[n-1, k-1, m] + (m*k -m+1)*T[n-1, k, m] ];
    Table[T[n, k, 3], {n, 1, 10}, {k, 1, n}]//Flatten (* modified by G. C. Greubel, Mar 14 2022 *)
  • Sage
    def T(n,k,m): # A142458
        if (k==1 or k==n): return 1
        else: return (m*(n-k)+1)*T(n-1,k-1,m) + (m*k-m+1)*T(n-1,k,m)
    flatten([[T(n,k,3) for k in (1..n)] for n in (1..10)]) # G. C. Greubel, Mar 14 2022

Formula

T(n, k) = (m*n-m*k+1)*T(n-1,k-1) + (m*k-m+1)*T(n-1,k), with T(n, 1) = T(n, n) = 1, and m = 3.
Sum_{k=1..n} T(n, k) = A008544(n-1).
From G. C. Greubel, Mar 14 2022: (Start)
T(n, n-k) = T(n, k).
T(n, 2) = A144414(n-1).
T(n, 3) = A142976(n-2).
T(n, 4) = A144380(n-3).
T(n, 5) = A144381(n-4). (End)

Extensions

Edited by the Associate Editors of the OEIS, Aug 28 2009

A047055 Quintuple factorial numbers: a(n) = Product_{k=0..n-1} (5*k + 2).

Original entry on oeis.org

1, 2, 14, 168, 2856, 62832, 1696464, 54286848, 2008613376, 84361761792, 3965002804224, 206180145819648, 11752268311719936, 728640635326636032, 48818922566884614144, 3514962424815692218368, 270652106710808300814336, 22193472750286280666775552
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Comments

Hankel transform is A169621. - Paul Barry, Dec 03 2009

Crossrefs

Programs

  • GAP
    List([0..20], n-> Product([0..n-1], k-> (5*k+2) )); # G. C. Greubel, Aug 17 2019
  • Magma
    [1] cat [(&*[(5*k+2): k in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Aug 17 2019
    
  • Maple
    a := n->product(5*i+2,i=0..n-1); [seq(a(j),j=0..30)];
  • Mathematica
    Table[5^n*Pochhammer[2/5, n], {n,0,20}] (* G. C. Greubel, Aug 17 2019 *)
    Join[{1},FoldList[Times,5*Range[0,20]+2]] (* Harvey P. Dale, Apr 03 2025 *)
  • PARI
    vector(20, n, n--; prod(k=0,n-1, 5*k+2)) \\ G. C. Greubel, Aug 17 2019
    
  • Sage
    [product((5*k+2) for k in (0..n-1)) for n in (0..20)] # G. C. Greubel, Aug 17 2019
    

Formula

E.g.f. (1-5*x)^(-2/5).
a(n) ~ sqrt(2*Pi)/Gamma(2/5)*n^(-1/10)*(5n/e)^n*(1 - (11/300)/n - ...). - Joe Keane (jgk(AT)jgk.org), Nov 24 2001
a(n) = A084940(n)/A000142(n)*A000079(n) = 5^n*Pochhammer(2/5, n) = 5^n*Gamma(n+2/5)*sin(2*Pi/5)*Gamma(3/5)/Pi. - Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003
G.f.: 1/(1-2x/(1-5x/(1-7x/(1-10x/(1-12x/(1-15x/(1-17x/(1-20x/(1-22x/(1-25x/(1-.../(1-A047215(n+1)*x/(1-... (continued fraction). - Paul Barry, Dec 03 2009
a(n) = (-3)^n*Sum_{k=0..n} (5/3)^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
D-finite with recurrence: a(n) +(-5*n+3)*a(n-1) = 0. - R. J. Mathar, Dec 03 2012
G.f.: 1/G(0) where G(k) = 1 - x*(5*k+2)/( 1 - 5*x*(k+1)/G(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 23 2013
Sum_{n>=0} 1/a(n) = 1 + (e/5^3)^(1/5)*(Gamma(2/5) - Gamma(2/5, 1/5)). - Amiram Eldar, Dec 19 2022

A256890 Triangle T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = x + 2.

Original entry on oeis.org

1, 2, 2, 4, 12, 4, 8, 52, 52, 8, 16, 196, 416, 196, 16, 32, 684, 2644, 2644, 684, 32, 64, 2276, 14680, 26440, 14680, 2276, 64, 128, 7340, 74652, 220280, 220280, 74652, 7340, 128, 256, 23172, 357328, 1623964, 2643360, 1623964, 357328, 23172, 256, 512, 72076, 1637860, 10978444, 27227908, 27227908, 10978444, 1637860, 72076, 512
Offset: 0

Views

Author

Dale Gerdemann, Apr 12 2015

Keywords

Comments

Related triangles may be found by varying the function f(x). If f(x) is a linear function, it can be parameterized as f(x) = a*x + b. With different values for a and b, the following triangles are obtained:
a\b 1.......2.......3.......4.......5.......6
The row sums of these, and similarly constructed number triangles, are shown in the following table:
a\b 1.......2.......3.......4.......5.......6.......7.......8.......9
The formula can be further generalized to: t(n,m) = f(m+s)*t(n-1,m) + f(n-s)*t(n,m-1), where f(x) = a*x + b. The following table specifies triangles with nonzero values for s (given after the slash).
a\b 0 1 2 3
-2 A130595/1
-1
0
With the absolute value, f(x) = |x|, one obtains A038221/3, A038234/4, A038247/5, A038260/6, A038273/7, A038286/8, A038299/9 (with value for s after the slash).
If f(x) = A000045(x) (Fibonacci) and s = 1, the result is A010048 (Fibonomial).
In the notation of Carlitz and Scoville, this is the triangle of generalized Eulerian numbers A(r, s | alpha, beta) with alpha = beta = 2. Also the array A(2,1,4) in the notation of Hwang et al. (see page 31). - Peter Bala, Dec 27 2019

Examples

			Array, t(n, k), begins as:
   1,    2,      4,        8,        16,         32,          64, ...;
   2,   12,     52,      196,       684,       2276,        7340, ...;
   4,   52,    416,     2644,     14680,      74652,      357328, ...;
   8,  196,   2644,    26440,    220280,    1623964,    10978444, ...;
  16,  684,  14680,   220280,   2643360,   27227908,   251195000, ...;
  32, 2276,  74652,  1623964,  27227908,  381190712,  4677894984, ...;
  64, 7340, 357328, 10978444, 251195000, 4677894984, 74846319744, ...;
Triangle, T(n, k), begins as:
    1;
    2,     2;
    4,    12,      4;
    8,    52,     52,       8;
   16,   196,    416,     196,      16;
   32,   684,   2644,    2644,     684,      32;
   64,  2276,  14680,   26440,   14680,    2276,     64;
  128,  7340,  74652,  220280,  220280,   74652,   7340,   128;
  256, 23172, 357328, 1623964, 2643360, 1623964, 357328, 23172,   256;
		

Crossrefs

Programs

  • Magma
    A256890:= func< n,k | (&+[(-1)^(k-j)*Binomial(j+3,j)*Binomial(n+4,k-j)*(j+2)^n: j in [0..k]]) >;
    [A256890(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Oct 18 2022
    
  • Mathematica
    Table[Sum[(-1)^(k-j)*Binomial[j+3, j] Binomial[n+4, k-j] (j+2)^n, {j,0,k}], {n,0, 9}, {k,0,n}]//Flatten (* Michael De Vlieger, Dec 27 2019 *)
  • PARI
    t(n,m) = if ((n<0) || (m<0), 0, if ((n==0) && (m==0), 1, (m+2)*t(n-1, m) + (n+2)*t(n, m-1)));
    tabl(nn) = {for (n=0, nn, for (k=0, n, print1(t(n-k, k), ", ");); print(););} \\ Michel Marcus, Apr 14 2015
    
  • SageMath
    def A256890(n,k): return sum((-1)^(k-j)*Binomial(j+3,j)*Binomial(n+4,k-j)*(j+2)^n for j in range(k+1))
    flatten([[A256890(n,k) for k in range(n+1)] for n in range(11)]) # G. C. Greubel, Oct 18 2022

Formula

T(n,k) = t(n-k, k); t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0 else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = x + 2.
Sum_{k=0..n} T(n, k) = A001715(n).
T(n,k) = Sum_{j = 0..k} (-1)^(k-j)*binomial(j+3,j)*binomial(n+4,k-j)*(j+2)^n. - Peter Bala, Dec 27 2019
Modified rule of Pascal: T(0,0) = 1, T(n,k) = 0 if k < 0 or k > n else T(n,k) = f(n-k) * T(n-1,k-1) + f(k) * T(n-1,k), where f(x) = x + 2. - Georg Fischer, Nov 11 2021
From G. C. Greubel, Oct 18 2022: (Start)
T(n, n-k) = T(n, k).
T(n, 0) = A000079(n). (End)

A084947 a(n) = Product_{i=0..n-1} (7*i+2).

Original entry on oeis.org

1, 2, 18, 288, 6624, 198720, 7352640, 323516160, 16499324160, 956960801280, 62202452083200, 4478576549990400, 353807547449241600, 30427449080634777600, 2829752764499034316800, 282975276449903431680000, 30278354580139667189760000, 3451732422135922059632640000
Offset: 0

Views

Author

Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003

Keywords

Crossrefs

Programs

  • GAP
    List([0..20], n-> Product([0..n-1], k-> 7*k+2) ); # G. C. Greubel, Aug 18 2019
  • Magma
    [ 1 ] cat [ &*[ (7*k+2): k in [0..n-1] ]: n in [1..15] ]; // Klaus Brockhaus, Nov 10 2008
    
  • Maple
    a := n->product(7*i+2,i=0..n-1); [seq(a(j),j=0..30)];
  • Mathematica
    Join[{1},FoldList[Times,7*Range[0,15]+2]] (* Harvey P. Dale, Nov 27 2015 *)
    Table[7^n*Pochhammer[2/7, n], {n,0,15}] (* G. C. Greubel, Aug 18 2019 *)
  • PARI
    vector(20, n, n--; prod(k=0, n-1, 7*k+2)) \\ G. C. Greubel, Aug 18 2019
    
  • Sage
    [product(7*k+2 for k in (0..n-1)) for n in (0..20)] # G. C. Greubel, Aug 18 2019
    

Formula

a(n) = A084942(n)/A000142(n)*A000079(n) = 7^n*Pochhammer(2/7, n) = 7^n*Gamma(n+2/7)/Gamma(2/7).
D-finite with recurrence a(0) = 1; a(n) = (7*n - 5)*a(n-1) for n > 0. - Klaus Brockhaus, Nov 10 2008
G.f.: 1/(1-2*x/(1-7*x/(1-9*x/(1-14*x/(1-16*x/(1-21*x/(1-23*x/(1-28*x/(1-... (continued fraction). - Philippe Deléham, Jan 08 2012
a(n) = (-5)^n*Sum_{k=0..n} (7/5)^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
From Ilya Gutkovskiy, Mar 23 2017: (Start)
E.g.f.: 1/(1 - 7*x)^(2/7).
a(n) ~ sqrt(2*Pi)*7^n*n^n/(exp(n)*n^(3/14)*Gamma(2/7)). (End)
Sum_{n>=0} 1/a(n) = 1 + (e/7^5)^(1/7)*(Gamma(2/7) - Gamma(2/7, 1/7)). - Amiram Eldar, Dec 19 2022

Extensions

a(15) from Klaus Brockhaus, Nov 10 2008
Previous Showing 11-20 of 79 results. Next