cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 135 results. Next

A008615 a(n) = floor(n/2) - floor(n/3).

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 2, 3, 3, 3, 3, 4, 3, 4, 4, 4, 4, 5, 4, 5, 5, 5, 5, 6, 5, 6, 6, 6, 6, 7, 6, 7, 7, 7, 7, 8, 7, 8, 8, 8, 8, 9, 8, 9, 9, 9, 9, 10, 9, 10, 10, 10, 10, 11, 10, 11, 11, 11, 11, 12, 11, 12, 12, 12, 12, 13, 12, 13, 13, 13, 13, 14, 13, 14, 14, 14, 14, 15, 14
Offset: 0

Views

Author

Keywords

Comments

If the two leading 0's are dropped, this becomes the essentially identical sequence A103221, with g.f. 1/((1-x^2)*(1-x^3)), which arises in many contexts. For example, 1/((1-x^4)*(1-x^6)) is the Poincaré series [or Poincare series] for modular forms of weight w for the full modular group. As generators one may take the Eisenstein series E_4 (A004009) and E_6 (A013973).
Dimension of the space of weight 2n+8 cusp forms for Gamma_0( 1 ).
Apart from initial term(s), dimension of the space of weight 2n cuspidal newforms for Gamma_0( 5 ).
a(n) is the number of ways n can be written as the sum of a positive even number and a nonnegative multiple of 3 and so the number of ways (n-2) can be written as the sum of a nonnegative even number and a nonnegative multiple of 3 and also the number of ways (n+3) can be written as the sum of a positive even number and a positive multiple of 3.
It appears that this is also the number of partitions of 2n+6 that are 4-term arithmetic progressions. - John W. Layman, May 01 2009 [verified by Wesley Ivan Hurt, Jan 17 2021]
a(n) is the number of (n+3)-digit fixed points under the base-3 Kaprekar map A164993 (see A164997 for the list of fixed points). - Joseph Myers, Sep 04 2009
Starting from n=10 also the number of balls in new consecutive hexagonal edges, if an (infinite) chain of balls is winded spirally around the first ball at the center, such that each six steps make an entire winding. - K. G. Stier, Dec 21 2012
In any three consecutive terms at least two of them are equal to each other. - Michael Somos, Mar 01 2014
Number of partitions of (n-2) into parts 2 and 3. - David Neil McGrath, Sep 05 2014
a(n), n >= 0, is also the dimension of S_{2*(n+4)}, the complex vector space of modular cusp forms of weight 2*(n+4) and level 1 (full modular group). The dimension of S_0, S_2, S_4 and S_6 is 0. See, e.g., Ash and Gross, p. 178. Table 13.1. - Wolfdieter Lang, Sep 16 2016
From Wolfdieter Lang, May 08 2017: (Start)
a(n-2) = floor((n-2)/2) - floor((n-2)/3) = floor(n/2) - floor((n+1)/3) is for n >=0 the number of integers k in the interval (n+1)/3 < k <= floor(n/2). This problem appears in the computation of the number of zeros of Chebyshev S(n, x) polynomials (coefficients in A049310) in the open interval (-1, +1). See a comment there. This computation was motivated by a conjecture given in A008611 by Michel Lagneau, Mar 31 2017.
a(n) is also the number of integers k in the closed interval (n+1)/3 <= k <= floor(n/2), which is floor(n/2) - (ceiling((n+1)/3) - 1) for n >= 0 (proof trivial for n+1 == 0 (mod 3) and otherwise). From the preceding statement this a(n) is also a(n-2) + [n == 2 (mod 3)] for n >= 0 (with [statement] = 1 if the statement is true and zero otherwise). This proves the recurrence given by Michael Somos in the formula section. (End)
Assuming the Collatz conjecture to be true, for n > 1, a(n+7) is the row length of the n-th row of A340985. That is, the number of weakly connected components of the Collatz digraph of order n. - Sebastian Karlsson, Feb 23 2021

Examples

			G.f. = x^2 + x^4 + x^5 + x^6 + x^7 + 2*x^8 + x^9 + 2*x^10 + 2*x^11 + 2*x^12 + ...
		

References

  • Avner Ash and Robert Gross, Summing it up, Princeton University Press, 2016, p. 178.
  • D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 100.
  • E. Freitag, Siegelsche Modulfunktionen, Springer-Verlag, Berlin, 1983; p. 141, Th. 1.1.
  • R. C. Gunning, Lectures on Modular Forms. Princeton Univ. Press, Princeton, NJ, 1962.
  • J.-M. Kantor, Où en sont les mathématiques, La formule de Molien-Weyl, SMF, Vuibert, p. 79

Crossrefs

Essentially the same as A103221.
First differences of A069905 (and A001399).

Programs

  • Haskell
    a008615 n = n `div` 2 - n `div` 3  -- Reinhard Zumkeller, Apr 28 2014
    
  • Magma
    [Floor(n/2)-Floor(n/3): n in [0..10]]; // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006
    
  • Magma
    a := func< n | n lt 2 select 0 else n eq 2 select 1 else Dimension( ModularForms( PSL2( Integers()), 2*n-4))>; /* Michael Somos, Dec 11 2018 */
    
  • Maple
    a := n-> floor(n/2) - floor(n/3): seq(a(n), n = 0 .. 87);
  • Mathematica
    a[n_]:=Floor[n/2]-Floor[n/3]; Array[a,90,0] (* Vladimir Joseph Stephan Orlovsky, Dec 05 2008; corrected by Harvey P. Dale, Nov 30 2011 *)
    LinearRecurrence[{0, 1, 1, 0, -1}, {0, 0, 1, 0, 1}, 100]; (* Vincenzo Librandi, Sep 09 2015 *)
  • PARI
    {a(n) = (n\2) - (n\3)}; /* Michael Somos, Feb 06 2003 */
    
  • Python
    def A008615(n): return n//2 - n//3 # Chai Wah Wu, Jun 07 2022

Formula

a(n) = a(n-6) + 1 = a(n-2) + a(n-3) - a(n-5). - Henry Bottomley, Sep 02 2000
G.f.: x^2 / ((1-x^2) * (1-x^3)).
From Reinhard Zumkeller, Feb 27 2008: (Start)
a(A016933(n)) = a(A016957(n)) = a(A016969(n)) = n+1.
a(A008588(n)) = a(A016921(n)) = a(A016945(n)) = n. (End)
a(6*k) = k, k >= 0. - Zak Seidov, Sep 09 2012
a(n) = A005044(n+1) - A005044(n-3). - Johannes W. Meijer, Oct 18 2013
a(n) = floor((n+4)/6) - floor((n+3)/6) + floor((n+2)/6). - Mircea Merca, Nov 27 2013
Euler transform of length 3 sequence [0, 1, 1]. - Michael Somos, Mar 01 2014
a(n+2) = a(n) + 1 if n == 0 (mod 3), a(n+2) = a(n) otherwise. - Michael Somos, Mar 01 2014. See the May 08 2017 comment above. - Wolfdieter Lang, May 08 2017
a(n) = -a(-1 - n) for all n in Z. - Michael Somos, Mar 01 2014.
a(n) = A004526(n) - A002264(n). - Reinhard Zumkeller, Apr 28 2014
a(n) = Sum_{i=0..n-2} (floor(i/6)-floor((i-3)/6))*(-1)^i. - Wesley Ivan Hurt, Sep 08 2015
a(n) = a(n+6) - 1 = A103221(n+4) - 1, n >= 0. - Wolfdieter Lang, Sep 16 2016
12*a(n) = 2*n +1 +3*(-1)^n -4*A057078(n). - R. J. Mathar, Jun 19 2019
a(n) = Sum_{k=1..floor((n+3)/2)} Sum_{j=k..floor((2*n+6-k)/3)} Sum_{i=j..floor((2*n+6-j-k)/2)} ([j-k = i-j = 2*n+6-2*i-j-k] - [k = j = i = 2*n+6-i-j-k]), where [ ] is the (generalized) Iverson bracket. - Wesley Ivan Hurt, Jan 17 2021
E.g.f.: (3*(2 + x)*cosh(x) - 2*exp(-x/2)*(3*cos(sqrt(3)*x/2) + sqrt(3)*sin(sqrt(3)*x/2)) + 3*(x-1)*sinh(x))/18. - Stefano Spezia, Oct 17 2022

A016933 a(n) = 6*n + 2.

Original entry on oeis.org

2, 8, 14, 20, 26, 32, 38, 44, 50, 56, 62, 68, 74, 80, 86, 92, 98, 104, 110, 116, 122, 128, 134, 140, 146, 152, 158, 164, 170, 176, 182, 188, 194, 200, 206, 212, 218, 224, 230, 236, 242, 248, 254, 260, 266, 272, 278, 284, 290, 296, 302, 308, 314, 320, 326
Offset: 0

Views

Author

Keywords

Comments

Number of 3 X n binary matrices avoiding simultaneously the right angled numbered polyomino patterns (ranpp) (00;1), (01;0), (10;0) and (11;0). An occurrence of a ranpp (xy;z) in a matrix A=(a(i,j)) is a triple (a(i1,j1), a(i1,j2), a(i2,j1)) where i1Sergey Kitaev, Nov 11 2004
Exponents n>1 for which 1 - x + x^n is reducible. - Ron Knott, Oct 13 2016
For the Collatz problem, these are the descenders' values that require division by 2. - Fred Daniel Kline, Jan 19 2017
For n > 3, also the number of (not necessarily maximal) cliques in the n-helm graph. - Eric W. Weisstein, Nov 29 2017

Crossrefs

Programs

Formula

A008615(a(n)) = n+1. - Reinhard Zumkeller, Feb 27 2008
A157176(a(n)) = A013730(n). - Reinhard Zumkeller, Feb 24 2009
A089911(2*a(n)) = 3. - Reinhard Zumkeller, Jul 05 2013
a(n) = 2*(6*n-1) - a(n-1) (with a(0)=2). - Vincenzo Librandi, Nov 20 2010
G.f.: 2*(1+2*x)/(1-x)^2. - Colin Barker, Jan 08 2012
a(n) = (3 * A016813(n) + 1) / 2.- Fred Daniel Kline, Jan 20 2017
a(n) = A016789(A005843(n)). - Felix Fröhlich, Jan 20 2017
Sum_{n>=0} (-1)^n/a(n) = sqrt(3)*Pi/18 + log(2)/6. - Amiram Eldar, Dec 10 2021
a(n) = 2 * A016777(n). - Alois P. Heinz, Dec 27 2023
From Elmo R. Oliveira, Mar 08 2024: (Start)
a(n) = 2*a(n-1) - a(n-2) for n >= 2.
E.g.f.: 2*exp(x)*(1 + 3*x). (End)

A122841 Greatest k such that 6^k divides n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 13 2006

Keywords

Comments

See A054895 for the partial sums. - Hieronymus Fischer, Jun 08 2012

Crossrefs

Programs

  • Haskell
    a122841 = f 0 where
       f y x = if r > 0 then y else f (y + 1) x'
               where (x', r) = divMod x 6
    -- Reinhard Zumkeller, Nov 10 2013
    
  • Mathematica
    Table[IntegerExponent[n, 6], {n, 1, 100}] (* Amiram Eldar, Sep 14 2020 *)
  • PARI
    a(n) = valuation(n, 6); \\ Michel Marcus, Jan 17 2022

Formula

From Hieronymus Fischer, Jun 03 2012: (Start)
With m = floor(log_6(n)), frac(x) = x-floor(x):
a(n) = Sum_{j=1..m} (1 - ceiling(frac(n/6^j))).
a(n) = m + Sum_{j=1..m} (floor(-frac(n/6^j))).
a(n) = A054895(n) - A054895(n-1).
G.f.: Sum_{j>0} x^6^j/(1-x^6^j). (End)
a(A047253(n)) = 0; a(A008588(n)) > 0; a(A044102(n)) > 1. - Reinhard Zumkeller, Nov 10 2013
6^a(n) = A234959(n), n >= 1. - Wolfdieter Lang, Jun 30 2014
Asymptotic mean: lim_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1/5. - Amiram Eldar, Jan 17 2022
a(n) = min(A007814(n), A007949(n)). - Jianing Song, Jul 23 2022

A028896 6 times triangular numbers: a(n) = 3*n*(n+1).

Original entry on oeis.org

0, 6, 18, 36, 60, 90, 126, 168, 216, 270, 330, 396, 468, 546, 630, 720, 816, 918, 1026, 1140, 1260, 1386, 1518, 1656, 1800, 1950, 2106, 2268, 2436, 2610, 2790, 2976, 3168, 3366, 3570, 3780, 3996, 4218, 4446, 4680, 4920, 5166, 5418, 5676
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org), Dec 11 1999

Keywords

Comments

From Floor van Lamoen, Jul 21 2001: (Start)
Write 1,2,3,4,... in a hexagonal spiral around 0; then a(n) is the sequence found by reading the line from 0 in the direction 0, 6, ...
The spiral begins:
85--84--83--82--81--80
/ \
86 56--55--54--53--52 79
/ / \ \
87 57 33--32--31--30 51 78
/ / / \ \ \
88 58 34 16--15--14 29 50 77
/ / / / \ \ \ \
89 59 35 17 5---4 13 28 49 76
/ / / / / \ \ \ \ \
<==90==60==36==18===6===0 3 12 27 48 75
/ / / / / / / / / /
61 37 19 7 1---2 11 26 47 74
\ \ \ \ / / / /
62 38 20 8---9--10 25 46 73
\ \ \ / / /
63 39 21--22--23--24 45 72
\ \ / /
64 40--41--42--43--44 71
\ /
65--66--67--68--69--70
(End)
If Y is a 4-subset of an n-set X then, for n >= 5, a(n-5) is the number of (n-4)-subsets of X having exactly two elements in common with Y. - Milan Janjic, Dec 28 2007
a(n) is the maximal number of points of intersection of n+1 distinct triangles drawn in the plane. For example, two triangles can intersect in at most a(1) = 6 points (as illustrated in the Star of David configuration). - Terry Stickels (Terrystickels(AT)aol.com), Jul 12 2008
Also sequence found by reading the line from 0, in the direction 0, 6, ... and the same line from 0, in the direction 0, 18, ..., in the square spiral whose vertices are the generalized octagonal numbers A001082. Axis perpendicular to A195143 in the same spiral. - Omar E. Pol, Sep 18 2011
Partial sums of A008588. - R. J. Mathar, Aug 28 2014
Also the number of 5-cycles in the (n+5)-triangular honeycomb acute knight graph. - Eric W. Weisstein, Jul 27 2017
a(n-4) is the maximum irregularity over all maximal 3-degenerate graphs with n vertices. The extremal graphs are 3-stars (K_3 joined to n-3 independent vertices). (The irregularity of a graph is the sum of the differences between the degrees over all edges of the graph.) - Allan Bickle, May 29 2023

Crossrefs

Cf. A002378 (3-cycles in triangular honeycomb acute knight graph), A045943 (4-cycles), A152773 (6-cycles).
Cf. A007531.
The partial sums give A007531. - Leo Tavares, Jan 22 2022
Cf. A002378, A046092, A028896 (irregularities of maximal k-degenerate graphs).

Programs

Formula

O.g.f.: 6*x/(1 - x)^3.
E.g.f.: 3*x*(x + 2)*exp(x). - G. C. Greubel, Aug 19 2017
a(n) = 6*A000217(n).
a(n) = polygorial(3, n+1). - Daniel Dockery (peritus(AT)gmail.com), Jun 16 2003
From Zerinvary Lajos, Mar 06 2007: (Start)
a(n) = A049598(n)/2.
a(n) = A124080(n) - A046092(n).
a(n) = A033996(n) - A002378(n). (End)
a(n) = A002378(n)*3 = A045943(n)*2. - Omar E. Pol, Dec 12 2008
a(n) = a(n-1) + 6*n for n>0, a(0)=0. - Vincenzo Librandi, Aug 05 2010
a(n) = A003215(n) - 1. - Omar E. Pol, Oct 03 2011
From Philippe Deléham, Mar 26 2013: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2, a(0)=0, a(1)=6, a(2)=18.
a(n) = A174709(6*n + 5). (End)
a(n) = A049450(n) + 4*n. - Lear Young, Apr 24 2014
a(n) = Sum_{i = n..2*n} 2*i. - Bruno Berselli, Feb 14 2018
a(n) = A320047(1, n, 1). - Kolosov Petro, Oct 04 2018
a(n) = T(3*n) - T(2*n-2) + T(n-2), where T(n) = A000217(n). In general, T(k)*T(n) = Sum_{i=0..k-1} (-1)^i*T((k-i)*(n-i)). - Charlie Marion, Dec 04 2020
From Amiram Eldar, Feb 15 2022: (Start)
Sum_{n>=1} 1/a(n) = 1/3.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*log(2)/3 - 1/3. (End)
From Amiram Eldar, Feb 21 2023: (Start)
Product_{n>=1} (1 - 1/a(n)) = -(3/Pi)*cos(sqrt(7/3)*Pi/2).
Product_{n>=1} (1 + 1/a(n)) = (3/Pi)*cosh(Pi/(2*sqrt(3))). (End)

A224613 a(n) = sigma(6*n).

Original entry on oeis.org

12, 28, 39, 60, 72, 91, 96, 124, 120, 168, 144, 195, 168, 224, 234, 252, 216, 280, 240, 360, 312, 336, 288, 403, 372, 392, 363, 480, 360, 546, 384, 508, 468, 504, 576, 600, 456, 560, 546, 744, 504, 728, 528, 720, 720, 672, 576, 819, 684, 868, 702, 840, 648
Offset: 1

Views

Author

Zak Seidov, Apr 22 2013

Keywords

Comments

Conjectures: sigma(6n) > sigma(6n - 1) and sigma(6n) > sigma(6n + 1).
Conjectures are false. Try prime 73961483429 for n. One finds sigma(6*73961483429) < sigma(6*73961483429+1). The number n = 105851369791 provides a counterexample for the other case. - T. D. Noe, Apr 22 2013
Sum of the divisors of the numbers k which have the property that the width associated to the vertex of the first (also the last) valley of the smallest Dyck path of the symmetric representation of sigma(k) is equal to 2 (see example). Other positive integers have width 0 or 1 associated to the mentioned valley. - Omar E. Pol, Aug 11 2021

Examples

			From _Omar E. Pol_, Aug 11 2021: (Start)
Illustration of initial terms:
----------------------------------------------------------------------
   n    6*n   a(n)    Diagram:  1           2           3           4
----------------------------------------------------------------------
                                _           _           _           _
                               | |         | |         | |         | |
                               | |         | |         | |         | |
                          * _ _| |         | |         | |         | |
                           |  _ _|         | |         | |         | |
                      _ _ _| |_|           | |         | |         | |
   1     6     12    |_ _ _ _|      * _ _ _| |         | |         | |
                                    _|  _ _ _|         | |         | |
                                * _|  _| |             | |         | |
                                 |  _|  _|    * _ _ _ _| |         | |
                                 | |_ _|       |  _ _ _ _|         | |
                      _ _ _ _ _ _| |          _| | |               | |
   2    12     28    |_ _ _ _ _ _ _|        _|  _|_|    * _ _ _ _ _| |
                                      * _ _|  _|         |  _ _ _ _ _|
                                       |  _ _|        _ _| | |
                                       | |_ _|      _|  _ _| |
                                       | |        _|  _|  _ _|
                      _ _ _ _ _ _ _ _ _| |       |  _|  _|
   3    18     39    |_ _ _ _ _ _ _ _ _ _|  * _ _| |  _|
                                             |  _ _| |
                                             | |_ _ _|
                                             | |
                                             | |
                      _ _ _ _ _ _ _ _ _ _ _ _| |
   4    24     60    |_ _ _ _ _ _ _ _ _ _ _ _ _|
.
Note that the mentioned vertices are aligned on two straight lines that meet at point (3,3).
a(n) equals the area (also the number of cells) in the n-th diagram. (End)
		

Crossrefs

Sigma(k*n): A000203 (k=1), A062731 (k=2), A144613 (k=3), A193553 (k=4), A283118 (k=5), this sequence (k=6), A283078 (k=7), A283122 (k=8), A283123 (k=9).
Cf. A000203 (sigma(n)), A053224 (n: sigma(n) < sigma(n+1)).
Cf. A067825 (even n: sigma(n)< sigma(n+1)).

Programs

  • Mathematica
    DivisorSigma[1,6*Range[60]] (* Harvey P. Dale, Apr 16 2016 *)
  • PARI
    a(n)=sigma(6*n) \\ Charles R Greathouse IV, Apr 22 2013
    
  • Python
    from sympy import divisor_sigma
    def a(n):  return divisor_sigma(6*n)
    print([a(n) for n in range(1, 54)]) # Michael S. Branicky, Dec 28 2021
    
  • Python
    from math import prod
    from collections import Counter
    from sympy import factorint
    def A224613(n): return prod((p**(e+1)-1)//(p-1) for p, e in (Counter(factorint(n))+Counter([2,3])).items()) # Chai Wah Wu, Sep 07 2023

Formula

a(n) = A000203(6n).
a(n) = A000203(A008588(n)). - Omar E. Pol, Aug 11 2021
Sum_{k=1..n} a(k) = (55*Pi^2/72) * n^2 + O(n*log(n)). - Amiram Eldar, Dec 16 2022

Extensions

Corrected by Harvey P. Dale, Apr 16 2016

A121026 Multiples of 6 containing a 6 in their decimal representation.

Original entry on oeis.org

6, 36, 60, 66, 96, 126, 156, 162, 168, 186, 216, 246, 264, 276, 306, 336, 360, 366, 396, 426, 456, 462, 468, 486, 516, 546, 564, 576, 600, 606, 612, 618, 624, 630, 636, 642, 648, 654, 660, 666, 672, 678, 684, 690, 696, 726, 756, 762, 768, 786, 816, 846, 864
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 21 2006

Keywords

Crossrefs

Programs

Formula

a(n) ~ 6n. - Charles R Greathouse IV, Feb 12 2017

Extensions

Corrected by T. D. Noe, Oct 25 2006
Typo in comment fixed by Reinhard Zumkeller, May 01 2011

A165998 Denominators of Taylor series expansion of 1/(3*x)*log((1+x)/(1-x)^2).

Original entry on oeis.org

1, 6, 3, 12, 5, 18, 7, 24, 9, 30, 11, 36, 13, 42, 15, 48, 17, 54, 19, 60, 21, 66, 23, 72, 25, 78, 27, 84, 29, 90, 31, 96, 33, 102, 35, 108, 37, 114, 39, 120, 41, 126, 43, 132, 45, 138, 47, 144, 49, 150, 51, 156, 53, 162, 55, 168, 57, 174, 59, 180, 61, 186, 63, 192, 65, 198
Offset: 0

Views

Author

Jaume Oliver Lafont, Oct 03 2009

Keywords

Comments

Numerators are all 1.
Setting x=1/3 into 1/(3*x)*log((1+x)/(1-x)^2) = Sum_{k>=0} x^k/((2-(-1)^k)*(k+1)),
log(3) = Sum_{k>=0} 1/((2-(-1)^k)*(k+1)*3^k) = Sum_{k>=0} (9/(2k+1)+1/(2k+2))/9^(k+1) is obtained.
It appears that this is also the first differences of the generalized decagonal numbers A074377. - Omar E. Pol, Sep 10 2011
It appears that this is also A005408 and positive terms of A008588 interleaved. - Omar E. Pol, May 28 2012

Crossrefs

Programs

  • Magma
    [(2-(-1)^n)*(n+1): n in [0..350]]; // Vincenzo Librandi, Apr 04 2011
  • Mathematica
    LinearRecurrence[{0,2,0,-1}, {1, 6, 3, 12}, 50] (* Vincenzo Librandi, Feb 22 2012 *)
  • PARI
    a(n)=(2-(-1)^n)*(n+1)
    

Formula

G.f.: (1+6*x+x^2)/(1-x^2)^2.
a(n) = (2-(-1)^n)*(n+1) (see PARI's code by Jaume Oliver Lafont).
a(2n)= 2n+1. a(2n+1) = 6*(n+1). - R. J. Mathar, Apr 02 2011
With offset 1 this sequence is multiplicative (in fact, a generalized totient function): a(p^e) = p^e for any odd prime p and a(2^e) = 3*2^e for e >= 1. - Charles R Greathouse IV, Mar 09 2015
With offset 1, Dirichlet g.f.: zeta(s-1) * (1 + 2^(2-s)). - Amiram Eldar, Oct 25 2023

A249674 a(n) = 30*n.

Original entry on oeis.org

0, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330, 360, 390, 420, 450, 480, 510, 540, 570, 600, 630, 660, 690, 720, 750, 780, 810, 840, 870, 900, 930, 960, 990, 1020, 1050, 1080, 1110, 1140, 1170, 1200, 1230, 1260, 1290, 1320, 1350, 1380, 1410, 1440
Offset: 0

Views

Author

Kaylan Purisima, Nov 03 2014

Keywords

Comments

Numbers divisible by 2, 3 and 5. - Robert Israel, Nov 19 2014
a(n) is the maximum score of a 10-pin n-frame bowling game and the maximum score of an n-pin 10-frame bowling game, given the rules: a strike is worth the number of pins in each frame plus the number of pins knocked down by the next two balls (except in the last frame), a spare is worth the number of pins in each frame plus the number of pins knocked down by the next ball (except in the last frame), and if a strike or spare is earned in the last frame then the player must continue to throw balls until they have thrown 3 balls in the last frame. - Iain Fox, Mar 02 2018

Examples

			a(7) = 7 * 30 = 210.
		

Crossrefs

Programs

Formula

G.f.: 30*x/(x-1)^2; a(n) = 2*a(n-1) - a(n-2). - Wesley Ivan Hurt, Nov 18 2014
a(n) = 2*A008597(n) = 3*A008592(n) = 5*A008588(n) = 6*A008587(n) = 10*A008585(n) = 15*A005843(n). - Omar E. Pol, Nov 24 2014
From Elmo R. Oliveira, Apr 08 2025: (Start)
E.g.f.: 30*x*exp(x).
a(n) = A169823(n)/2. (End)

A010722 Constant sequence: the all 6's sequence.

Original entry on oeis.org

6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6
Offset: 0

Views

Author

Keywords

Comments

Continued fraction expansion of 3+sqrt(10). - Bruno Berselli, Mar 15 2011
Decimal expansion of Sum_{n >= 0} n/binomial(2*n+1, n) = 2/3. - Bruno Berselli, Sep 14 2015
Decimal expansion of 2/3. - Franklin T. Adams-Watters, Feb 23 2019

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 81.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987, p. 29.

Crossrefs

Cf. A145429: decimal expansion of Sum_{n >= 0} n/binomial(2*n, n).
First differences of A008588.

Programs

Formula

G.f.: 6/(1-x). - Bruno Berselli, Mar 15 2011
E.g.f.: 6*e^x. - Vincenzo Librandi, Jan 27 2012
a(n) = floor(1/(-n + csc(1/n))). - Clark Kimberling, Mar 10 2020

A097325 Period 6: repeat [0, 1, 1, 1, 1, 1].

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Ralf Stephan, Aug 16 2004

Keywords

Comments

a(n) is 0 if 6 divides n, 1 otherwise.

Crossrefs

Characteristic sequence of A047253.
Binary complement of A079979.

Programs

Formula

G.f.: 1/(1-x) - 1/(1-x^6) = Sum_{k>=0} x^k - x^(6*k).
Recurrence: a(n+6) = a(n), a(0) = 0, a(i) = 1, 1 <= i <= 5.
a(n) = (1/4) * (3 - (-1)^n - (-1)^((n+1)/3) - (-1)^((2n+1)/3)).
From Reinhard Zumkeller, Nov 30 2009: (Start)
a(n) = 1 - A079979(n).
a(A047253(n)) = 1, a(A008588(n)) = 0.
A033438(n) = Sum_{k=0..n} a(k)*(n-k). (End)
Dirichlet g.f.: (1 - 1/6^s)*zeta(s). - R. J. Mathar, Feb 19 2011
For the general case: the characteristic function of numbers that are not multiples of m is a(n) = floor((n-1)/m) - floor(n/m) + 1, m, n > 0. - Boris Putievskiy, May 08 2013
a(n) = sign(n mod 6). - Wesley Ivan Hurt, Jun 29 2013
a(n) = ceiling(5n/6) - floor(5n/6). - Wesley Ivan Hurt, Jun 20 2014

Extensions

New name from Omar E. Pol, Oct 21 2013
Previous Showing 11-20 of 135 results. Next