cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 134 results. Next

A229047 Replace all '11' => '101' in the binary representation of n, treat the result as representation of a(n) in base of Fibonacci numbers (A014417).

Original entry on oeis.org

0, 1, 2, 4, 3, 4, 7, 12, 5, 6, 7, 12, 11, 12, 20, 33, 8, 9, 10, 17, 11, 12, 20, 33, 18, 19, 20, 33, 32, 33, 54, 88, 13, 14, 15, 25, 16, 17, 28, 46, 18, 19, 20, 33, 32, 33, 54, 88, 29, 30, 31, 51, 32, 33, 54, 88, 52, 53, 54, 88, 87, 88, 143, 232, 21, 22, 23, 38, 24, 25, 41
Offset: 0

Views

Author

Alex Ratushnyak, Sep 25 2013

Keywords

Comments

Index of r in A014417, where r = ReplaceAll('11' -> '101' in bin(n)).

Examples

			Base 2 representation of 14 is 1110, that is 101010 after the replacement, that is A014417(20), so a(14)=20.
		

Crossrefs

Programs

  • Python
    fib = [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597]
    for n in range(333):
      res = 0
      bit = resbit = 1
      while bit<=n:
        if n&bit:  res += resbit
        resbit*=2
        if (n&bit) and (n&(bit*2)):  resbit*=2
        bit*=2
      #print(bin(n), bin(res), end=', ')
      an = i = 0
      while res:
        if res&1:  an += fib[2+i]
        i += 1
        res >>= 1
      print(an, end=', ')

A331192 Numbers whose Zeckendorf representation (A014417) and dual Zeckendorf representation (A104326) are both palindromic.

Original entry on oeis.org

0, 1, 4, 6, 12, 22, 33, 64, 88, 174, 232, 462, 609, 1216, 1596, 3190, 4180, 8358, 10945, 21888, 28656, 57310, 75024, 150046, 196417, 392832, 514228, 1028454, 1346268, 2692534, 3524577, 7049152, 9227464, 18454926, 24157816, 48315630, 63245985, 126491968, 165580140
Offset: 1

Views

Author

Amiram Eldar, Jan 11 2020

Keywords

Comments

Apparently union of numbers of the form F(2*k - 1) - 1 (k > 0) and numbers of the form 2 * F(2*k - 1) - 4 (k > 1), where F(m) is the m-th Fibonacci number.
The numbers of the form F(2*k - 1) - 1 have the same Zeckendorf and dual Zeckendorf representations. For k > 1 the representation is 1010...01, k-1 1's interleaved with k-2 0's.

Examples

			6 is a term since its Zeckendorf representation, 1001, and its dual Zeckendorf representation, 111, are both palindromic.
		

Crossrefs

Programs

  • Mathematica
    mirror[dig_, s_] := Join[dig, s, Reverse[dig]];
    select[v_, mid_] := Select[v, Length[#] == 0 || Last[#] != mid &];
    fib[dig_] := Plus @@ (dig*Fibonacci[Range[2, Length[dig] + 1]]);
    ndig = 12; pals1 = Rest[IntegerDigits /@ FromDigits /@ Select[Tuples[{0, 1}, ndig], SequenceCount[#, {1, 1}] == 0 &]];
    zeckPals = Union @ Join[{0, 1}, fib /@ Join[mirror[#, {}] & /@ (select[pals1, 1]), mirror[#, {1}] & /@ (select[pals1, 1]), mirror[#, {0}] & /@ pals1]];
    pals2 = Join[{{}}, Rest[Select[IntegerDigits[Range[0, 2^ndig - 1], 2], SequenceCount[#, {0, 0}] == 0 &]]];
    dualZeckPals = Union@Join[{0}, fib /@ Join[mirror[#, {}] & /@ (select[pals2, 0]), mirror[#, {0}] & /@ (select[pals2, 0]), mirror[#, {1}] & /@ pals2]];
    Intersection[zeckPals, dualZeckPals]

A000071 a(n) = Fibonacci(n) - 1.

Original entry on oeis.org

0, 0, 1, 2, 4, 7, 12, 20, 33, 54, 88, 143, 232, 376, 609, 986, 1596, 2583, 4180, 6764, 10945, 17710, 28656, 46367, 75024, 121392, 196417, 317810, 514228, 832039, 1346268, 2178308, 3524577, 5702886, 9227464, 14930351, 24157816, 39088168, 63245985, 102334154
Offset: 1

Views

Author

Keywords

Comments

a(n) is the number of allowable transition rules for passing from one change to the next (on n-1 bells) in the English art of bell-ringing. This is also the number of involutions in the symmetric group S_{n-1} which can be represented as a product of transpositions of consecutive numbers from {1, 2, ..., n-1}. Thus for n = 6 we have a(6) from (12), (12)(34), (12)(45), (23), (23)(45), (34), (45), for instance. See my 1983 Math. Proc. Camb. Phil. Soc. paper. - Arthur T. White, letter to N. J. A. Sloane, Dec 18 1986
Number of permutations p of {1, 2, ..., n-1} such that max|p(i) - i| = 1. Example: a(4) = 2 since only the permutations 132 and 213 of {1, 2, 3} satisfy the given condition. - Emeric Deutsch, Jun 04 2003 [For a(5) = 4 we have 2143, 1324, 2134 and 1243. - Jon Perry, Sep 14 2013]
Number of 001-avoiding binary words of length n-3. a(n) is the number of partitions of {1, ..., n-1} into two blocks in which only 1- or 2-strings of consecutive integers can appear in a block and there is at least one 2-string. E.g., a(6) = 7 because the enumerated partitions of {1, 2, 3, 4, 5} are 124/35, 134/25, 14/235, 13/245, 1245/3, 145/23, 125/34. - Augustine O. Munagi, Apr 11 2005
Numbers for which only one Fibonacci bit-representation is possible and for which the maximal and minimal Fibonacci bit-representations (A104326 and A014417) are equal. For example, a(12) = 10101 because 8 + 3 + 1 = 12. - Casey Mongoven, Mar 19 2006
Beginning with a(2), the "Recamán transform" (see A005132) of the Fibonacci numbers (A000045). - Nick Hobson, Mar 01 2007
Starting with nonzero terms, a(n) gives the row sums of triangle A158950. - Gary W. Adamson, Mar 31 2009
a(n+2) is the minimum number of elements in an AVL tree of height n. - Lennert Buytenhek (buytenh(AT)wantstofly.org), May 31 2010
a(n) is the number of branch nodes in the Fibonacci tree of order n-1. A Fibonacci tree of order n (n >= 2) is a complete binary tree whose left subtree is the Fibonacci tree of order n-1 and whose right subtree is the Fibonacci tree of order n-2; each of the Fibonacci trees of order 0 and 1 is defined as a single node (see the Knuth reference, p. 417). - Emeric Deutsch, Jun 14 2010
a(n+3) is the number of distinct three-strand positive braids of length n (cf. Burckel). - Maxime Bourrigan, Apr 04 2011
a(n+1) is the number of compositions of n with maximal part 2. - Joerg Arndt, May 21 2013
a(n+2) is the number of leafs of great-grandparent DAG (directed acyclic graph) of height n. A great-grandparent DAG of height n is a single node for n = 1; for n > 1 each leaf of ggpDAG(n-1) has two child nodes where pairs of adjacent new nodes are merged into single node if and only if they have disjoint grandparents and same great-grandparent. Consequence: a(n) = 2*a(n-1) - a(n-3). - Hermann Stamm-Wilbrandt, Jul 06 2014
2 and 7 are the only prime numbers in this sequence. - Emmanuel Vantieghem, Oct 01 2014
From Russell Jay Hendel, Mar 15 2015: (Start)
We can establish Gerald McGarvey's conjecture mentioned in the Formula section, however we require n > 4. We need the following 4 prerequisites.
(1) a(n) = F(n) - 1, with {F(n)}A000045.%20(2)%20(Binet%20form)%20F(n)%20=%20(d%5En%20-%20e%5En)/sqrt(5)%20with%20d%20=%20phi%20and%20e%20=%201%20-%20phi,%20de%20=%20-1%20and%20d%20+%20e%20=%201.%20It%20follows%20that%20a(n)%20=%20(d(n)%20-%20e(n))/sqrt(5)%20-%201.%20(3)%20To%20prove%20floor(x)%20=%20y%20is%20equivalent%20to%20proving%20that%20x%20-%20y%20lies%20in%20the%20half-open%20interval%20%5B0,%201).%20(4)%20The%20series%20%7Bs(n)%20=%20c1%20x%5En%20+%20c2%7D">{n >= 1} the Fibonacci numbers A000045. (2) (Binet form) F(n) = (d^n - e^n)/sqrt(5) with d = phi and e = 1 - phi, de = -1 and d + e = 1. It follows that a(n) = (d(n) - e(n))/sqrt(5) - 1. (3) To prove floor(x) = y is equivalent to proving that x - y lies in the half-open interval [0, 1). (4) The series {s(n) = c1 x^n + c2}{n >= 1}, with -1 < x < 0, and c1 and c2 positive constants, converges by oscillation with s(1) < s(3) < s(5) < ... < s(6) < s(4) < s(2). If follows that for any odd n, the open interval (s(n), s(n+1)) contains the subsequence {s(t)}_{t >= n + 2}. Using these prerequisites we can analyze the conjecture.
Using prerequisites (2) and (3) we see we must prove, for all n > 4, that d((d^(n-1) - e^(n-1))/sqrt(5) - 1) - (d^n - e^n)/sqrt(5) + 1 + c lies in the interval [0, 1). But de = -1, implying de^(n-1) = -e^(n-2). It follows that we must equivalently prove (for all n > 4) that E(n, c) = (e^(n-2) + e^n)/sqrt(5) + 1 - d + c = e^(n-2) (e^2 + 1)/sqrt(5) + e + c lies in [0, 1). Clearly, for any particular n, E(n, c) has extrema (maxima, minima) when c = 2*(1-d) and c = (1+d)*(1-d). Therefore, the proof is completed by using prerequisite (4). It suffices to verify E(5, 2*(1-d)) = 0, E(6, 2*(1-d)) = 0.236068, E(5, (1-d)*(1+d)) = 0.618034, E(6, (1-d)*(1+d)) = 0.854102, all lie in [0, 1).
(End)
a(n) can be shown to be the number of distinct nonempty matchings on a path with n vertices. (A matching is a collection of disjoint edges.) - Andrew Penland, Feb 14 2017
Also, for n > 3, the lexicographically earliest sequence of positive integers such that {phi*a(n)} is located strictly between {phi*a(n-1)} and {phi*a(n-2)}. - Ivan Neretin, Mar 23 2017
From Eric M. Schmidt, Jul 17 2017: (Start)
Number of sequences (e(1), ..., e(n-2)), 0 <= e(i) < i, such that there is no triple i < j < k with e(i) != e(j) <= e(k). [Martinez and Savage, 2.5]
Number of sequences (e(1), ..., e(n-2)), 0 <= e(i) < i, such that there is no triple i < j < k with e(i) >= e(j) <= e(k) and e(i) != e(k). [Martinez and Savage, 2.5]
(End)
Numbers whose Zeckendorf (A014417) and dual Zeckendorf (A104326) representations are the same: alternating digits of 1 and 0. - Amiram Eldar, Nov 01 2019
a(n+2) is the length of the longest array whose local maximum element can be found in at most n reveals. See link to the puzzle by Alexander S. Kulikov. - Dmitry Kamenetsky, Aug 08 2020
a(n+2) is the number of nonempty subsets of {1,2,...,n} that contain no consecutive elements. For example, the a(6)=7 subsets of {1,2,3,4} are {1}, {2}, {3}, {4}, {1,3}, {1,4} and {2,4}. - Muge Olucoglu, Mar 21 2021
a(n+3) is the number of allowed patterns of length n in the even shift (that is, a(n+3) is the number of binary words of length n in which there are an even number of 0s between any two occurrences of 1). For example, a(7)=12 and the 12 allowed patterns of length 4 in the even shift are 0000, 0001, 0010, 0011, 0100, 0110, 0111, 1000, 1001, 1100, 1110, 1111. - Zoran Sunic, Apr 06 2022
Conjecture: for k a positive odd integer, the sequence {a(k^n): n >= 1} is a strong divisibility sequence; that is, for n, m >= 1, gcd(a(k^n), a(k^m)) = a(k^gcd(n,m)). - Peter Bala, Dec 05 2022
In general, the sum of a second-order linear recurrence having signature (c,d) will be a third-order recurrence having a signature (c+1,d-c,-d). - Gary Detlefs, Jan 05 2023
a(n) is the number of binary strings of length n-2 whose longest run of 1's is of length 1, for n >= 3. - Félix Balado, Apr 03 2025

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 1.
  • GCHQ, The GCHQ Puzzle Book, Penguin, 2016. See page 28.
  • M. Kauers and P. Paule, The Concrete Tetrahedron, Springer 2011, p. 64.
  • D. E. Knuth, The Art of Computer Programming, Vol. 3, 2nd edition, Addison-Wesley, Reading, MA, 1998, p. 417.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 155.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • J. L. Yucas, Counting special sets of binary Lyndon words, Ars Combin., 31 (1991), 21-29.

Crossrefs

Antidiagonal sums of array A004070.
Right-hand column 2 of triangle A011794.
Related to sum of Fibonacci(kn) over n. Cf. A099919, A058038, A138134, A053606.
Subsequence of A226538. Also a subsequence of A061489.

Programs

  • Haskell
    a000071 n = a000071_list !! n
    a000071_list = map (subtract 1) $ tail a000045_list
    -- Reinhard Zumkeller, May 23 2013
    
  • Magma
    [Fibonacci(n)-1: n in [1..60]]; // Vincenzo Librandi, Apr 04 2011
    
  • Maple
    A000071 := proc(n) combinat[fibonacci](n)-1 ; end proc; # R. J. Mathar, Apr 07 2011
    a:= n-> (Matrix([[1, 1, 0], [1, 0, 0], [1, 0, 1]])^(n-1))[3, 2]; seq(a(n), n=1..50); # Alois P. Heinz, Jul 24 2008
  • Mathematica
    Fibonacci[Range[40]] - 1 (* or *) LinearRecurrence[{2, 0, -1}, {0, 0, 1}, 40] (* Harvey P. Dale, Aug 23 2013 *)
    Join[{0}, Accumulate[Fibonacci[Range[0, 39]]]] (* Alonso del Arte, Oct 22 2017, based on Giorgi Dalakishvili's formula *)
  • PARI
    {a(n) = if( n<1, 0, fibonacci(n)-1)};
    
  • SageMath
    [fibonacci(n)-1 for n in range(1,60)] # G. C. Greubel, Oct 21 2024

Formula

a(n) = A000045(n) - 1.
a(0) = -1, a(1) = 0; thereafter a(n) = a(n-1) + a(n-2) + 1.
a(n) = A101220(1, 1, n-2), for n > 1.
G.f.: x^3/((1-x-x^2)*(1-x)). - Simon Plouffe in his 1992 dissertation, dropping initial 0's
a(n) = 2*a(n-1) - a(n-3). - R. H. Hardin, Apr 02 2011
Partial sums of Fibonacci numbers. - Wolfdieter Lang
a(n) = -1 + (A*B^n + C*D^n)/10, with A, C = 5 +- 3*sqrt(5), B, D = (1 +- sqrt(5))/2. - Ralf Stephan, Mar 02 2003
a(1) = 0, a(2) = 0, a(3) = 1, then a(n) = ceiling(phi*a(n-1)) where phi is the golden ratio (1 + sqrt(5))/2. - Benoit Cloitre, May 06 2003
Conjecture: for all c such that 2*(2 - Phi) <= c < (2 + Phi)*(2 - Phi) we have a(n) = floor(Phi*a(n-1) + c) for n > 4. - Gerald McGarvey, Jul 22 2004. This is true provided n > 3 is changed to n > 4, see proof in Comments section. - Russell Jay Hendel, Mar 15 2015
a(n) = Sum_{k = 0..floor((n-2)/2)} binomial(n-k-2, k+1). - Paul Barry, Sep 23 2004
a(n+3) = Sum_{k = 0..floor(n/3)} binomial(n-2*k, k)*(-1)^k*2^(n-3*k). - Paul Barry, Oct 20 2004
a(n+1) = Sum(binomial(n-r, r)), r = 1, 2, ... which is the case t = 2 and k = 2 in the general case of t-strings and k blocks: a(n+1, k, t) = Sum(binomial(n-r*(t-1), r)*S2(n-r*(t-1)-1, k-1)), r = 1, 2, ... - Augustine O. Munagi, Apr 11 2005
a(n) = Sum_{k = 0..n-2} k*Fibonacci(n - k - 3). - Ross La Haye, May 31 2006
a(n) = term (3, 2) in the 3 X 3 matrix [1, 1, 0; 1, 0, 0; 1, 0, 1]^(n-1). - Alois P. Heinz, Jul 24 2008
For n >= 4, a(n) = ceiling(phi*a(n-1)), where phi is the golden ratio. - Vladimir Shevelev, Jul 04 2010
Closed-form without two leading zeros g.f.: 1/(1 - 2*x - x^3); ((5 + 2*sqrt(5))*((1 + sqrt(5))/2)^n + (5 - 2*sqrt(5))*((1 - sqrt(5))/2)^n - 5)/5; closed-form with two leading 0's g.f.: x^2/(1 - 2*x - x^3); ((5 + sqrt(5))*((1 + sqrt(5))/2)^n + (5 - sqrt(5))*((1 - sqrt(5))/2)^n - 10)/10. - Tim Monahan, Jul 10 2011
A000119(a(n)) = 1. - Reinhard Zumkeller, Dec 28 2012
a(n) = A228074(n - 1, 2) for n > 2. - Reinhard Zumkeller, Aug 15 2013
G.f.: Q(0)*x^2/2, where Q(k) = 1 + 1/(1 - x*(4*k + 2 - x^2)/( x*(4*k + 4 - x^2) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 30 2013
A083368(a(n+3)) = n. - Reinhard Zumkeller, Aug 10 2014
E.g.f.: 1 - exp(x) + 2*exp(x/2)*sinh(sqrt(5)*x/2)/sqrt(5). - Ilya Gutkovskiy, Jun 15 2016
a(n) = A000032(3+n) - 1 mod A000045(3+n). - Mario C. Enriquez, Apr 01 2017
a(n) = Sum_{i=0..n-2} Fibonacci(i). - Giorgi Dalakishvili (mcnamara_gio(AT)yahoo.com), Apr 02 2005 [corrected by Doug Bell, Jun 01 2017]
a(n+2) = Sum_{j = 0..floor(n/2)} Sum_{k = 0..j} binomial(n - 2*j, k+1)*binomial(j, k). - Tony Foster III, Sep 08 2017
From Peter Bala, Nov 12 2021: (Start)
a(4*n) = Fibonacci(2*n+1)*Lucas(2*n-1) = A081006(n);
a(4*n+1) = Fibonacci(2*n)*Lucas(2*n+1) = A081007(n);
a(4*n+2) = Fibonacci(2*n)*Lucas(2*n+2) = A081008(n);
a(4*n+3) = Fibonacci(2*n+2)*Lucas(2*n+1) = A081009(n). (End)
G.f.: x^3/((1 - x - x^2)*(1 - x)) = Sum_{n >= 0} (-1)^n * x^(n+3) *( Product_{k = 1..n} (k - x)/Product_{k = 1..n+2} (1 - k*x) ) (a telescoping series). - Peter Bala, May 08 2024
Product_{n>=4} (1 + (-1)^n/a(n)) = 3*phi/4, where phi is the golden ratio (A001622). - Amiram Eldar, Nov 28 2024

Extensions

Edited by N. J. A. Sloane, Apr 04 2011

A001950 Upper Wythoff sequence (a Beatty sequence): a(n) = floor(n*phi^2), where phi = (1+sqrt(5))/2.

Original entry on oeis.org

2, 5, 7, 10, 13, 15, 18, 20, 23, 26, 28, 31, 34, 36, 39, 41, 44, 47, 49, 52, 54, 57, 60, 62, 65, 68, 70, 73, 75, 78, 81, 83, 86, 89, 91, 94, 96, 99, 102, 104, 107, 109, 112, 115, 117, 120, 123, 125, 128, 130, 133, 136, 138, 141, 143, 146, 149, 151, 154, 157
Offset: 1

Views

Author

Keywords

Comments

Indices at which blocks (1;0) occur in infinite Fibonacci word; i.e., n such that A005614(n-2) = 0 and A005614(n-1) = 1. - Benoit Cloitre, Nov 15 2003
A000201 and this sequence may be defined as follows: Consider the maps a -> ab, b -> a, starting from a(1) = a; then A000201 gives the indices of a, A001950 gives the indices of b. The sequence of letters in the infinite word begins a, b, a, a, b, a, b, a, a, b, a, ... Setting a = 0, b = 1 gives A003849 (offset 0); setting a = 1, b = 0 gives A005614 (offset 0). - Philippe Deléham, Feb 20 2004
a(n) = n-th integer which is not equal to the floor of any multiple of phi, where phi = (1+sqrt(5))/2 = golden number. - Philippe LALLOUET (philip.lallouet(AT)wanadoo.fr), May 09 2007
Write A for A000201 and B for the present sequence (the upper Wythoff sequence, complement of A). Then the composite sequences AA, AB, BA, BB, AAA, AAB, ..., BBB, ... appear in many complementary equations having solution A000201 (or equivalently, the present sequence). Typical complementary equations: AB=A+B (=A003623), BB=A+2B (=A101864), BBB=3A+5B (=A134864). - Clark Kimberling, Nov 14 2007
Apart from the initial 0 in A090909, is this the same as that sequence? - Alec Mihailovs (alec(AT)mihailovs.com), Jul 23 2007
If we define a base-phi integer as a positive number whose representation in the golden ratio base consists only of nonnegative powers of phi, and if these base-phi integers are ordered in increasing order (beginning 1, phi, ...), then it appears that the difference between the n-th and (n-1)-th base-phi integer is phi-1 if and only if n belongs to this sequence, and the difference is 1 otherwise. Further, if each base-phi integer is written in linear form as a + b*phi (for example, phi^2 is written as 1 + phi), then it appears that there are exactly two base-phi integers with b=n if and only if n belongs to this sequence, and exactly three base-phi integers with b=n otherwise. - Geoffrey Caveney, Apr 17 2014
Numbers with an odd number of trailing zeros in their Zeckendorf representation (A014417). - Amiram Eldar, Feb 26 2021
Numbers missing from A066096. - Philippe Deléham, Jan 19 2023

Examples

			From _Paul Weisenhorn_, Aug 18 2012 and Aug 21 2012: (Start)
a(14) = floor(14*phi^2) = 36; a'(14) = floor(14*phi)=22;
with r=9 and j=1: a(13+1) = 34 + 2 = 36;
with r=8 and j=1: a'(13+1) = 21 + 1 = 22.
k=6 and a(5)=13 < n <= a(6)=15
a(14) = 3*14 - 6 = 36; a'(14) = 2*14 - 6 = 22;
a(15) = 3*15 - 6 = 39; a'(15) = 2*15 - 6 = 24. (End)
		

References

  • Claude Berge, Graphs and Hypergraphs, North-Holland, 1973; p. 324, Problem 2.
  • Eric Friedman, Scott M. Garrabrant, Ilona K. Phipps-Morgan, A. S. Landsberg and Urban Larsson, Geometric analysis of a generalized Wythoff game, in Games of no Chance 5, MSRI publ. Cambridge University Press, 2019.
  • Martin Gardner, Penrose Tiles to Trapdoor Ciphers, W. H. Freeman, 1989; see p. 107.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • I. M. Yaglom, Two games with matchsticks, pp. 1-7 of Qvant Selecta: Combinatorics I, Amer Math. Soc., 2001.

Crossrefs

a(n) = greatest k such that s(k) = n, where s = A026242.
Complement of A000201 or A066096.
A002251 maps between A000201 and A001950, in that A002251(A000201(n)) = A001950(n), A002251(A001950(n)) = A000201(n).
Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864.
First differences give (essentially) A076662.
Bisections: A001962, A001966.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A000201 as the parent: A000201, A001030, A001468, A001950, A003622, A003842, A003849, A004641, A005614, A014675, A022342, A088462, A096270, A114986, A124841. - N. J. A. Sloane, Mar 11 2021

Programs

  • Haskell
    a001950 n = a000201 n + n  -- Reinhard Zumkeller, Mar 10 2013
    
  • Magma
    [Floor(n*((1+Sqrt(5))/2)^2): n in [1..80]]; // Vincenzo Librandi, Nov 19 2016
    
  • Maple
    A001950 := proc(n)
        floor(n*(3+sqrt(5))/2) ;
    end proc:
    seq(A001950(n),n=0..40) ; # R. J. Mathar, Jul 16 2024
  • Mathematica
    Table[Floor[N[n*(1+Sqrt[5])^2/4]], {n, 1, 75}]
    Array[ Floor[ #*GoldenRatio^2] &, 60] (* Robert G. Wilson v, Apr 17 2010 *)
  • PARI
    a(n)=floor(n*(sqrt(5)+3)/2)
    
  • PARI
    A001950(n)=(sqrtint(n^2*5)+n*3)\2 \\ M. F. Hasler, Sep 17 2014
    
  • Python
    from math import isqrt
    def A001950(n): return (n+isqrt(5*n**2)>>1)+n # Chai Wah Wu, Aug 10 2022

Formula

a(n) = n + floor(n*phi). In general, floor(n*phi^m) = Fibonacci(m-1)*n + floor(Fibonacci(m)*n*phi). - Benoit Cloitre, Mar 18 2003
a(n) = n + floor(n*phi) = n + A000201(n). - Paul Weisenhorn and Philippe Deléham
Append a 0 to the Zeckendorf expansion (cf. A035517) of n-th term of A000201.
a(n) = A003622(n) + 1. - Philippe Deléham, Apr 30 2004
a(n) = Min(m: A134409(m) = A006336(n)). - Reinhard Zumkeller, Oct 24 2007
If a'=A000201 is the ordered complement (in N) of {a(n)}, then a(Fib(r-2) + j) = Fib(r) + a(j) for 0 < j <= Fib(r-2), 3 < r; and a'(Fib(r-1) + j) = Fib(r) + a'(j) for 0 < j <= Fib(r-2), 2 < r. - Paul Weisenhorn, Aug 18 2012
With a(1)=2, a(2)=5, a'(1)=1, a'(2)=3 and 1 < k and a(k-1) < n <= a(k) one gets a(n)=3*n-k, a'(n)=2*n-k. - Paul Weisenhorn, Aug 21 2012

Extensions

Corrected by Michael Somos, Jun 07 2000

A003714 Fibbinary numbers: if n = F(i1) + F(i2) + ... + F(ik) is the Zeckendorf representation of n (i.e., write n in Fibonacci number system) then a(n) = 2^(i1 - 2) + 2^(i2 - 2) + ... + 2^(ik - 2). Also numbers whose binary representation contains no two adjacent 1's.

Original entry on oeis.org

0, 1, 2, 4, 5, 8, 9, 10, 16, 17, 18, 20, 21, 32, 33, 34, 36, 37, 40, 41, 42, 64, 65, 66, 68, 69, 72, 73, 74, 80, 81, 82, 84, 85, 128, 129, 130, 132, 133, 136, 137, 138, 144, 145, 146, 148, 149, 160, 161, 162, 164, 165, 168, 169, 170, 256, 257, 258, 260, 261, 264
Offset: 0

Views

Author

Keywords

Comments

The name "Fibbinary" is due to Marc LeBrun.
"... integers whose binary representation contains no consecutive ones and noticed that the number of such numbers with n bits was fibonacci(n)". [posting to sci.math by Bob Jenkins (bob_jenkins(AT)burtleburtle.net), Jul 17 2002]
From Benoit Cloitre, Mar 08 2003: (Start)
A number m is in the sequence if and only if C(3m, m) (or equally, C(3m, 2m)) is odd.
a(n) == A003849(n) (mod 2). (End)
Numbers m such that m XOR 2*m = 3*m. - Reinhard Zumkeller, May 03 2005. [This implies that A003188(2*a(n)) = 3*a(n) holds for all n.]
Numbers whose base-2 representation contains no two adjacent ones. For example, m = 17 = 10001_2 belongs to the sequence, but m = 19 = 10011_2 does not. - Ctibor O. Zizka, May 13 2008
m is in the sequence if and only if the central Stirling number of the second kind S(2*m, m) = A007820(m) is odd. - O-Yeat Chan (math(AT)oyeat.com), Sep 03 2009
A000120(3*a(n)) = 2*A000120(a(n)); A002450 is a subsequence.
Every nonnegative integer can be expressed as the sum of two terms of this sequence. - Franklin T. Adams-Watters, Jun 11 2011
Subsequence of A213526. - Arkadiusz Wesolowski, Jun 20 2012
This is also the union of A215024 and A215025 - see the Comment in A014417. - N. J. A. Sloane, Aug 10 2012
The binary representation of each term m contains no two adjacent 1's, so we have (m XOR 2m XOR 3m) = 0, and thus a two-player Nim game with three heaps of (m, 2m, 3m) stones is a losing configuration for the first player. - V. Raman, Sep 17 2012
Positions of zeros in A014081. - John Keith, Mar 07 2022
These numbers are similar to Fibternary numbers A003726, Tribbinary numbers A060140 and Tribternary numbers. This sequence is a subsequence of Fibternary numbers A003726. The number of Fibbinary numbers less than any power of two is a Fibonacci number. We can generate this sequence recursively: start with 0 and 1; then, if x is in the sequence add 2x and 4x+1 to the sequence. The Fibbinary numbers have the property that the n-th Fibbinary number is even if the n-th term of the Fibonacci word is a. Respectively, the n-th Fibbinary number is odd (of the form 4x+1) if the n-th term of the Fibonacci word is b. Every number has a Fibbinary multiple. - Tanya Khovanova and PRIMES STEP Senior, Aug 30 2022
This is the ordered set S of numbers defined recursively by: 0 is in S; if x is in S, then 2*x and 4*x + 1 are in S. See Kimberling (2006) Example 3, in references below. - Harry Richman, Jan 31 2024

Examples

			From _Joerg Arndt_, Jun 11 2011: (Start)
In the following, dots are used for zeros in the binary representation:
  a(n)  binary(a(n))  n
    0:    .......     0
    1:    ......1     1
    2:    .....1.     2
    4:    ....1..     3
    5:    ....1.1     4
    8:    ...1...     5
    9:    ...1..1     6
   10:    ...1.1.     7
   16:    ..1....     8
   17:    ..1...1     9
   18:    ..1..1.    10
   20:    ..1.1..    11
   21:    ..1.1.1    12
   32:    .1.....    13
   33:    .1....1    14
   34:    .1...1.    15
   36:    .1..1..    16
   37:    .1..1.1    17
   40:    .1.1...    18
   41:    .1.1..1    19
   42:    .1.1.1.    20
   64:    1......    21
   65:    1.....1    22
(End)
		

References

  • Donald E. Knuth, The Art of Computer Programming: Fundamental Algorithms, Vol. 1, 2nd ed., Addison-Wesley, 1973, pp. 85, 493.

Crossrefs

A007088(a(n)) = A014417(n) (same sequence in binary). Complement: A004780. Char. function: A085357. Even terms: A022340, odd terms: A022341. First difference: A129761.
Other sequences based on similar restrictions on binary expansion: A003726 & A278038, A003754, A048715, A048718, A107907, A107909.
3*a(n) is in A001969.
Cf. A014081 (count 11 bits).

Programs

  • Haskell
    import Data.Set (Set, singleton, insert, deleteFindMin)
    a003714 n = a003714_list !! n
    a003714_list = 0 : f (singleton 1) where
       f :: Set Integer -> [Integer]
       f s = m : (f $ insert (4*m + 1) $ insert (2*m) s')
             where (m, s') = deleteFindMin s
    -- Reinhard Zumkeller, Jun 03 2012, Feb 07 2012
    
  • Maple
    A003714 := proc(n)
        option remember;
        if n < 3 then
            n ;
        else
            2^(A072649(n)-1) + procname(n-combinat[fibonacci](1+A072649(n))) ;
        end if;
    end proc:
    seq(A003714(n),n=0..10) ;
    # To produce a table giving n, a(n) (base 10), a(n) (base 2) - from N. J. A. Sloane, Sep 30 2018
    # binary: binary representation of n, in human order
    binary:=proc(n) local t1,L;
    if n<0 then ERROR("n must be nonnegative"); fi;
    if n=0 then return([0]); fi;
    t1:=convert(n,base,2); L:=nops(t1);
    [seq(t1[L+1-i],i=1..L)];
    end;
    for n from 0 to 100 do t1:=A003714(n); lprint(n, t1, binary(t1)); od:
  • Mathematica
    fibBin[n_Integer] := Block[{k = Ceiling[Log[GoldenRatio, n Sqrt[5]]], t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[fr, 1]; t = t - Fibonacci[k], AppendTo[fr, 0]]; k--]; FromDigits[fr, 2]]; Table[fibBin[n], {n, 0, 61}] (* Robert G. Wilson v, Sep 18 2004 *)
    Select[Range[0, 270], ! MemberQ[Partition[IntegerDigits[#, 2], 2, 1], {1, 1}] &] (* Harvey P. Dale, Jul 17 2011 *)
    Select[Range[256], BitAnd[#, 2 #] == 0 &] (* Alonso del Arte, Jun 18 2012 *)
    With[{r = Range[10^5]}, Pick[r, BitAnd[r, 2 r], 0]] (* Eric W. Weisstein, Aug 18 2017 *)
    Select[Range[0, 299], SequenceCount[IntegerDigits[#, 2], {1, 1}] == 0 &] (* Requires Mathematica version 10 or later. -- Harvey P. Dale, Dec 06 2018 *)
  • PARI
    msb(n)=my(k=1); while(k<=n, k<<=1); k>>1
    for(n=1,1e4,k=bitand(n,n<<1);if(k,n=bitor(n,msb(k)-1),print1(n", "))) \\ Charles R Greathouse IV, Jun 15 2011
    
  • PARI
    select( is_A003714(n)=!bitand(n,n>>1), [0..266])
    {(next_A003714(n,t)=while(t=bitand(n+=1,n<<1), n=bitor(n,1<A003714(t)) \\ M. F. Hasler, Nov 30 2021
    
  • Python
    for n in range(300):
        if 2*n & n == 0:
            print(n, end=",") # Alex Ratushnyak, Jun 21 2012
    
  • Python
    def A003714(n):
        tlist, s = [1,2], 0
        while tlist[-1]+tlist[-2] <= n:
            tlist.append(tlist[-1]+tlist[-2])
        for d in tlist[::-1]:
            s *= 2
            if d <= n:
                s += 1
                n -= d
        return s # Chai Wah Wu, Jun 14 2018
    
  • Python
    def fibbinary():
        x = 0
        while True:
            yield x
            y = ~(x >> 1)
            x = (x - y) & y # Falk Hüffner, Oct 23 2021
    (C++)
    /* start with x=0, then repeatedly call x=next_fibrep(x): */
    ulong next_fibrep(ulong x)
    {
        // 2 examples:         //  ex. 1             //  ex.2
        //                     // x == [*]0 010101   // x == [*]0 01010
        ulong y = x | (x>>1);  // y == [*]? 011111   // y == [*]? 01111
        ulong z = y + 1;       // z == [*]? 100000   // z == [*]? 10000
        z = z & -z;            // z == [0]0 100000   // z == [0]0 10000
        x ^= z;                // x == [*]0 110101   // x == [*]0 11010
        x &= ~(z-1);           // x == [*]0 100000   // x == [*]0 10000
        return x;
    }
    /* Joerg Arndt, Jun 22 2012 */
    
  • Scala
    (0 to 255).filter(n => (n & 2 * n) == 0) // Alonso del Arte, Apr 12 2020
    (C#)
    public static bool IsFibbinaryNum(this int n) => ((n & (n >> 1)) == 0) ? true : false; // Frank Hollstein, Jul 07 2021

Formula

No two adjacent 1's in binary expansion.
Let f(x) := Sum_{n >= 0} x^Fibbinary(n). (This is the generating function of the characteristic function of this sequence.) Then f satisfies the functional equation f(x) = x*f(x^4) + f(x^2).
a(0) = 0, a(1) = 1, a(2) = 2, a(n) = 2^(A072649(n) - 1) + a(n - A000045(1 + A072649(n))). - Antti Karttunen
It appears that this sequence gives m such that A082759(3*m) is odd; or, probably equivalently, m such that A037011(3*m) = 1. - Benoit Cloitre, Jun 20 2003
If m is in the sequence then so are 2*m and 4*m + 1. - Henry Bottomley, Jan 11 2005
A116361(a(n)) <= 1. - Reinhard Zumkeller, Feb 04 2006
A085357(a(n)) = 1; A179821(a(n)) = a(n). - Reinhard Zumkeller, Jul 31 2010
a(n)/n^k is bounded (but does not tend to a limit), where k = 1.44... = A104287. - Charles R Greathouse IV, Sep 19 2012
a(n) = a(A193564(n+1))*2^(A003849(n) + 1) + A003849(n) for n > 0. - Daniel Starodubtsev, Aug 05 2021
There are Fibonacci(n+1) terms with up to n bits in this sequence. - Charles R Greathouse IV, Oct 22 2021
Sum_{n>=1} 1/a(n) = 3.704711752910469457886531055976801955909489488376627037756627135425780134020... (calculated using Baillie and Schmelzer's kempnerSums.nb, see Links). - Amiram Eldar, Feb 12 2022

Extensions

Edited by Antti Karttunen, Feb 21 2006
Cross reference to A007820 added (into O-Y.C. comment) by Jason Kimberley, Sep 14 2009
Typo corrected by Jeffrey Shallit, Sep 26 2014

A003849 The infinite Fibonacci word (start with 0, apply 0->01, 1->0, take limit).

Original entry on oeis.org

0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1
Offset: 0

Views

Author

Keywords

Comments

A Sturmian word.
Define strings S(0)=0, S(1)=01, S(n)=S(n-1)S(n-2); iterate; sequence is S(infinity). If the initial 0 is omitted from S(n) for n>0, we obtain A288582(n+1).
The 0's occur at positions in A022342 (i.e., A000201 - 1), the 1's at positions in A003622.
Replace each run (1;1) with (1;0) in the infinite Fibonacci word A005614 (and add 0 as prefix) A005614 begins: 1,0,1,1,0,1,0,1,1,0,1,1,... changing runs (1,1) with (1,0) produces 1,0,0,1,0,1,0,0,1,0,0,1,... - Benoit Cloitre, Nov 10 2003
Characteristic function of A003622. - Philippe Deléham, May 03 2004
The fraction of 0's in the first n terms approaches 1/phi (see for example Allouche and Shallit). - N. J. A. Sloane, Sep 24 2007
The limiting mean and variance of the first n terms are 2-phi and 2*phi-3, respectively. - Clark Kimberling, Mar 12 2014, Aug 16 2018
Let S(n) be defined as above. Then this sequence is S(1) + Sum_{n=0..} S(n), where the addition of strings represents concatenation. - Isaac Saffold, May 03 2019
The word is a concatenation of three runs: 0, 1, and 00. The limiting proportions of these are respectively 1 - phi/2, 1/2, and (phi - 1)/2. The mean runlength is (phi + 1)/2. - Clark Kimberling, Dec 26 2010
From Amiram Eldar, Mar 10 2021: (Start)
a(n) is the number of the trailing 0's in the dual Zeckendorf representation of (n+1) (A104326).
The asymptotic density of the occurrences of k (0 or 1) is 1/phi^(k+1), where phi is the golden ratio (A001622).
The asymptotic mean of this sequence is 1/phi^2 (A132338). (End)

Examples

			The word is 010010100100101001010010010100...
Over the alphabet {a,b} this is a, b, a, a, b, a, b, a, a, b, a, a, b, a, b, a, a, b, a, b, a, a, b, a, a, b, a, b, a, a, b, a, a, b, a, b, a, a, b, a, b, a, a, b, a, a, b, a, b, a, a, b, a, b, a, a, b, a, a, b, a, b, a, a, b, a, a, b, a, b, a, a, b, a, b, a, a, b, a, a, b, a, b, a, a, b, a, a, b, a, b, a, a, b, a, b, a, a, b, a, a, b, a, b, a, ...
		

References

  • J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003.
  • Jean Berstel, Fibonacci words—a survey, In The book of L, pp. 13-27. Springer Berlin Heidelberg, 1986.
  • J. C. Lagarias, Number Theory and Dynamical Systems, pp. 35-72 of S. A. Burr, ed., The Unreasonable Effectiveness of Number Theory, Proc. Sympos. Appl. Math., 46 (1992). Amer. Math. Soc. - see p. 64.
  • Wolfdieter Lang, The Wythoff and the Zeckendorf representations of numbers are equivalent, in G. E. Bergum et al. (edts.) Application of Fibonacci numbers vol. 6, Kluwer, Dordrecht, 1996, pp. 319-337. [See A317208 for a link.]
  • G. Melançon, Factorizing infinite words using Maple, MapleTech journal, vol. 4, no. 1, 1997, pp. 34-42, esp. p. 36.
  • Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.

Crossrefs

There are several versions of this sequence in the OEIS. This one and A003842 are probably the most important. See also A008352, A076662, A288581, A288582.
Positions of 1's gives A003622.
Sequences mentioned in the Allouche et al. "Taxonomy" paper, listed by example number: 1: A003849, 2: A010060, 3: A010056, 4: A020985 and A020987, 5: A191818, 6: A316340 and A273129, 18: A316341, 19: A030302, 20: A063438, 21: A316342, 22: A316343, 23: A003849 minus its first term, 24: A316344, 25: A316345 and A316824, 26: A020985 and A020987, 27: A316825, 28: A159689, 29: A049320, 30: A003849, 31: A316826, 32: A316827, 33: A316828, 34: A316344, 35: A043529, 36: A316829, 37: A010060.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A000201 as the parent: A000201, A001030, A001468, A001950, A003622, A003842, A003849, A004641, A005614, A014675, A022342, A088462, A096270, A114986, A124841. - N. J. A. Sloane, Mar 11 2021

Programs

  • Haskell
    a003849 n = a003849_list !! n
    a003849_list = tail $ concat fws where
       fws = [1] : [0] : (zipWith (++) fws $ tail fws)
    -- Reinhard Zumkeller, Nov 01 2013, Apr 07 2012
    
  • Magma
    t1:=[ n le 2 select ["0","0,1"][n] else Self(n-1) cat "," cat Self(n-2) : n in [1..12]]; t1[12];
    
  • Maple
    z := proc(m) option remember; if m=0 then [0] elif m=1 then [0,1] else [op(z(m-1)),op(z(m-2))]; fi; end; z(12);
    M:=19; S[0]:=`0`; S[1]:=`01`; for n from 2 to M do S[n]:=cat(S[n-1], S[n-2]); od:
    t0:=S[M]: l:=length(t0); for i from 1 to l do lprint(i-1,substring(t0,i..i)); od: # N. J. A. Sloane, Nov 01 2006
  • Mathematica
    Nest[ Flatten[ # /. {0 -> {0, 1}, 1 -> {0}}] &, {0}, 10] (* Robert G. Wilson v, Mar 05 2005 *)
    Flatten[Nest[{#, #[[1]]} &, {0, 1}, 9]] (* IWABUCHI Yu(u)ki, Oct 23 2013 *)
    Table[Floor[(n + 2) #] - Floor[(n + 1) #], {n, 0, 120}] &[2 - GoldenRatio] (* Michael De Vlieger, Aug 15 2016 *)
    SubstitutionSystem[{0->{0,1},1->{0}},{0},{10}][[1]] (* Harvey P. Dale, Dec 20 2021 *)
  • PARI
    a(n)=my(k=2);while(fibonacci(k)<=n,k++);while(n>1,while(fibonacci(k--)>n,); n-=fibonacci(k)); n==1 \\ Charles R Greathouse IV, Feb 03 2014
    
  • PARI
    M3849=[2,2,1,0]/*L(k),S(k),L(k-1),S(k-1)*/; A003849(n)={while(n>M3849[1],M3849=vecextract(M3849,[1,2,1,2])+[M3849[3],M3849[4]<M. F. Hasler, Apr 07 2021
    
  • Python
    def fib(n):
        """Return the concatenation of A003849(0..F-1) where F is the smallest
           Fibonacci number > n, so that the result contains a(n) at index n."""
        a, b = '10'
        while len(b)<=n:
            a, b = b, b + a
        return b # Robert FERREOL, Apr 15 2016, edited by M. F. Hasler, Apr 07 2021
    
  • Python
    from math import isqrt
    def A003849(n): return 2-(n+2+isqrt(m:=5*(n+2)**2)>>1)+(n+1+isqrt(m-10*n-15)>>1) # Chai Wah Wu, Aug 25 2022

Formula

a(n) = floor((n+2)*r) - floor((n+1)*r) where r=phi/(1+2*phi) and phi is the Golden Ratio. - Benoit Cloitre, Nov 10 2003
a(n) = A003714(n) mod 2 = A014417(n) mod 2. - Philippe Deléham, Jan 04 2004
The first formula by Cloitre is just one of an infinite family of formulas. Using phi^2=1+phi, it follows that r=phi/(1+2*phi)=2-phi. Then from floor(-x)=-floor(x)-1 for non-integer x, it follows that a(n)=2-A014675(n)=2-(floor((n+2)* phi)-floor((n+1)*phi)). - Michel Dekking, Aug 27 2016
a(n) = 1 - A096270(n+1), i.e., A096270 is the complement of this sequence. - A.H.M. Smeets, Mar 31 2024

Extensions

Revised by N. J. A. Sloane, Jul 03 2012

A007895 Number of terms in the Zeckendorf representation of n (write n as a sum of non-consecutive distinct Fibonacci numbers).

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 2, 2, 1, 2, 2, 2, 3, 1, 2, 2, 2, 3, 2, 3, 3, 1, 2, 2, 2, 3, 2, 3, 3, 2, 3, 3, 3, 4, 1, 2, 2, 2, 3, 2, 3, 3, 2, 3, 3, 3, 4, 2, 3, 3, 3, 4, 3, 4, 4, 1, 2, 2, 2, 3, 2, 3, 3, 2, 3, 3, 3, 4, 2, 3, 3, 3, 4, 3, 4, 4, 2, 3, 3, 3, 4, 3, 4, 4, 3, 4, 4, 4, 5, 1, 2, 2, 2, 3, 2, 3, 3, 2, 3, 3, 3, 4, 2, 3, 3
Offset: 0

Views

Author

Felix Weinstein (wain(AT)ana.unibe.ch) and Clark Kimberling

Keywords

Comments

Also number of 0's (or B's) in the Wythoff representation of n -- see the Reble link. See also A135817 for references and links for the Wythoff representation for n >= 1. - Wolfdieter Lang, Jan 21 2008; N. J. A. Sloane, Jun 28 2008
Or, a(n) is the number of applications of Wythoff's B sequence A001950 needed in the unique Wythoff representation of n >= 1. E.g., 16 = A(B(A(A(B(1))))) = ABAAB = `10110`, hence a(16) = 2. - Wolfdieter Lang, Jan 21 2008
Let M(0) = 0, M(1) = 1 and for i > 0, M(i+1) = f(concatenation of M(j), j from 0 to i - 1) where f is the morphism f(k) = k + 1. Then the sequence is the concatenation of M(j) for j from 0 to infinity. - Claude Lenormand (claude.lenormand(AT)free.fr), Dec 16 2003
From Joerg Arndt, Nov 09 2012: (Start)
Let m be the number of parts in the listing of the compositions of n into odd parts as lists of parts in lexicographic order, a(k) = (n - length(composition(k)))/2 for all k < Fibonacci(n) and all n (see example).
Let m be the number of parts in the listing of the compositions of n into parts 1 and 2 as lists of parts in lexicographic order, a(k) = n - length(composition(k)) for all k < Fibonacci(n) and all n (see example).
A000120 gives the equivalent for (all) compositions. (End)
a(n) = A104324(n) - A213911(n); row lengths in A035516 and A035516. - Reinhard Zumkeller, Mar 10 2013
a(n) is also the minimum number of Fibonacci numbers which sum to n, regardless of adjacency or duplication. - Alan Worley, Apr 17 2015
This follows from the fact that the sequence is subadditive: a(n+m) <= a(n) + a(m) for nonnegative integers n,m. See Lemma 2.1 of the Stoll link. - Robert Israel, Apr 17 2015
From Michel Dekking, Mar 08 2020: (Start)
This sequence is a morphic sequence on an infinite alphabet, i.e., (a(n)) is a letter-to-letter projection of a fixed point of a morphism tau.
The alphabet is {0,1,...,j,...}X{0,1}, and tau is given by
tau((j,0)) = (j,0) (j+1,1),
tau((j,1)) = (j,0).
The letter-to-letter map is given by the projection on the first coordinate: (j,i)->j for i=0,1.
To prove this, note first that the second coordinate of the letters generates the infinite Fibonacci word = A003849 = 0100101001001....
This implies that for all n and j one has
|tau^n(j,0)| = F(n+2),
where |w| denotes the length of a word w, and (F(n)) = A000045 are the Fibonacci numbers.
Secondly, we need the following simple, but crucial observation. Let the Zeckendorf representation of n be Z(n) = A014417(n). For example,
Z(0) = 0, Z(1) = 1, Z(2) = 10, Z(3) = 100, Z(4) = 101, Z(5) = 1000.
From the unicity of the Zeckendorf representation it follows that for the positions i = 0,1,...,F(n)-1 one has
Z(F(n+1)+i) = 10...0 Z(i),
where zeros are added to Z(i) to give the total representation length n-1.
This gives for i = 0,1,...,F(n)-1 that
a(F(n+1)+i) = a(i) + 1.
From the first observation follows that the first F(n+1) letters of tau^n(j,0) are equal to tau^{n-1}(j,0), and the last F(n) letters of tau^n(j,0) are equal to tau^{n-1}(j+1,1) = tau^{n-2}(j+1,0).
Combining this with the second observation shows that the first coordinate of the fixed point of tau, starting from (0,0), gives (a(n)).
It is of course possible to obtain a morphism tau' on the natural numbers by changing the alphabet: (j,0)-> 2j (j,1)-> 2j+1, which yields the morphism
tau'(2j) = 2j, 2j+3, tau'(2j+1) = 2j.
The fixed point of tau' starting with 0 is
u = 03225254254472544747625...
The corresponding letter-to-letter map lambda is given by lambda(2j)=j, lambda(2j+1)= j. Then lambda(u) = (a(n)).
(End)

Examples

			a(46) = a(1 + 3 + 8 + 34) = 4.
From _Joerg Arndt_, Nov 09 2012: (Start)
Connection to the compositions of n into odd parts (see comment):
[ #]:  a(n)  composition into odd parts
[ 0]   [ 0]   1 1 1 1 1 1 1 1
[ 1]   [ 1]   1 1 1 1 1 3
[ 2]   [ 1]   1 1 1 1 3 1
[ 3]   [ 1]   1 1 1 3 1 1
[ 4]   [ 2]   1 1 1 5
[ 5]   [ 1]   1 1 3 1 1 1
[ 6]   [ 2]   1 1 3 3
[ 7]   [ 2]   1 1 5 1
[ 8]   [ 1]   1 3 1 1 1 1
[ 9]   [ 2]   1 3 1 3
[10]   [ 2]   1 3 3 1
[11]   [ 2]   1 5 1 1
[12]   [ 3]   1 7
[13]   [ 1]   3 1 1 1 1 1
[14]   [ 2]   3 1 1 3
[15]   [ 2]   3 1 3 1
[16]   [ 2]   3 3 1 1
[17]   [ 3]   3 5
[18]   [ 2]   5 1 1 1
[19]   [ 3]   5 3
[20]   [ 3]   7 1
Connection to the compositions of n into parts 1 or 2 (see comment):
[ #]:  a(n)  composition into parts 1 and 2
[ 0]   [0]   1 1 1 1 1 1 1
[ 1]   [1]   1 1 1 1 1 2
[ 2]   [1]   1 1 1 1 2 1
[ 3]   [1]   1 1 1 2 1 1
[ 4]   [2]   1 1 1 2 2
[ 5]   [1]   1 1 2 1 1 1
[ 6]   [2]   1 1 2 1 2
[ 7]   [2]   1 1 2 2 1
[ 8]   [1]   1 2 1 1 1 1
[ 9]   [2]   1 2 1 1 2
[10]   [2]   1 2 1 2 1
[11]   [2]   1 2 2 1 1
[12]   [3]   1 2 2 2
[13]   [1]   2 1 1 1 1 1
[14]   [2]   2 1 1 1 2
[15]   [2]   2 1 1 2 1
[16]   [2]   2 1 2 1 1
[17]   [3]   2 1 2 2
[18]   [2]   2 2 1 1 1
[19]   [3]   2 2 1 2
[20]   [3]   2 2 2 1
(End)
From _Michel Dekking_, Mar 08 2020: (Start)
The third iterate of the morphism tau generating this sequence:
      tau^3((0,0)) = (0,0)(1,1)(1,0)(1,0)(2,1)
= (a(0),0)(a(1),1)(a(2),0)(a(3),0)(a(4),1). (End)
		

References

  • Cornelius Gerrit Lekkerkerker, Voorstelling van natuurlijke getallen door een som van getallen van Fibonacci, Simon Stevin 29 (1952), 190-195.
  • F. Weinstein, The Fibonacci Partitions, preprint, 1995.
  • Édouard Zeckendorf, Représentation des nombres naturels par une somme des nombres de Fibonacci ou de nombres de Lucas, Bull. Soc. Roy. Sci. Liège 41, 179-182, 1972.

Crossrefs

Cf. A135817 (lengths of Wythoff representation), A135818 (number of 1's (or A's) in the Wythoff representation).
Record positions are in A027941.

Programs

  • Haskell
    a007895 = length . a035516_row  -- Reinhard Zumkeller, Mar 10 2013
    
  • Maple
    # With the following Maple program (not the best one), B(n) (n >= 1) yields the number of terms in the Zeckendorf representation of n.
    with(combinat): B := proc (n) local A, ct, m, j: A := proc (n) local i: for i while fibonacci(i) <= n do n-fibonacci(i) end do end proc: ct := 0; m := n: for j while 0 < A(m) do ct := ct+1: m := A(m) end do: ct+1 end proc: 0, seq(B(n), n = 1 .. 104);
    # Emeric Deutsch, Jul 05 2010
    N:= 1000: # to get a(n) for n <= N
    m:= ceil(log[(1+sqrt(5))/2](sqrt(5)*N)):
    Z:= Vector(m):
    a[0]:= 0:
    for n from 1 to N do
    if Z[1] = 0 then Z[1]:= 1; q:= 1;
    else Z[2]:= 1; Z[1]:= 0; q:= 2;
    fi;
    while Z[q+1] = 1 do
      Z[q]:= 0;
      Z[q+1]:= 0;
      Z[q+2]:= 1;
      q:= q+2;
    od:
    a[n]:= add(Z[i],i=1..m);
    od:
    seq(a[n],n=0..N); # Robert Israel, Apr 17 2015
    # alternative
    read("transforms") : # https://oeis.org/transforms.txt
    A007895 := proc(n)
        wt(A003714(n)) ;
    end proc:
    seq(A007895(n),n=0..10) ; # R. J. Mathar, Sep 22 2020
  • Mathematica
    zf[n_] := (k = 1; ff = {}; While[(fi = Fibonacci[k]) <= n, AppendTo[ff, fi]; k++]; Drop[ff, 1]); zeckRep[n_] := If[n == 0, 0, r = n; s = {}; fr = zf[n]; While[r > 0, lf = Last[fr]; If[lf <= r, r = r - lf; PrependTo[s, lf]]; fr = Drop[fr, -1]]; s]; zeckRepLen[n_] := Length[zeckRep[n]]; Table[zeckRepLen[n], {n, 0, 104}] (* Jean-François Alcover, Sep 27 2011 *)
    DigitCount[Select[Range[0, 1000], BitAnd[#, 2#] == 0 &], 2, 1] (* Jean-François Alcover, Jan 25 2018 *)
    Table[Length[DeleteCases[NestWhileList[# - Fibonacci[Floor[Log[Sqrt[5] * # + 3/2]/Log[GoldenRatio]]] &, n, # > 1 &], 0]], {n, 0, 143}] (* Alonso del Arte, May 14 2019 *)
    Flatten[Nest[{Flatten[#], #[[1]] + 1} &, {0, 1}, 9]] (* Paolo Xausa, Jun 17 2024 *)
  • PARI
    a(n,mx=0)=if(n<4,n>0,if(!mx,while(fibonacci(mx)n,mx--); 1+a(n-fibonacci(mx),mx-2)) \\ Charles R Greathouse IV, Feb 14 2013
    
  • PARI
    a(n)=if(n<4, n>0, my(k=2,s,t); while(fibonacci(k++)<=n,); while(k && n, t=fibonacci(k); if(t<=n, n-=t; s++); k--); s) \\ Charles R Greathouse IV, Sep 02 2015
    
  • Python
    from sympy import fibonacci
    def a(n):
        k=0
        x=0
        while n>0:
            k=0
            while fibonacci(k)<=n: k+=1
            x+=10**(k - 3)
            n-=fibonacci(k - 1)
        return str(x).count("1")
    print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 09 2017

Formula

a(n) = A000120(A003714(n)). - Reinhard Zumkeller, May 05 2005
a(n) = A107015(n) + A107016(n). - Reinhard Zumkeller, May 09 2005
a(n) = A143299(n+1) - 1. - Filip Zaludek, Oct 31 2016
a(n) = A007953(A014417(n)). - Amiram Eldar, Oct 10 2023

Extensions

Edited by N. J. A. Sloane Jun 27 2008 at the suggestion of R. J. Mathar and Don Reble

A104326 Dual Zeckendorf representation of n or the maximal (binary) Fibonacci representation. Also list of binary vectors not containing 00.

Original entry on oeis.org

0, 1, 10, 11, 101, 110, 111, 1010, 1011, 1101, 1110, 1111, 10101, 10110, 10111, 11010, 11011, 11101, 11110, 11111, 101010, 101011, 101101, 101110, 101111, 110101, 110110, 110111, 111010, 111011, 111101, 111110, 111111, 1010101
Offset: 0

Views

Author

Ron Knott, Mar 01 2005

Keywords

Comments

Whereas the Zeckendorf (binary) rep (A014417) has no consecutive 1's (no two consecutive Fibonacci numbers in a set whose sum is n), the Dual Zeckendorf Representation has no consecutive 0's. Also called the Maximal (Binary) Fibonacci Representation, the Zeckendorf rep. being the Minimal in terms of number of 1's in the binary representation.
Also known as the lazy Fibonacci representation of n. - Glen Whitney, Oct 21 2017

Examples

			As a sum of Fibonacci numbers (A000045) [using 1 at most once], 13 is 13=8+5=8+3+2.
The largest set here is 8+3+2 or, in base Fibonacci, 10110 so a(13)=10110(fib).
The Zeckendorf representation would be the smallest set or {13}=100000(fib).
		

Crossrefs

Cf. A007088 (binary vectors), A014417, A095791, A104324.
A003754 gives the numbers corresponding to the binary digit strings seen here.

Programs

  • Maple
    dualzeckrep:=proc(n)local i,z;z:=zeckrep(n);i:=1; while i<=nops(z)-2 do if z[i]=1 and z[i+1]=0 and z[i+2]=0 then z[i]:=0; z[i+1]:=1;z[i+2]:=1; if i>3 then i:=i-2 fi else i:=i+1 fi od; if z[1]=0 then z:=subsop(1=NULL,z) fi; z end proc: seq(dualzeckrep(n),n=0..20) ;
    # alternative
    A104326 := proc(n)
        local L,itr,rec,i ;
        # first compute the usual Zeckendorf rep as in A014417
        L := convert(A014417(n),base,10) ;
        for itr from 1 do
            rec := false ;
            # try to recombine 001 -> 110
            for i from 3 to nops(L) do
                if op(i,L) = 1 and op(i-1,L) =0 and op(i-2,L) =0 then
                    rec := true ;
                    L := subsop(i=0,L) ;
                    L := subsop(i-1=1,L) ;
                    L := subsop(i-2=1,L) ;
                end if;
            end do:
            if op(-1,L) = 0 then
                L := subsop(-1=NULL,L) ;
            end if;
            if rec = false then
                break ;
            end if;
        end do:
        add( op(i,L)*10^(i-1),i=1..nops(L)) ;
    end proc:
    seq(A104326(n),n=0..20) ; # R. J. Mathar, Aug 28 2025
  • Mathematica
    fb[n_] := Module[{k = Ceiling[Log[GoldenRatio, n*Sqrt[5]]], t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[fr, 1]; t = t - Fibonacci[k], AppendTo[fr, 0]]; k--]; fr]; a[n_] := Module[{v = fb[n]}, nv = Length[v]; i = 1; While[i <= nv - 2, If[v[[i]] == 1 && v[[i + 1]] == 0 && v[[i + 2]] == 0, v[[i]] = 0; v[[i + 1]] = 1; v[[i + 2]] = 1; If[i > 2, i -= 3]]; i++]; i = Position[v, ?(# > 0 &)]; If[i == {}, 0, FromDigits[v[[i[[1, 1]] ;; -1]]]]]; Array[a, 34, 0] (* _Amiram Eldar, Oct 31 2019 after Robert G. Wilson v at A014417 and the Maple code *)
    Map[FromDigits, Select[IntegerString[Range[0, 255], 2], StringFreeQ[#, "00"] &]] (* Paolo Xausa, Apr 05 2024 *)

Formula

a(n) = A007088(A003754(n+1)).

Extensions

Index in formula corrected, missing parts of the maple code recovered, and sequence extended by R. J. Mathar, Oct 23 2010
Definition expanded and Duchêne, Fraenkel et al. reference added by N. J. A. Sloane, Aug 07 2018

A278038 Binary vectors not containing three consecutive 1's; or, representation of n in the tribonacci base.

Original entry on oeis.org

0, 1, 10, 11, 100, 101, 110, 1000, 1001, 1010, 1011, 1100, 1101, 10000, 10001, 10010, 10011, 10100, 10101, 10110, 11000, 11001, 11010, 11011, 100000, 100001, 100010, 100011, 100100, 100101, 100110, 101000, 101001, 101010, 101011, 101100, 101101, 110000, 110001, 110010, 110011, 110100, 110101, 110110, 1000000
Offset: 0

Views

Author

N. J. A. Sloane, Nov 16 2016

Keywords

Comments

These are the nonnegative numbers written in the tribonacci numbering system.

Examples

			The tribonacci numbers (as in A000073(n), for n >= 3) are 1, 2, 4, 7, 13, 24, 44, 81, ... In terms of this base, 7 is written 1000, 8 is 1001, 11 is 1100, 12 is 1101, 13 is 10000, etc. Zero is 0.
		

Crossrefs

Cf. A000073, A080843 (tribonacci word, tribonacci tree).
See A003726 for the decimal representations of these binary strings.
Similar sequences: A014417 (Fibonacci), A130310 (Lucas).

Programs

  • Maple
    # maximum index in A73 such that A73 <= n.
    A73floorIdx := proc(n)
        local k ;
        for k from 3 do
            if A000073(k) = n then
                return k ;
            elif A000073(k) > n then
                return k -1 ;
            end if ;
        end do:
    end proc:
    A278038 := proc(n)
        local k,L,nres ;
        if n = 0 then
            0;
        else
            k := A73floorIdx(n) ;
            L := [1] ;
            nres := n-A000073(k) ;
            while k >= 4 do
                k := k-1 ;
                if nres >= A000073(k) then
                    L := [1,op(L)] ;
                    nres := nres-A000073(k) ;
                else
                    L := [0,op(L)] ;
                end if ;
            end do:
            add( op(i,L)*10^(i-1),i=1..nops(L)) ;
        end if;
    end proc:
    seq(A278038(n),n=0..40) ; # R. J. Mathar, Jun 08 2022
  • Mathematica
    t[1] = 1; t[2] = 2; t[3] = 4; t[n_] := t[n] = t[n - 1] + t[n - 2] + t[n - 3]; a[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[t[k] <= m, k++]; k--; AppendTo[s, k]; m -= t[k]; k = 1]; FromDigits @ IntegerDigits[Total[2^(s - 1)], 2]]; Array[a, 100, 0] (* Amiram Eldar, Mar 04 2022 *)

A035336 a(n) = 2*floor(n*phi) + n - 1, where phi = (1+sqrt(5))/2.

Original entry on oeis.org

2, 7, 10, 15, 20, 23, 28, 31, 36, 41, 44, 49, 54, 57, 62, 65, 70, 75, 78, 83, 86, 91, 96, 99, 104, 109, 112, 117, 120, 125, 130, 133, 138, 143, 146, 151, 154, 159, 164, 167, 172, 175, 180, 185, 188, 193, 198, 201, 206, 209, 214, 219, 222, 227, 230, 235, 240
Offset: 1

Views

Author

Keywords

Comments

Second column of Wythoff array.
These are the numbers in A022342 that are not images of another value of the same sequence if it is given offset 0. - Michele Dondi (bik.mido(AT)tiscalenet.it), Dec 30 2001
Also, positions of 2's in A139764, the smallest term in Zeckendorf representation of n. - John W. Layman, Aug 25 2011
From Amiram Eldar, Mar 21 2022: (Start)
Numbers k for which the Zeckendorf representation A014417(k) ends with 0, 1, 0.
The asymptotic density of this sequence is sqrt(5)-2. (End)

Crossrefs

Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864.

Programs

  • Haskell
    import Data.List (elemIndices)
    a035336 n = a035336_list !! (n-1)
    a035336_list = elemIndices 0 a005713_list
    -- Reinhard Zumkeller, Dec 30 2011
    
  • Magma
    [2*Floor(n*(1+Sqrt(5))/2)+n-1: n in [1..80]]; // Vincenzo Librandi, Nov 19 2016
    
  • Maple
    Digits := 100: t := (1+sqrt(5))/2; [ seq(2*floor((n+1)*t)+n,n=0..80) ];
  • Mathematica
    Table[2*Floor[n*(1 + Sqrt[5])/2] + n - 1, {n, 50}] (* Wesley Ivan Hurt, Nov 21 2017 *)
    Array[2 Floor[# GoldenRatio] + # - 1 &, 60] (* Robert G. Wilson v, Dec 12 2017 *)
  • Python
    from sympy import floor
    from mpmath import phi
    def a(n): return 2*floor(n*phi) + n - 1 # Indranil Ghosh, Jun 10 2017
    
  • Python
    from math import isqrt
    def A035336(n): return (n+isqrt(5*n**2)&-2)+n-1 # Chai Wah Wu, Aug 17 2022

Formula

a(n) = B(A(n)), with A(k)=A000201(k) and B(k)=A001950(k) (Wythoff BA-numbers).
a(n) = A(n) + A(A(n)), with A(A(n))=A003622(n) (Wythoff AA-numbers).
Equals A022342(A003622(n)+1). - Michele Dondi (bik.mido(AT)tiscalenet.it), Dec 30 2001, sequence reference updated by Peter Munn, Nov 23 2017
a(n) = 2*A003622(n) - (n - 1) = A003623(n) - 1. - Franklin T. Adams-Watters, Jun 30 2009
A005713(a(n)) = 0. - Reinhard Zumkeller, Dec 30 2011
a(n) = A089910(n) - 2. - Bob Selcoe, Sep 21 2014
Previous Showing 31-40 of 134 results. Next