cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 75 results. Next

A000265 Remove all factors of 2 from n; or largest odd divisor of n; or odd part of n.

Original entry on oeis.org

1, 1, 3, 1, 5, 3, 7, 1, 9, 5, 11, 3, 13, 7, 15, 1, 17, 9, 19, 5, 21, 11, 23, 3, 25, 13, 27, 7, 29, 15, 31, 1, 33, 17, 35, 9, 37, 19, 39, 5, 41, 21, 43, 11, 45, 23, 47, 3, 49, 25, 51, 13, 53, 27, 55, 7, 57, 29, 59, 15, 61, 31, 63, 1, 65, 33, 67, 17, 69, 35, 71, 9, 73, 37, 75, 19, 77
Offset: 1

Views

Author

Keywords

Comments

When n > 0 is written as k*2^j with k odd then k = A000265(n) and j = A007814(n), so: when n is written as k*2^j - 1 with k odd then k = A000265(n+1) and j = A007814(n+1), when n > 1 is written as k*2^j + 1 with k odd then k = A000265(n-1) and j = A007814(n-1).
Also denominator of 2^n/n (numerator is A075101(n)). - Reinhard Zumkeller, Sep 01 2002
Slope of line connecting (o, a(o)) where o = (2^k)(n-1) + 1 is 2^k and (by design) starts at (1, 1). - Josh Locker (joshlocker(AT)macfora.com), Apr 17 2004
Numerator of n/2^(n-1). - Alexander Adamchuk, Feb 11 2005
From Marco Matosic, Jun 29 2005: (Start)
"The sequence can be arranged in a table:
1
1 3 1
1 5 3 7 1
1 9 5 11 3 13 7 15 1
1 17 9 19 5 21 11 23 3 25 13 27 7 29 15 31 1
Every new row is the previous row interspaced with the continuation of the odd numbers.
Except for the ones; the terms (t) in each column are t+t+/-s = t_+1. Starting from the center column of threes and working to the left the values of s are given by A000265 and working to the right by A000265." (End)
This is a fractal sequence. The odd-numbered elements give the odd natural numbers. If these elements are removed, the original sequence is recovered. - Kerry Mitchell, Dec 07 2005
2k + 1 is the k-th and largest of the subsequence of k terms separating two successive equal entries in a(n). - Lekraj Beedassy, Dec 30 2005
It's not difficult to show that the sum of the first 2^n terms is (4^n + 2)/3. - Nick Hobson, Jan 14 2005
In the table, for each row, (sum of terms between 3 and 1) - (sum of terms between 1 and 3) = A020988. - Eric Desbiaux, May 27 2009
This sequence appears in the analysis of A160469 and A156769, which resemble the numerator and denominator of the Taylor series for tan(x). - Johannes W. Meijer, May 24 2009
Indices n such that a(n) divides 2^n - 1 are listed in A068563. - Max Alekseyev, Aug 25 2013
From Alexander R. Povolotsky, Dec 17 2014: (Start)
With regard to the tabular presentation described in the comment by Marco Matosic: in his drawing, starting with the 3rd row, the first term in the row, which is equal to 1 (or, alternatively the last term in the row, which is also equal to 1), is not in the actual sequence and is added to the drawing as a fictitious term (for the sake of symmetry); an actual A000265(n) could be considered to be a(j,k) (where j >= 1 is the row number and k>=1 is the column subscript), such that a(j,1) = 1:
1
1 3
1 5 3 7
1 9 5 11 3 13 7 15
1 17 9 19 5 21 11 23 3 25 13 27 7 29 15 31
and so on ... .
The relationship between k and j for each row is 1 <= k <= 2^(j-1). In this corrected tabular representation, Marco's notion that "every new row is the previous row interspaced with the continuation of the odd numbers" remains true. (End)
Partitions natural numbers to the same equivalence classes as A064989. That is, for all i, j: a(i) = a(j) <=> A064989(i) = A064989(j). There are dozens of other such sequences (like A003602) for which this also holds: In general, all sequences for which a(2n) = a(n) and the odd bisection is injective. - Antti Karttunen, Apr 15 2017
From Paul Curtz, Feb 19 2019: (Start)
This sequence is the truncated triangle:
1, 1;
3, 1, 5;
3, 7, 1, 9;
5, 11, 3, 13, 7;
15, 1, 17, 9, 19, 5;
21, 11, 23, 3, 25, 13, 27;
7, 29, 15, 31, 1, 33, 17, 35;
...
The first column is A069834. The second column is A213671. The main diagonal is A236999. The first upper diagonal is A125650 without 0.
c(n) = ((n*(n+1)/2))/A069834 = 1, 1, 2, 2, 1, 1, 4, 4, 1, 1, 2, 2, 1, 1, 8, 8, 1, 1, ... for n > 0. n*(n+1)/2 is the rank of A069834. (End)
As well as being multiplicative, a(n) is a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for n, m >= 1. In particular, a(n) is a divisibility sequence: if n divides m then a(n) divides a(m). - Peter Bala, Feb 27 2019
a(n) is also the map n -> A026741(n) applied at least A007814(n) times. - Federico Provvedi, Dec 14 2021

Examples

			G.f. = x + x^2 + 3*x^3 + x^4 + 5*x^5 + 3*x^6 + 7*x^7 + x^8 + 9*x^9 + 5*x^10 + 11*x^11 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A049606 (partial products), A135013 (partial sums), A099545 (mod 4), A326937 (Dirichlet inverse).
Cf. A026741 (map), A001511 (converging steps), A038550 (prime index).
Cf. A195056 (Dgf at s=3).

Programs

  • Haskell
    a000265 = until odd (`div` 2)
    -- Reinhard Zumkeller, Jan 08 2013, Apr 08 2011, Oct 14 2010
    
  • Java
    int A000265(n){
        while(n%2==0) n>>=1;
        return n;
    }
    /* Aidan Simmons, Feb 24 2019 */
    
  • Julia
    using IntegerSequences
    [OddPart(n) for n in 1:77] |> println  # Peter Luschny, Sep 25 2021
    
  • Magma
    A000265:= func< n | n/2^Valuation(n,2) >;
    [A000265(n): n in [1..120]]; // G. C. Greubel, Jul 31 2024
    
  • Maple
    A000265:=proc(n) local t1,d; t1:=1; for d from 1 by 2 to n do if n mod d = 0 then t1:=d; fi; od; t1; end: seq(A000265(n), n=1..77);
    A000265 := n -> n/2^padic[ordp](n,2): seq(A000265(n), n=1..77); # Peter Luschny, Nov 26 2010
  • Mathematica
    a[n_Integer /; n > 0] := n/2^IntegerExponent[n, 2]; Array[a, 77] (* Josh Locker *)
    a[ n_] := If[ n == 0, 0, n / 2^IntegerExponent[ n, 2]]; (* Michael Somos, Dec 17 2014 *)
  • PARI
    {a(n) = n >> valuation(n, 2)}; /* Michael Somos, Aug 09 2006, edited by M. F. Hasler, Dec 18 2014 */
    
  • Python
    from _future_ import division
    def A000265(n):
        while not n % 2:
            n //= 2
        return n # Chai Wah Wu, Mar 25 2018
    
  • Python
    def a(n):
        while not n&1: n >>= 1
        return n
    print([a(n) for n in range(1, 78)]) # Michael S. Branicky, Jun 26 2025
    
  • SageMath
    def A000265(n): return n//2^valuation(n,2)
    [A000265(n) for n in (1..121)] # G. C. Greubel, Jul 31 2024
  • Scheme
    (define (A000265 n) (let loop ((n n)) (if (odd? n) n (loop (/ n 2))))) ;; Antti Karttunen, Apr 15 2017
    

Formula

a(n) = if n is odd then n, otherwise a(n/2). - Reinhard Zumkeller, Sep 01 2002
a(n) = n/A006519(n) = 2*A025480(n-1) + 1.
Multiplicative with a(p^e) = 1 if p = 2, p^e if p > 2. - David W. Wilson, Aug 01 2001
a(n) = Sum_{d divides n and d is odd} phi(d). - Vladeta Jovovic, Dec 04 2002
G.f.: -x/(1 - x) + Sum_{k>=0} (2*x^(2^k)/(1 - 2*x^(2^(k+1)) + x^(2^(k+2)))). - Ralf Stephan, Sep 05 2003
(a(k), a(2k), a(3k), ...) = a(k)*(a(1), a(2), a(3), ...) In general, a(n*m) = a(n)*a(m). - Josh Locker (jlocker(AT)mail.rochester.edu), Oct 04 2005
a(n) = Sum_{k=0..n} A127793(n,k)*floor((k+2)/2) (conjecture). - Paul Barry, Jan 29 2007
Dirichlet g.f.: zeta(s-1)*(2^s - 2)/(2^s - 1). - Ralf Stephan, Jun 18 2007
a(A132739(n)) = A132739(a(n)) = A132740(n). - Reinhard Zumkeller, Aug 27 2007
a(n) = 2*A003602(n) - 1. - Franklin T. Adams-Watters, Jul 02 2009
a(n) = n/gcd(2^n,n). (This also shows that the true offset is 0 and a(0) = 0.) - Peter Luschny, Nov 14 2009
a(-n) = -a(n) for all n in Z. - Michael Somos, Sep 19 2011
From Reinhard Zumkeller, May 01 2012: (Start)
A182469(n, k) = A027750(a(n), k), k = 1..A001227(n).
a(n) = A182469(n, A001227(n)). (End)
a((2*n-1)*2^p) = 2*n - 1, p >= 0 and n >= 1. - Johannes W. Meijer, Feb 05 2013
G.f.: G(0)/(1 - 2*x^2 + x^4) - 1/(1 - x), where G(k) = 1 + 1/(1 - x^(2^k)*(1 - 2*x^(2^(k+1)) + x^(2^(k+2)))/(x^(2^k)*(1 - 2*x^(2^(k+1)) + x^(2^(k+2))) + (1 - 2*x^(2^(k+2)) + x^(2^(k+3)))/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Aug 06 2013
a(n) = A003961(A064989(n)). - Antti Karttunen, Apr 15 2017
Completely multiplicative with a(2) = 1 and a(p) = p for prime p > 2, i.e., the sequence b(n) = a(n) * A008683(n) for n > 0 is the Dirichlet inverse of a(n). - Werner Schulte, Jul 08 2018
From Peter Bala, Feb 27 2019: (Start)
O.g.f.: F(x) - F(x^2) - F(x^4) - F(x^8) - ..., where F(x) = x/(1 - x)^2 is the generating function for the positive integers.
O.g.f. for reciprocals: Sum_{n >= 1} x^n/a(n) = L(x) + (1/2)*L(x^2) + (1/2)*L(x^4) + (1/2)*L(x^8) + ..., where L(x) = log(1/(1 - x)).
Sum_{n >= 1} x^n/a(n) = 1/2*log(G(x)), where G(x) = 1 + 2*x + 4*x^2 + 6*x^3 + 10*x^4 + ... is the o.g.f. of A000123. (End)
O.g.f.: Sum_{n >= 1} phi(2*n-1)*x^(2*n-1)/(1 - x^(2*n-1)), where phi(n) is the Euler totient function A000010. - Peter Bala, Mar 22 2019
a(n) = A049606(n) / A049606(n-1). - Flávio V. Fernandes, Dec 08 2020
a(n) = numerator of n/2^(floor(n/2)). - Federico Provvedi, Dec 14 2021
a(n) = Sum_{d divides n} (-1)^(d+1)*phi(2*n/d). - Peter Bala, Jan 14 2024
a(n) = A030101(A030101(n)). - Darío Clavijo, Sep 19 2024

Extensions

Additional comments from Henry Bottomley, Mar 02 2000
More terms from Larry Reeves (larryr(AT)acm.org), Mar 14 2000
Name clarified by David A. Corneth, Apr 15 2017

A005811 Number of runs in binary expansion of n (n>0); number of 1's in Gray code for n.

Original entry on oeis.org

0, 1, 2, 1, 2, 3, 2, 1, 2, 3, 4, 3, 2, 3, 2, 1, 2, 3, 4, 3, 4, 5, 4, 3, 2, 3, 4, 3, 2, 3, 2, 1, 2, 3, 4, 3, 4, 5, 4, 3, 4, 5, 6, 5, 4, 5, 4, 3, 2, 3, 4, 3, 4, 5, 4, 3, 2, 3, 4, 3, 2, 3, 2, 1, 2, 3, 4, 3, 4, 5, 4, 3, 4, 5, 6, 5, 4, 5, 4, 3, 4, 5, 6, 5, 6, 7, 6, 5, 4, 5, 6, 5, 4, 5
Offset: 0

Views

Author

Keywords

Comments

Starting with a(1) = 0 mirror all initial 2^k segments and increase by one.
a(n) gives the net rotation (measured in right angles) after taking n steps along a dragon curve. - Christopher Hendrie (hendrie(AT)acm.org), Sep 11 2002
This sequence generates A082410: (0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, ...) and A014577; identical to the latter except starting 1, 1, 0, ...; by writing a "1" if a(n+1) > a(n); if not, write "0". E.g., A014577(2) = 0, since a(3) < a(2), or 1 < 2. - Gary W. Adamson, Sep 20 2003
Starting with 1 = partial sums of A034947: (1, 1, -1, 1, 1, -1, -1, 1, 1, 1, ...). - Gary W. Adamson, Jul 23 2008
The composer Per Nørgård's name is also written in the OEIS as Per Noergaard.
Can be used as a binomial transform operator: Let a(n) = the n-th term in any S(n); then extract 2^k strings, adding the terms. This results in the binomial transform of S(n). Say S(n) = 1, 3, 5, ...; then we obtain the strings: (1), (3, 1), (3, 5, 3, 1), (3, 5, 7, 5, 3, 5, 3, 1), ...; = the binomial transform of (1, 3, 5, ...) = (1, 4, 12, 32, 80, ...). Example: the 8-bit string has a sum of 32 with a distribution of (1, 3, 3, 1) or one 1, three 3's, three 5's, and one 7; as expected. - Gary W. Adamson, Jun 21 2012
Considers all positive odd numbers as nodes of a graph. Two nodes are connected if and only if the sum of the two corresponding odd numbers is a power of 2. Then a(n) is the distance between 2n + 1 and 1. - Jianing Song, Apr 20 2019

Examples

			Considered as a triangle with 2^k terms per row, the first few rows are:
  1
  2, 1
  2, 3, 2, 1
  2, 3, 4, 3, 2, 3, 2, 1
  ...
The n-th row becomes right half of next row; left half is mirrored terms of n-th row increased by one. - _Gary W. Adamson_, Jun 20 2012
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A037834 (-1), A088748 (+1), A246960 (mod 4), A034947 (first differences), A000975 (indices of record highs), A173318 (partial sums).
Partial sums of A112347. Recursion depth of A035327.

Programs

  • Haskell
    import Data.List (group)
    a005811 0 = 0
    a005811 n = length $ group $ a030308_row n
    a005811_list = 0 : f [1] where
       f (x:xs) = x : f (xs ++ [x + x `mod` 2, x + 1 - x `mod` 2])
    -- Reinhard Zumkeller, Feb 16 2013, Mar 07 2011
    
  • Maple
    A005811 := proc(n)
        local i, b, ans;
        if n = 0 then
            return 0 ;
        end if;
        ans := 1;
        b := convert(n, base, 2);
        for i from nops(b)-1 to 1 by -1 do
            if b[ i+1 ]<>b[ i ] then
                ans := ans+1
            fi
        od;
        return ans ;
    end proc:
    seq(A005811(i), i=1..50) ;
    # second Maple program:
    a:= n-> add(i, i=Bits[Split](Bits[Xor](n, iquo(n, 2)))):
    seq(a(n), n=0..100);  # Alois P. Heinz, Feb 01 2023
  • Mathematica
    Table[ Length[ Length/@Split[ IntegerDigits[ n, 2 ] ] ], {n, 1, 255} ]
    a[n_] := DigitCount[BitXor[n, Floor[n/2]], 2, 1]; Array[a, 100, 0] (* Amiram Eldar, Jul 11 2024 *)
  • PARI
    a(n)=sum(k=1,n,(-1)^((k/2^valuation(k,2)-1)/2))
    
  • PARI
    a(n)=if(n<1,0,a(n\2)+(a(n\2)+n)%2) \\ Benoit Cloitre, Jan 20 2014
    
  • PARI
    a(n) = hammingweight(bitxor(n, n>>1));  \\ Gheorghe Coserea, Sep 03 2015
    
  • Python
    def a(n): return bin(n^(n>>1))[2:].count("1") # Indranil Ghosh, Apr 29 2017

Formula

a(2^k + i) = a(2^k - i + 1) + 1 for k >= 0 and 0 < i <= 2^k. - Reinhard Zumkeller, Aug 14 2001
a(2n+1) = 2a(n) - a(2n) + 1, a(4n) = a(2n), a(4n+2) = 1 + a(2n+1).
a(j+1) = a(j) + (-1)^A014707(j). - Christopher Hendrie (hendrie(AT)acm.org), Sep 11 2002
G.f.: (1/(1-x)) * Sum_{k>=0} x^2^k/(1+x^2^(k+1)). - Ralf Stephan, May 02 2003
Delete the 0, make subsets of 2^n terms; and reverse the terms in each subset to generate A088696. - Gary W. Adamson, Oct 19 2003
a(0) = 0, a(2n) = a(n) + [n odd], a(2n+1) = a(n) + [n even]. - Ralf Stephan, Oct 20 2003
a(n) = Sum_{k=1..n} (-1)^((k/2^A007814(k)-1)/2) = Sum_{k=1..n} (-1)^A025480(k-1). - Ralf Stephan, Oct 29 2003
a(n) = A069010(n) + A033264(n). - Ralf Stephan, Oct 29 2003
a(0) = 0 then a(n) = a(floor(n/2)) + (a(floor(n/2)) + n) mod 2. - Benoit Cloitre, Jan 20 2014
a(n) = A037834(n) + 1.
a(n) = A000120(A003188(n)). - Amiram Eldar, Jul 11 2024

Extensions

Additional description from Wouter Meeussen

A003602 Kimberling's paraphrases: if n = (2k-1)*2^m then a(n) = k.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 4, 1, 5, 3, 6, 2, 7, 4, 8, 1, 9, 5, 10, 3, 11, 6, 12, 2, 13, 7, 14, 4, 15, 8, 16, 1, 17, 9, 18, 5, 19, 10, 20, 3, 21, 11, 22, 6, 23, 12, 24, 2, 25, 13, 26, 7, 27, 14, 28, 4, 29, 15, 30, 8, 31, 16, 32, 1, 33, 17, 34, 9, 35, 18, 36, 5, 37, 19, 38, 10, 39, 20, 40, 3, 41, 21, 42
Offset: 1

Views

Author

Keywords

Comments

Fractal sequence obtained from powers of 2.
k occurs at (2*k-1)*A000079(m), m >= 0. - Robert G. Wilson v, May 23 2006
Sequence is T^(oo)(1) where T is acting on a word w = w(1)w(2)..w(m) as follows: T(w) = "1"w(1)"2"w(2)"3"(...)"m"w(m)"m+1". For instance T(ab) = 1a2b3. Thus T(1) = 112, T(T(1)) = 1121324, T(T(T(1))) = 112132415362748. - Benoit Cloitre, Mar 02 2009
Note that iterating the post-numbering operator U(w) = w(1) 1 w(2) 2 w(3) 3... produces the same limit sequence except with an additional "1" prepended, i.e., 1,1,1,2,1,3,2,4,... - Glen Whitney, Aug 30 2023
In the binary expansion of n, first swallow all zeros from the right, then add 1, and swallow the now-appearing 0 bit as well. - Ralf Stephan, Aug 22 2013
Although A264646 and this sequence initially agree in their digit-streams, they differ after 48 digits. - N. J. A. Sloane, Nov 20 2015
"[This is a] fractal because we get the same sequence after we delete from it the first appearance of all positive integers" - see Cobeli and Zaharescu link. - Robert G. Wilson v, Jun 03 2018
From Peter Munn, Jun 16 2022: (Start)
The sequence is the list of positive integers interleaved with the sequence itself. Provided the offset is suitable (which is the case here) a term of such a self-interleaved sequence is determined by the odd part of its index. Putting some of the formulas given here into words, a(n) is the position of the odd part of n in the list of odd numbers.
Applying the interleaving transform again, we get A110963.
(End)
Omitting all 1's leaves A131987 + 1. - David James Sycamore, Jul 26 2022
a(n) is also the smallest positive number not among the terms between a(a(n-1)) and a(n-1) inclusive (with a(0)=1 prepended). - Neal Gersh Tolunsky, Mar 07 2023

Examples

			From _Peter Munn_, Jun 14 2022: (Start)
Start of table showing the interleaving with the positive integers:
   n  a(n)  (n+1)/2  a(n/2)
   1    1      1
   2    1               1
   3    2      2
   4    1               1
   5    3      3
   6    2               2
   7    4      4
   8    1               1
   9    5      5
  10    3               3
  11    6      6
  12    2               2
(End)
		

References

  • Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n) is the index of the column in A135764 where n appears (see also A054582).
Cf. A000079, A000265, A001511, A003603, A003961, A014577 (with offset 1, reduction mod 2), A025480, A035528, A048673, A101279, A110963, A117303, A126760, A181988, A220466, A249745, A253887, A337821 (2-adic valuation).
Cf. also A349134 (Dirichlet inverse), A349135 (sum with it), A349136 (Möbius transform), A349431, A349371 (inverse Möbius transform).
Cf. A264646.

Programs

  • Haskell
    a003602 = (`div` 2) . (+ 1) . a000265
    -- Reinhard Zumkeller, Feb 16 2012, Oct 14 2010
    
  • Haskell
    import Data.List (transpose)
    a003602 = flip div 2 . (+ 1) . a000265
    a003602_list = concat $ transpose [[1..], a003602_list]
    -- Reinhard Zumkeller, Aug 09 2013, May 23 2013
    
  • Maple
    A003602:=proc(n) options remember: if n mod 2 = 1 then RETURN((n+1)/2) else RETURN(procname(n/2)) fi: end proc:
    seq(A003602(n), n=1..83); # Pab Ter
    nmax := 83: for m from 0 to ceil(simplify(log[2](nmax))) do for k from 1 to ceil(nmax/(m+2)) do a((2*k-1)*2^m) := k od: od: seq(a(k), k=1..nmax); # Johannes W. Meijer, Feb 04 2013
    A003602 := proc(n)
        a := 1;
        for p in ifactors(n)[2] do
            if op(1,p) > 2 then
                a := a*op(1,p)^op(2,p) ;
            end if;
        end do  :
        (a+1)/2 ;
    end proc: # R. J. Mathar, May 19 2016
  • Mathematica
    a[n_] := Block[{m = n}, While[ EvenQ@m, m /= 2]; (m + 1)/2]; Array[a, 84] (* or *)
    a[1] = 1; a[n_] := a[n] = If[OddQ@n, (n + 1)/2, a[n/2]]; Array[a, 84] (* Robert G. Wilson v, May 23 2006 *)
    a[n_] := Ceiling[NestWhile[Floor[#/2] &, n, EvenQ]/2]; Array[a, 84] (* Birkas Gyorgy, Apr 05 2011 *)
    a003602 = {1}; max = 7; Do[b = {}; Do[AppendTo[b, {k, a003602[[k]]}], {k, Length[a003602]}]; a003602 = Flatten[b], {n, 2, max}]; a003602 (* L. Edson Jeffery, Nov 21 2015 *)
  • PARI
    A003602(n)=(n/2^valuation(n,2)+1)/2; /* Joerg Arndt, Apr 06 2011 */
    
  • Python
    import math
    def a(n): return (n/2**int(math.log(n - (n & n - 1), 2)) + 1)/2 # Indranil Ghosh, Apr 24 2017
    
  • Python
    def A003602(n): return (n>>(n&-n).bit_length())+1 # Chai Wah Wu, Jul 08 2022
  • Scheme
    (define (A003602 n) (let loop ((n n)) (if (even? n) (loop (/ n 2)) (/ (+ 1 n) 2)))) ;; Antti Karttunen, Feb 04 2015
    

Formula

a(n) = (A000265(n) + 1)/2.
a((2*k-1)*2^m) = k, for m >= 0 and k >= 1. - Robert G. Wilson v, May 23 2006
Inverse Weigh transform of A035528. - Christian G. Bower
G.f.: 1/x * Sum_{k>=0} x^2^k/(1-2*x^2^(k+1) + x^2^(k+2)). - Ralf Stephan, Jul 24 2003
a(2*n-1) = n and a(2*n) = a(n). - Pab Ter (pabrlos2(AT)yahoo.com), Oct 25 2005
a(A118413(n,k)) = A002024(n,k); = a(A118416(n,k)) = A002260(n,k); a(A014480(n)) = A001511(A014480(n)). - Reinhard Zumkeller, Apr 27 2006
Ordinal transform of A001511. - Franklin T. Adams-Watters, Aug 28 2006
a(n) = A249745(A126760(A003961(n))) = A249745(A253887(A048673(n))). That is, this sequence plays the same role for the numbers in array A135764 as A126760 does for the odd numbers in array A135765. - Antti Karttunen, Feb 04 2015 & Jan 19 2016
G.f. satisfies g(x) = g(x^2) + x/(1-x^2)^2. - Robert Israel, Apr 24 2015
a(n) = A181988(n)/A001511(n). - L. Edson Jeffery, Nov 21 2015
a(n) = A025480(n-1) + 1. - R. J. Mathar, May 19 2016
a(n) = A110963(2n-1) = A349135(4*n). - Antti Karttunen, Apr 18 2022
a(n) = (1 + n)/2, for n odd; a(n) = a(n/2), for n even. - David James Sycamore, Jul 28 2022
a(n) = n/2^A001511(n) + 1/2. - Alan Michael Gómez Calderón, Oct 06 2023
a(n) = A123390(A118319(n)). - Flávio V. Fernandes, Mar 02 2025

Extensions

More terms from Pab Ter (pabrlos2(AT)yahoo.com), Oct 25 2005

A181391 Van Eck's sequence: For n >= 1, if there exists an m < n such that a(m) = a(n), take the largest such m and set a(n+1) = n-m; otherwise a(n+1) = 0. Start with a(1)=0.

Original entry on oeis.org

0, 0, 1, 0, 2, 0, 2, 2, 1, 6, 0, 5, 0, 2, 6, 5, 4, 0, 5, 3, 0, 3, 2, 9, 0, 4, 9, 3, 6, 14, 0, 6, 3, 5, 15, 0, 5, 3, 5, 2, 17, 0, 6, 11, 0, 3, 8, 0, 3, 3, 1, 42, 0, 5, 15, 20, 0, 4, 32, 0, 3, 11, 18, 0, 4, 7, 0, 3, 7, 3, 2, 31, 0, 6, 31, 3, 6, 3, 2, 8, 33, 0, 9, 56, 0, 3, 8, 7, 19, 0, 5, 37, 0, 3, 8, 8, 1
Offset: 1

Views

Author

Jan Ritsema van Eck, Oct 17 2010, Oct 19 2010

Keywords

Comments

The name "Van Eck's sequence" is due to N. J. A. Sloane, not the author!
Note that it is obvious from the definition that a(n) < n for all n. - N. J. A. Sloane, Jun 20 2019. Even stronger, a(n)+a(n+1) < n for all n, since the a(n+1) implies that a(n-a(n+1)) = a(n). - Jan Ritsema van Eck, Jun 30 2019
Starting with a number different from 0, for instance with 1, gives a different but similar sequence. See A171911-A171918 for examples.
Examination of the first 10^6 terms suggests that lim sup a(n)/n = 1. Cf. A171866/A171867. - David Applegate and N. J. A. Sloane, Oct 18 2010
From Jan Ritsema van Eck, Oct 25 2010: (Start)
Theorem: There are infinitely many zeros.
Proof: Suppose not. Then from a certain point on, no new terms appear, so the sequence is bounded and nonzero. Let M be the maximal term. Any block of length M determines the rest of the sequence.
But there are only M^M different blocks of length M containing the numbers 1 through M.
So a block must repeat, and so the sequence eventually becomes periodic. The periodic part does not contain any zeros.
Suppose the period has length p, and starts at term r, with a(r)=x, ..., a(r+p-1)=z, a(r+p)=x, ... There is another z after q <= p steps, which is immediately followed by q.
But this q implies that a(r-1)=z. Therefore the periodic part really began at step r-1.
Repeating this shows that the periodic part starts at a(1). But a(1)=0, and the periodic part cannot contain a 0. Contradiction. (End)
An alternative wording of the definition: For n>=1, if there exists an m < n such that a(m) = a(n), take the largest such m, otherwise take m = n; set a(n+1) = n-m. Start with a(1)=0. - Arie Bos, Dec 10 2010
Conjectures: (i) lim sup a(n)/n = 1; (ii) gaps between 0's are about log_10 n; (iii) every number eventually appears. - N. J. A. Sloane, in lecture "The OEIS: The Major Problems", Conference for 50th Anniversary of the OEIS, Rutgers University, Oct 10 2014. (Added Jun 16 2019.)
Conjecture: every pair of nonnegative integers (x,y) other than (1,1) and (x,x+1) for x>0 appear as consecutive entries (that is, a(i) = x, a(i+1) = y, for some i). - László Kozma, Aug 09 2016. Correction from Tomas Rokicki, Jun 19 2019: The pair (x,x+1) only occurs at (0,1), as it would imply distinct values x positions previously.
As mentioned in an earlier comment, for any k >= 0 there is a "van Eck" sequence E(k) starting with k and extended using the same rule (cf. A171911-A171918). The initial E(k)(1) = k is followed by at least k initial terms from this sequence A181391 = E(0): E(k)(n+1) = E(0)(n) for all n <= k and beyond, as long as E(0)(n) != k. - M. F. Hasler, Jun 11 2019
Comment from Jordan Linus, circa Jun 16 2019, from an online comment added to the Haran-Sloane video: (Start)
Theorem: limsup a(n)/sqrt(n) >= 1.
Proof: Whenever a(n)=0, either there have been sqrt(n) zeros in the sequence, thus sqrt(n) new distinct numbers (and at least one bigger than sqrt(n)), or there have been fewer than sqrt(n) zeros in the sequence, and thus there is a gap of at least sqrt(n) between two zeros (and the term after the second zero is at least sqrt(n)). So either way there is a term >= sqrt(n). (End)
The long-term behavior of the sequence E(k) appears to be the same for all k, although the individual numbers differ. Empirically modeled up to 2^25 terms of E(k) for k between 0 and 9. - Po-chia Chen, Jun 18 2019
After searching the first 318 billion entries, the smallest number not appearing is 645315850; the smallest pair not of the form (1,1), (0,a), or (x,x+1) not appearing is (268,5). - Tomas Rokicki, Jun 19 2019
Theorem: i-a(i) is unique for all i, a(i)>0. Put differently: i-a(i)<>j-a(j) for all i,j, a(i)>0 and j>i. Proof: if a(i-1)=a(j-1)=x, a(j) can be at most j-i because there is by definition not another x between a(j-1) and a(j-a(j)-1). If a(i-1)<>a(j-1), it follows that a(i-a(i)-1)<>a(j-a(j)-1). Either way i-a(i)<>j-a(j). A special case of this is that pairs (x,x+1) cannot occur for x>0 (as remarked above); similarly, triples (x,y,x+2) cannot occur and so on. Also, since a(i-a(i+1))=a(i) by definition, i-a(i+1)-a(i) is unique for all i, a(i+1) and a(i)>0. A simple example is that triples (x,y,x+1) cannot occur for y>0. Many other "impossible patterns" can be derived. - Jan Ritsema van Eck, Jul 22 2019
After 10^12 terms, the smallest number not appearing is 1732029957; the smallest pair not of the form (1,1), (0,a), or (x,x+1) not appearing is (528,5); there have been 90689534032 zeros. - Benjamin Chaffin, Sep 11 2019
Similar to E(k) above, the sequence E(k,l,...,m) could be defined as the sequence starting with k,l,...,m and continuing using Van Eck's rule. For example, E(1,1) is 1,1,1,... and has period 1. The smallest possible period greater than 1 is 42, attained by E(37, 42, 7, 42, 2, 5, 22, 42, 4, 11, 42, 3, 21, 42, 3, 3, 1, 25, 38, 42, 6, 25, 4, 14, 42, 5, 20, 42, 3, 13, 42, 3, 3, 1, 17, 36, 42, 6, 17, 4, 17, 2). More info: https://redd.it/dbdhpj - Michiel De Muynck, Sep 30 2019
If the rule a(n+1)=0 (when a(n) has not been seen before) is replaced by a(n+1)=a(a(n)) and a(0) is set to 0, then the resulting sequence is A025480. - David James Sycamore, Nov 01 2019

Examples

			We start with a(1) = 0. 0 has not appeared before, so the rule says a(2) = 0. Now 0 HAS occurred before, at a(1), which is 1 term before, so a(3) = 1. 1 has not occurred before, so a(4) = 0. 0 appeared most recently at term a(2), which is 2 terms earlier, so a(5) = 2. 2 has not occurred before, so a(6) = 0. And so on.
		

Crossrefs

Cf. A171862, A171863, A171864, A171865, A171866, A171867, A171887, A171888, A171889, A171896, A171897 (numbers in order of appearance), A171898, A171899.
Cf. also A171911-A171918 (starting with other numbers than 0), A171951-A171956, A171957, A171958, A175041, A175100, A268755, A274425, A309363 (using 2 instead of 0 to mark a new value).
A276457 and A337980 are of the same type.
Cf. A025480.

Programs

  • Haskell
    import Data.List (findIndex, unfoldr)
    import Data.Maybe (fromMaybe)
    a181391 n = a181391_list !! (n-1)
    a181391_list = 0 : (unfoldr g [0]) where
       g xs = Just (m, m : xs) where
            m = 1 + fromMaybe (-1) (findIndex (== head xs) $ tail xs)
    -- Reinhard Zumkeller, Oct 31 2011
    
  • J
    NB. see www.Jsoftware.com
    (,  # <:@- }:  i: {:)^:({.`}.) 100 0 NB. Arie Bos, Dec 10 2010
    
  • Julia
    function A181391(len)
        L = [0, 0]
        for n in 2:len
            k = findlast(m -> L[n] == L[m], 1:n-1)
            push!(L, k == nothing ? 0 : n - k)
        end
    L end
    println(A181391(96)) # Peter Luschny, May 19 2019
    
  • Maple
    M:=10000;
    a:=Array(1..M);
    last:=Array(0..M,-1);
    a[1]:=0;
    a[2]:=0;
    last[0]:=2;
    nxt:=1;
    for n from 3 to M do
    hist:=last[nxt];
    a[n]:=nxt;
    last[nxt]:=n;
    nxt:=0;
    if hist>0 then nxt:=n-hist; fi;
    od:
    [seq(a[n],n=1..M)];
    # N. J. A. Sloane, Oct 18 2010
  • Mathematica
    m = 100; ClearAll[a, last]; a[] = 0; last[] = -1; last[0] = 2; nxt = 1; Do[ hist = last[nxt]; a[n] = nxt; last[nxt] = n; nxt = 0; If[ hist > 0 , nxt = n - hist], {n, 3, m}]; Table[a[n], {n, 1, m}] (* Jean-François Alcover, Dec 01 2011, after Maple program by N. J. A. Sloane *)
    A181391L = Nest[# /. {{Longest[p___], a_, q___, a_} :> {p, a, q, a, Length[{a, q}]}, {a___} :> {a, 0}} &, {}, #] &; A181391L[97] (* JungHwan Min, Jan 14 2017 *)
  • PARI
    A181391_vec(N,a=0,i=Map())={vector(N,n,a=if(n>1,iferr(n-mapget(i,a),E,0)+mapput(i,a,n)))} \\ M. F. Hasler, Jun 11 2019
    
  • Python
    A181391 = [0,0]
    for n in range(1,10**4):
        for m in range(n-1,-1,-1):
            if A181391[m] == A181391[n]:
                A181391.append(n-m)
                break
        else:
            A181391.append(0) # Chai Wah Wu, Aug 14 2014
    
  • Python
    A181391 = [0]
    last_pos = {}
    for i in range(10**4):
        new_value = i - last_pos.get(A181391[i], i)
        A181391.append(new_value)
        last_pos[A181391[i]] = i
    # Ehsan Kia, Jun 12 2019
    
  • R
    vaneckw <-function(howmany = 100){
    howmany = round(howmany[1])
    ve = c(0,0)
    for (jj in 2:(howmany)) {
    thefind <- which(ve[1:(jj-1)] == ve[jj])
    if (length(thefind)){
    ve <- c(ve,jj-thefind[length(thefind)])
    } else ve <- c(ve,0)
    }
    return(invisible(ve))
    } #Carl Witthoft, Jun 14 2019

A007305 Numerators of Farey (or Stern-Brocot) tree fractions.

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 2, 3, 3, 1, 2, 3, 3, 4, 5, 5, 4, 1, 2, 3, 3, 4, 5, 5, 4, 5, 7, 8, 7, 7, 8, 7, 5, 1, 2, 3, 3, 4, 5, 5, 4, 5, 7, 8, 7, 7, 8, 7, 5, 6, 9, 11, 10, 11, 13, 12, 9, 9, 12, 13, 11, 10, 11, 9, 6, 1, 2, 3, 3, 4, 5, 5, 4, 5, 7, 8, 7, 7, 8, 7, 5, 6, 9, 11, 10, 11, 13, 12, 9, 9, 12, 13, 11
Offset: 0

Views

Author

Keywords

Comments

From Yosu Yurramendi, Jun 25 2014: (Start)
If the terms (n>0) are written as an array (left-aligned fashion) with rows of length 2^m, m = 0,1,2,3,...
1,
1,2,
1,2,3,3,
1,2,3,3,4,5,5,4,
1,2,3,3,4,5,5,4,5,7,8,7,7,8,7,5,
1,2,3,3,4,5,5,4,5,7,8,7,7,8,7,5,6,9,11,10,11,13,12,9,9,12,13,11,10,11,9,6,
then the sum of the m-th row is 3^m (m = 0,1,2,), each column k is constant, and the constants are from A007306, denominators of Farey (or Stern-Brocot) tree fractions (see formula).
If the rows are written in a right-aligned fashion:
1,
1,2,
1, 2,3,3,
1, 2, 3, 3, 4, 5,5,4,
1,2, 3, 3, 4, 5, 5,4,5, 7, 8, 7, 7, 8,7,5,
1,2,3,3,4,5,5,4,5,7,8,7,7,8,7,5,6,9,11,10,11,13,12,9,9,12,13,11,10,11,9,6,
then each column is an arithmetic sequence. The differences of the arithmetic sequences also give the sequence A007306 (see formula). The first terms of columns are from A007305 itself (a(A004761(n+1)) = a(n), n>0), and the second ones from A049448 (a(A004761(n+1)+2^A070941(n)) = A049448(n), n>0). (End)
If the sequence is considered in blocks of length 2^m, m = 0,1,2,..., the blocks are the reverse of the blocks of A047679: (a(2^m+1+k) = A047679(2^(m+1)-2-k), m = 0,1,2,..., k = 0,1,2,...,2^m-1). - Yosu Yurramendi, Jun 30 2014

Examples

			A007305/A007306 = [ 0/1; 1/1; ] 1/2; 1/3, 2/3; 1/4, 2/5, 3/5, 3/4; 1/5, 2/7, 3/8, 3/7, 4/7, 5/8, 5/7, 4/5, ...
Another version of Stern-Brocot is A007305/A047679 = 1, 2, 1/2, 3, 1/3, 3/2, 2/3, 4, 1/4, 4/3, 3/4, 5/2, 2/5, 5/3, 3/5, 5, 1/5, 5/4, 4/5, ...
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 117.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 23.
  • J. C. Lagarias, Number Theory and Dynamical Systems, pp. 35-72 of S. A. Burr, ed., The Unreasonable Effectiveness of Number Theory, Proc. Sympos. Appl. Math., 46 (1992). Amer. Math. Soc.
  • W. J. LeVeque, Topics in Number Theory. Addison-Wesley, Reading, MA, 2 vols., 1956, Vol. 1, p. 154.
  • I. Niven and H. S. Zuckerman, An Introduction to the Theory of Numbers. 2nd ed., Wiley, NY, 1966, p. 141.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    A007305 := proc(n) local b; b := proc(n) option remember; local msb, r;
    if n < 3 then return 1 fi; msb := ilog2(n); r := n - 2^msb;
    if ilog2(r) = msb - 1 then b(r) + b(3*2^(msb-1) - r - 1) else b(2^(msb - 1) + r) fi end: if n = 0 then 0 else b(n-1) fi end: # Antti Karttunen, Mar 19 2000 [Corrected and rewritten by Peter Luschny, Apr 24 2024]
    seq(A007305(n), n = 0..92);
  • Mathematica
    sbt[n_] := Module[{R,L,Y}, R={{1,0},{1,1}}; L={{1,1},{0,1}}; Y={{1,0},{0,1}}; w[b_] := Fold[ #1.If[ #2 == 0,L,R] &,Y,b]; u[a_] := {a[[2,1]]+a[[2,2]],a[[1,1]]+a[[1,2]]}; Map[u,Map[w,Tuples[{0,1},n]]]]
    A007305(n) = Flatten[Append[{0,1},Table[Map[First,sbt[i]],{i,0,5}]]]
    A047679(n) = Flatten[Table[Map[Last,sbt[i]],{i,0,5}]]
    (* Peter Luschny, Apr 27 2009 *)
  • R
    a <- 1
    for(m in 1:6) for(k in 0:(2^(m-1)-1)) {
      a[2^m+        k] <- a[2^(m-1)+k]
      a[2^m+2^(m-1)+k] <- a[2^(m-1)+k] + a[2^m-k-1]
    }
    a
    # Yosu Yurramendi, Jun 25 2014

Formula

a(n) = SternBrocotTreeNum(n-1) # n starting from 2 gives the sequence from 1, 1, 2, 1, 2, 3, 3, 1, 2, 3, 3, 4, 5, 5, 4, 1, ...
From Reinhard Zumkeller, Dec 22 2008: (Start)
For n > 1: a(n+2) = if A025480(n-1) != 0 and A025480(n) != 0 then a(A025480(n-1)+2) + a(A025480(n)+2) else if A025480(n)=0 then a(A025480(n-1)+2)+1 else 0 + a(A025480(n-1)+2).
a(A054429(n)+2) = A047679(n).
a(n+2) = A047679(A054429(n)).
A153036(n+1) = floor(a(n+2)/A047679(n)). (End)
From Yosu Yurramendi, Jun 25 2014: (Start)
For m = 1,2,3,..., and k = 0,1,2,...,2^(m-1)-1, with a(1)=1:
a(2^m+k) = a(2^(m-1)+k);
a(2^m+2^(m-1)+k) = a(2^(m-1)+k) + a(2^m-k-1). (End)
a(2^(m+2)-k) = A007306(2^(m+1)-k), m=0,1,2,..., k=0,1,2,...,2^m-1. - Yosu Yurramendi, Jul 04 2014
a(2^(m+1)+2^m+k) - a(2^m+k) = A007306(2^m-k+1), m=1,2,..., k=1,2,...,2^(m-1). - Yosu Yurramendi, Jul 05 2014
From Yosu Yurramendi, Jan 01 2015: (Start)
a(2^m+2^q-1) = q+1, q = 0, 1, 2,..., m = q, q+1, q+2,...
a(2^m+2^q) = q+2, q = 0, 1, 2,..., m = q+1, q+2, q+3,... (End)
a(2^m+k) = A007306(k+1), m >= 0, 0 <= k < 2*m. - Yosu Yurramendi, May 20 2019
a(n) = A002487(A059893(n)), n > 0. - Yosu Yurramendi, Sep 29 2021

A047679 Denominators in full Stern-Brocot tree.

Original entry on oeis.org

1, 2, 1, 3, 3, 2, 1, 4, 5, 5, 4, 3, 3, 2, 1, 5, 7, 8, 7, 7, 8, 7, 5, 4, 5, 5, 4, 3, 3, 2, 1, 6, 9, 11, 10, 11, 13, 12, 9, 9, 12, 13, 11, 10, 11, 9, 6, 5, 7, 8, 7, 7, 8, 7, 5, 4, 5, 5, 4, 3, 3, 2, 1, 7, 11, 14, 13, 15, 18, 17, 13, 14, 19, 21, 18, 17, 19, 16, 11, 11, 16, 19, 17, 18
Offset: 0

Views

Author

Keywords

Comments

Numerators are A007305.
Write n in binary; list run lengths; add 1 to last run length; make into continued fraction. Sequence gives denominator of fraction obtained.
From Reinhard Zumkeller, Dec 22 2008: (Start)
For n > 1: a(n) = if A025480(n-1) != 0 and A025480(n) != 0 then = a(A025480(n-1)) + a(A025480(n)) else if A025480(n)=0 then a(A025480(n-1))+0 else 1+a(A025480(n-1));
a(n) = A007305(A054429(n)+2) and a(A054429(n)) = A007305(n+2);
A153036(n+1) = floor(A007305(n+2)/a(n)). (End)
From Yosu Yurramendi, Jun 25 2014 and Jun 30 2014: (Start)
If the terms are written as an array a(m, k) = a(2^(m-1)-1+k) with m >= 1 and k = 0, 1, ..., 2^(m-1)-1:
1,
2,1,
3,3, 2, 1,
4,5, 5, 4, 3, 3, 2,1,
5,7, 8, 7, 7, 8, 7,5,4, 5, 5, 4, 3, 3,2,1,
6,9,11,10,11,13,12,9,9,12,13,11,10,11,9,6,5,7,8,7,7,8,7,5,4,5,5,4,3,3,2,1,
then the sum of the m-th row is 3^(m-1), and each column is an arithmetic sequence. The differences of these arithmetic sequences give the sequence A007306(k+1). The first terms of columns are 1 for k = 0 and a(k-1) for k >= 1.
In a row reversed version A(m, k) = a(m, m-(k+1)):
1
1,2
1,2,3,3,
1,2,3,3,4,5,5,4
1,2,3,3,4,5,5,4,5,7,8,7,7,8,7,5
1,2,3,3,4,5,5,4,5,7,8,7,7,8,7,5,6,9,11,10,11,13,12,12,9,9,12,13,11,10,11,9,6
each column k >= 0 is constant, namely A007306(k+1).
This row reversed version coincides with the array for A007305 (see the Jun 25 2014 comment there). (End)
Looking at the plot, the sequence clearly shows a fractal structure. (The repeating pattern oddly resembles the [first completed] facade of the Sagrada Familia!) - Daniel Forgues, Nov 15 2019

Examples

			E.g., 57->111001->[ 3,2,1 ]->[ 3,2,2 ]->3 + 1/(2 + 1/(2) ) = 17/2. For n=1,2, ... we get 2, 3/2, 3, 4/3, 5/3, 5/2, 4, 5/4, 7/5, 8/5, ...
1; 2,1; 3,3,2,1; 4,5,5,4,3,3,2,1; ....
Another version of Stern-Brocot is A007305/A047679 = 1, 2, 1/2, 3, 1/3, 3/2, 2/3, 4, 1/4, 4/3, 3/4, 5/2, 2/5, 5/3, 3/5, 5, 1/5, 5/4, 4/5, ...
		

Crossrefs

Programs

  • Mathematica
    CFruns[ n_Integer ] := Fold[ #2+1/#1&, Infinity, Reverse[ MapAt[ #+1&, Length/@Split[ IntegerDigits[ n, 2 ] ], {-1} ] ] ]
    (* second program: *)
    a[n_] := Module[{LL = Length /@ Split[IntegerDigits[n, 2]]}, LL[[-1]] += 1; FromContinuedFraction[LL] // Denominator]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Feb 25 2016 *)
  • PARI
    {a(n) = local(v, w); v = binary(n++); w = [1]; for( n=2, #v, if( v[n] != v[n-1], w = concat(w, 1), w[#w]++)); w[#w]++; contfracpnqn(w)[2, 1]} /* Michael Somos, Jul 22 2011 */
    
  • R
    a <- 1
    for(m in 1:6) for(k in 0:(2^(m-1)-1)) {
      a[2^m+        k] = a[2^(m-1)+k] + a[2^m-k-1]
      a[2^m+2^(m-1)+k] = a[2^(m-1)+k]
    }
    a
    # Yosu Yurramendi, Dec 31 2014

Formula

a(n) = SternBrocotTreeDen(n) # n starting from 1.
From Yosu Yurramendi, Jul 02 2014: (Start)
For m >0 and 0 <= k < 2^(m-1), with a(0)=1, a(1)=2:
a(2^m+k-1) = a(2^(m-1)+k-1) + a((2^m-1)-k-1);
a(2^m+2^(m-1)+k-1) = a(2^(m-1)+k-1). (End)
a(2^m-2^q ) = q+1, q >= 0, m > q
a(2^m-2^q-1) = q+2, q >= 0, m > q+1. - Yosu Yurramendi, Jan 01 2015
a(2^(m+1)-1-k) = A007306(k+1), m >= 0, 0 <= k <= 2^m. - Yosu Yurramendi, May 20 2019
a(n) = A002487(1+A059893(n)), n > 0. - Yosu Yurramendi, Sep 29 2021

Extensions

Edited by Wolfdieter Lang, Mar 31 2015

A220466 a((2*n-1)*2^p) = 4^p*(n-1) + 2^(p-1)*(1+2^p), p >= 0 and n >= 1.

Original entry on oeis.org

1, 3, 2, 10, 3, 7, 4, 36, 5, 11, 6, 26, 7, 15, 8, 136, 9, 19, 10, 42, 11, 23, 12, 100, 13, 27, 14, 58, 15, 31, 16, 528, 17, 35, 18, 74, 19, 39, 20, 164, 21, 43, 22, 90, 23, 47, 24, 392, 25, 51, 26, 106, 27, 55, 28, 228, 29, 59, 30, 122, 31, 63, 32, 2080, 33, 67, 34, 138, 35
Offset: 1

Views

Author

Johannes W. Meijer, Dec 24 2012

Keywords

Comments

The a(n) appeared in the analysis of A220002, a sequence related to the Catalan numbers.
The first Maple program makes use of a program by Peter Luschny for the calculation of the a(n) values. The second Maple program shows that this sequence has a beautiful internal structure, see the first formula, while the third Maple program makes optimal use of this internal structure for the fast calculation of a(n) values for large n.
The cross references lead to sequences that have the same internal structure as this sequence.

Crossrefs

Cf. A000027 (the natural numbers), A000120 (1's-counting sequence), A000265 (remove 2's from n), A001316 (Gould's sequence), A001511 (the ruler function), A003484 (Hurwitz-Radon numbers), A003602 (a fractal sequence), A006519 (highest power of 2 dividing n), A007814 (binary carry sequence), A010060 (Thue-Morse sequence), A014577 (dragon curve), A014707 (dragon curve), A025480 (nim-values), A026741, A035263 (first Feigenbaum symbolic sequence), A037227, A038712, A048460, A048896, A051176, A053381 (smooth nowhere-zero vector fields), A055975 (Gray code related), A059134, A060789, A060819, A065916, A082392, A085296, A086799, A088837, A089265, A090739, A091512, A091519, A096268, A100892, A103391, A105321 (a fractal sequence), A109168 (a continued fraction), A117973, A129760, A151930, A153733, A160467, A162728, A181988, A182241, A191488 (a companion to Gould's sequence), A193365, A220466 (this sequence).

Programs

  • Haskell
    -- Following Ralf Stephan's recurrence:
    import Data.List (transpose)
    a220466 n = a006519_list !! (n-1)
    a220466_list = 1 : concat
       (transpose [zipWith (-) (map (* 4) a220466_list) a006519_list, [2..]])
    -- Reinhard Zumkeller, Aug 31 2014
  • Maple
    # First Maple program
    a := n -> 2^padic[ordp](n, 2)*(n+1)/2 : seq(a(n), n=1..69); # Peter Luschny, Dec 24 2012
    # Second Maple program
    nmax:=69: for p from 0 to ceil(simplify(log[2](nmax))) do for n from 1 to ceil(nmax/(p+2)) do a((2*n-1)*2^p) := 4^p*(n-1)  + 2^(p-1)*(1+2^p) od: od: seq(a(n), n=1..nmax);
    # Third Maple program
    nmax:=69: for p from 0 to ceil(simplify(log[2](nmax))) do n:=2^p: n1:=1: while n <= nmax do a(n) := 4^p*(n1-1)+2^(p-1)*(1+2^p): n:=n+2^(p+1): n1:= n1+1: od: od:  seq(a(n), n=1..nmax);
  • Mathematica
    A220466 = Module[{n, p}, p = IntegerExponent[#, 2]; n = (#/2^p + 1)/2; 4^p*(n - 1) + 2^(p - 1)*(1 + 2^p)] &; Array[A220466, 50] (* JungHwan Min, Aug 22 2016 *)
  • PARI
    a(n)=if(n%2,n\2+1,4*a(n/2)-2^valuation(n/2,2)) \\ Ralf Stephan, Dec 17 2013
    

Formula

a((2*n-1)*2^p) = 4^p*(n-1) + 2^(p-1)*(1+2^p), p >= 0 and n >= 1. Observe that a(2^p) = A007582(p).
a(n) = ((n+1)/2)*(A060818(n)/A060818(n-1))
a(n) = (-1/64)*(q(n+1)/q(n))/(2*n+1) with q(n) = (-1)^(n+1)*2^(4*n-5)*(2*n)!*A060818(n-1) or q(n) = (1/8)*A220002(n-1)*1/(A098597(2*n-1)/A046161(2*n))*1/(A008991(n-1)/A008992(n-1))
Recurrence: a(2n) = 4a(n) - 2^A007814(n), a(2n+1) = n+1. - Ralf Stephan, Dec 17 2013

A225381 Elimination order of the first person in a Josephus problem.

Original entry on oeis.org

1, 2, 2, 4, 3, 5, 4, 8, 5, 8, 6, 11, 7, 11, 8, 16, 9, 14, 10, 18, 11, 17, 12, 23, 13, 20, 14, 25, 15, 23, 16, 32, 17, 26, 18, 32, 19, 29, 20, 38, 21, 32, 22, 39, 23, 35, 24, 47, 25, 38, 26, 46, 27, 41, 28, 53, 29, 44, 30, 53, 31, 47, 32, 64, 33, 50, 34, 60, 35
Offset: 1

Views

Author

Marcus Hedbring, May 17 2013

Keywords

Comments

In a Josephus problem such as A006257, a(n) is the order in which the person originally first in line is eliminated.
The number of remaining survivors after the person originally first in line has been eliminated, i.e., n-a(n), gives the fractal sequence A025480.
For the linear version, see A225489.

Examples

			If there are 7 persons to begin with, they are eliminated in the following order: 2,4,6,1,5,3,7. So the first person (the person originally first in line) is eliminated as number 4. Therefore a(7) = 4.
		

Crossrefs

Programs

  • Mathematica
    t = {1}; Do[AppendTo[t, If[OddQ[n], (n + 1)/2, t[[n/2]] + n/2]], {n, 2, 100}]; t (* T. D. Noe, May 17 2013 *)

Formula

a(n) = (n+1)/2 (odd n); a(n) = a(n/2) + n/2 (even n).
a(n) = n - A025480(n).
G.f.: Sum{n>=1} x^n/(1-x^A006519(n)). - Nicolas Nagel, Mar 19 2018

A054582 Array read by antidiagonals upwards: A(m,k) = 2^m * (2k+1), m,k >= 0.

Original entry on oeis.org

1, 2, 3, 4, 6, 5, 8, 12, 10, 7, 16, 24, 20, 14, 9, 32, 48, 40, 28, 18, 11, 64, 96, 80, 56, 36, 22, 13, 128, 192, 160, 112, 72, 44, 26, 15, 256, 384, 320, 224, 144, 88, 52, 30, 17, 512, 768, 640, 448, 288, 176, 104, 60, 34, 19, 1024, 1536, 1280, 896, 576, 352, 208, 120
Offset: 0

Views

Author

Henry Bottomley, Apr 12 2000

Keywords

Comments

First column of array is powers of 2, first row is odd numbers, other cells are products of these two, so every positive integer appears exactly once. [Comment edited to match the definition. - L. Edson Jeffery, Jun 05 2015]
An analogous N X N <-> N bijection based, not on the binary, but on the Fibonacci number system, is given by the Wythoff array A035513.
As an array, this sequence (hence also A135764) is the dispersion of the even positive integers. For the definition of dispersion, see the link "Interspersions and Dispersions." The fractal sequence of this dispersion is A003602. - Clark Kimberling, Dec 03 2010

Examples

			Northwest corner of array A:
    1     3     5     7     9    11    13    15    17    19
    2     6    10    14    18    22    26    30    34    38
    4    12    20    28    36    44    52    60    68    76
    8    24    40    56    72    88   104   120   136   152
   16    48    80   112   144   176   208   240   272   304
   32    96   160   224   288   352   416   480   544   608
   64   192   320   448   576   704   832   960  1088  1216
  128   384   640   896  1152  1408  1664  1920  2176  2432
  256   768  1280  1792  2304  2816  3328  3840  4352  4864
  512  1536  2560  3584  4608  5632  6656  7680  8704  9728
[Array edited to match the definition. - _L. Edson Jeffery_, Jun 05 2015]
From _Philippe Deléham_, Dec 13 2013: (Start)
a(13-1)=20=2*10, so a(13)=10+A006519(20)=10+4=14.
a(3-1)=3=2*1+1, so a(3)=2^(1+1)=4. (End)
From _Wolfdieter Lang_, Jan 30 2019: (Start)
The triangle T begins:
   n\k   0    1    2   3   4   5   6   7  8  9 10 ...
   0:    1
   1:    2    3
   2:    4    6    5
   3:    8   12   10   7
   4:   16   24   20  14   9
   5:   32   48   40  28  18  11
   6:   64   96   80  56  36  22  13
   7:  128  192  160 112  72  44  26  15
   8:  256  384  320 224 144  88  52  30 17
   9:  512  768  640 448 288 176 104  60 34 19
  10: 1024 1536 1280 896 576 352 208 120 68 38 21
  ...
T(3, 2) = 2^1*(2*2+1) = 10. (End)
		

Crossrefs

The sequence is a permutation of A000027.
Main diagonal is A014480; inverse permutation is A209268.

Programs

  • Haskell
    a054582 n k = a054582_tabl !! n !! k
    a054582_row n = a054582_tabl !! n
    a054582_tabl = iterate
       (\xs@(x:_) -> (2 * x) : zipWith (+) xs (iterate (`div` 2) (2 * x))) [1]
    a054582_list = concat a054582_tabl
    -- Reinhard Zumkeller, Jan 22 2013
    
  • Mathematica
    (* Array: *)
    Grid[Table[2^m*(2*k + 1), {m, 0, 9}, {k, 0, 9}]] (* L. Edson Jeffery, Jun 05 2015 *)
    (* Array antidiagonals flattened: *)
    Flatten[Table[2^(m - k)*(2*k + 1), {m, 0, 9}, {k, 0, m}]] (* L. Edson Jeffery, Jun 05 2015 *)
  • PARI
    T(m,k)=(2*k+1)<Charles R Greathouse IV, Jun 21 2017

Formula

As a sequence, if n is a triangular number, then a(n)=a(n-A002024(n))+2, otherwise a(n)=2*a(n-A002024(n)-1).
a(n) = A075300(n-1)+1.
Recurrence for the sequence: if a(n-1)=2*k is even, then a(n)=k+A006519(2*k); if a(n-1)=2*k+1 is odd, then a(n)=2^(k+1), a(0)=1. - Philippe Deléham, Dec 13 2013
m = A(A001511(m)-1, A003602(m)-1), for each m in A000027. - L. Edson Jeffery, Nov 22 2015
The triangle is T(n, k) = A(n-k, k) = 2^(n-k)*(2*k+1), for n >= 0 and k = 0..n. - Wolfdieter Lang, Jan 30 2019

Extensions

Offset corrected by Reinhard Zumkeller, Jan 22 2013

A163782 a(n) is the n-th J_2-prime (Josephus_2 prime).

Original entry on oeis.org

2, 5, 6, 9, 14, 18, 26, 29, 30, 33, 41, 50, 53, 65, 69, 74, 81, 86, 89, 90, 98, 105, 113, 134, 146, 158, 173, 174, 186, 189, 194, 209, 210, 221, 230, 233, 245, 254, 261, 270, 273, 278, 281, 293, 306, 309, 326, 329
Offset: 1

Views

Author

Peter R. J. Asveld, Aug 05 2009

Keywords

Comments

Place the numbers 1..N (N>=2) on a circle and cyclically mark the 2nd unmarked number until all N numbers are marked. The order in which the N numbers are marked defines a permutation; N is a J_2-prime if this permutation consists of a single cycle of length N.
The resulting permutation can be written as p(m,N) = (2N+1-||2N+1-m||)/2 (1 <= m <= N), where ||x|| is the odd number such that x/||x|| is a power of 2. E.g., ||16||=1 and ||120||=15.
No formula is known for a(n): the J_2-primes have been found by exhaustive search (however, see the CROSS-REFERENCES). But we have: (1) N is J_2-prime iff p=2N+1 is a prime number and +2 generates Z_p^* (the multiplicative group of Z_p). (2) N is J_2-prime iff p=2N+1 is a prime number and exactly one of the following holds: (a) N == 1 (mod 4) and +2 generates Z_p^* but -2 does not, (b) N == 2 (mod 4) and both +2 and -2 generate Z_p^*.

Examples

			p(1,5)=3, p(2,5)=1, p(3,5)=5, p(4,5)=2 and p(5,5)=4.
So p=(1 3 5 4 2) and 5 is J_2-prime.
		

References

  • R. L. Graham, D. E. Knuth & O. Patashnik, Concrete Mathematics (1989), Addison-Wesley, Reading, MA. Sections 1.3 & 3.3.

Crossrefs

A163783 through A163800 for J_3- through J_20-primes.
Considered as sets, A163782 is the union of A163777 and A163779, it equals the difference of A054639 and A163780, and 2*a(n) results in A071642.

Programs

  • Java
    isJ2Prime(int n) { // for n > 1
      int count = 0, leader = 0;
      if (n % 4 == 1 || n % 4 == 2) { // small optimization
        do {
          leader = A025480(leader + n);
          count++;
        } while (leader != 0);
      }
      return count == n;
    } // Joe Nellis, Jan 27 2023
  • Mathematica
    lst = {};
    Do[If[IntegerQ[(2^n + 1)/(2 n + 1)] && PrimitiveRoot[2 n + 1] == 2,
    AppendTo[lst, n]], {n, 2, 10^5}]; lst (* Hilko Koning, Sep 21 2021 *)
  • PARI
    Follow(s,f)={my(t=f(s),k=1); while(t>s, k++; t=f(t)); if(s==t, k, 0)}
    ok(n)={my(d=2*n+1); n>1&&n==Follow(1,i->(d-((d-i)>>valuation(d-i, 2)))/2)}
    select(n->ok(n),[1..1000]) \\ Andrew Howroyd, Nov 11 2017
    
  • PARI
    forprime(p=5, 2000, if(znorder(Mod(2, p))==p-1, print1((p-1)/2, ", "))); \\ Andrew Howroyd, Nov 11 2017
    

Formula

a(n) = A071642(n+3)/2.
Previous Showing 11-20 of 75 results. Next