cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 255 results. Next

A110501 Unsigned Genocchi numbers (of first kind) of even index.

Original entry on oeis.org

1, 1, 3, 17, 155, 2073, 38227, 929569, 28820619, 1109652905, 51943281731, 2905151042481, 191329672483963, 14655626154768697, 1291885088448017715, 129848163681107301953, 14761446733784164001387, 1884515541728818675112649, 268463531464165471482681379
Offset: 1

Views

Author

Michael Somos, Jul 23 2005

Keywords

Comments

The Genocchi numbers satisfy Seidel's recurrence: for n > 1, 0 = Sum_{j=0..floor(n/2)} (-1)^j*binomial(n, 2*j)*a(n-j). - Ralf Stephan, Apr 17 2004
The (n+1)-st Genocchi number is the number of Dumont permutations of the first kind on 2n letters. In a Dumont permutation of the first kind, each even integer must be followed by a smaller integer and each odd integer is either followed by a larger integer or is the last element. - Ralf Stephan, Apr 26 2004
The (n+1)-st Genocchi number is also the number of ways to place n rooks (attacking along planes; also called super rooks of power 2 by Golomb and Posner) on the three-dimensional Genocchi boards of size n. The Genocchi board of size n consists of cells of the form (i, j, k) where min{i, j} <= k and 1 <= k <= n. A rook placement on this board can also be realized as a pair of permutations of n the smallest number in the i-th position of the two permutations is not larger than i. - Feryal Alayont, Nov 03 2012
The (n+1)-st Genocchi number is also the number of Dumont permutations of the second kind, third kind, and fourth kind on 2n letters. In a Dumont permutation of the second kind, all odd positions are weak excedances and all even positions are deficiencies. In a Dumont permutation of the third kind, all descents are from an even value to an even value. In a Dumont permutation of the fourth kind, all deficiencies are even values at even positions. - Alexander Burstein, Jun 21 2019
The (n+1)-st Genocchi number is also the number of semistandard Young tableaux of skew shape (n+1,n,...,1)/(n-1,n-2,...,1) such that the entries in row i are at most i for i=1,...,n+1. - Alejandro H. Morales, Jul 26 2020
The (n+1)-st Genocchi number is also the number of positive terms of the Okounkov-Olshanski formula for the number of standard tableaux of skew shape (n+1,n,n-1,...,1)/(n-1,n-2,...,1), given by the (2n+1)-st Euler number A000111. - Alejandro H. Morales, Jul 26 2020
The (n+1)-st Genocchi number is also the number of collapsed permutations in (2n-1) letters. A permutation pi of size 2n-1 is said to be collapsed if ceil(k/2) <= pi^{-1}(k) <= n + floor(k/2). There are 3 collapsed permutations of size 3, namely 123, 132 and 213. - Arvind Ayyer, Oct 23 2020

Examples

			E.g.f.: x*tan(x/2) = x^2/2! + x^4/4! + 3*x^6/6! + 17*x^8/8! + 155*x^10/10! + ...
O.g.f.: A(x) = x + x^2 + 3*x^3 + 17*x^4 + 155*x^5 + 2073*x^6 + ...
where A(x) = x + x^2/(1+x) + 2!^2*x^3/((1+x)*(1+4*x)) + 3!^2*x^4/((1+x)*(1+4*x)*(1+9*x)) + 4!^2*x^5/((1+x)*(1+4*x)*(1+9*x)*(1+16*x)) + ... . - _Paul D. Hanna_, Jul 21 2011
From _Gary W. Adamson_, Jul 19 2011: (Start)
The first few rows of production matrix M are:
  1, 2,  0,  0,  0, 0, ...
  1, 3,  3,  0,  0, 0, ...
  1, 4,  6,  4,  0, 0, ...
  1, 5, 10, 10,  5, 0, ...
  1, 6, 15, 20, 15, 6, ... (End)
		

References

  • L. Carlitz, A conjecture concerning Genocchi numbers. Norske Vid. Selsk. Skr. (Trondheim) 1971, no. 9, 4 pp. MR0297697 (45 #6749)
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 49.
  • Leonhard Euler, Institutionum Calculi Differentialis, volume 2 (1755), para. 181.
  • A. Genocchi, Intorno all'espressione generale de'numeri Bernulliani, Ann. Sci. Mat. Fis., 3 (1852), 395-405.
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2 (1999) p. 74; see Problem 5.8.

Crossrefs

Programs

  • Magma
    [Abs(2*(4^n-1)*Bernoulli(2*n)): n in [1..20]]; // Vincenzo Librandi, Jul 28 2017
    
  • Maple
    A110501 := proc(n)
        2*(-1)^n*(1-4^n)*bernoulli(2*n) ;
    end proc:
    seq(A110501(n),n=0..10) ; # R. J. Mathar, Aug 02 2013
  • Mathematica
    a[n_] := 2*(4^n - 1) * BernoulliB[2n] // Abs; Table[a[n], {n, 19}] (* Jean-François Alcover, May 23 2013 *)
  • PARI
    {a(n) = if( n<1, 0, 2 * (-1)^n * (1 - 4^n) * bernfrac( 2*n))};
    
  • PARI
    {a(n) = if( n<1, 0, (2*n)! * polcoeff( x * tan(x/2 + x * O(x^(2*n))), 2*n))};
    
  • PARI
    {a(n)=polcoeff(sum(m=0,n,m!^2*x^(m+1)/prod(k=1,m, 1+k^2*x+x*O(x^n))),n)} /* Paul D. Hanna, Jul 21 2011 */
    
  • PARI
    upto(n) = my(v1, v2, v3); v1 = vector(n, i, 0); v1[1] = 1; v2 = vector(n-1, i, ((i+1)^2)\4); v3 = v1; for(i=2, n, for(j=2, i-1, v1[j] += v2[i-j+1]*v1[j-1]); v1[i] = v1[i-1]; v3[i] = v1[i]); v3 \\ Mikhail Kurkov, Aug 28 2025
    
  • Python
    from sympy import bernoulli
    def A110501(n): return ((2<<(m:=n<<1))-2)*abs(bernoulli(m)) # Chai Wah Wu, Apr 14 2023
  • Sage
    # Algorithm of L. Seidel (1877)
    # n -> [a(1), ..., a(n)] for n >= 1.
    def A110501_list(n) :
        D = []; [D.append(0) for i in (0..n+2)]; D[1] = 1
        R = [] ; b = True
        for i in(0..2*n-1) :
            h = i//2 + 1
            if b :
                for k in range(h-1,0,-1) : D[k] += D[k+1]
            else :
                for k in range(1,h+1,1) :  D[k] += D[k-1]
            b = not b
            if b : R.append(D[h])
        return R
    A110501_list(19) # Peter Luschny, Apr 01 2012
    
  • Sage
    [2*(-1)^n*(1-4^n)*bernoulli(2*n) for n in (1..20)] # G. C. Greubel, Nov 28 2018
    

Formula

(-1)^n * a(n) = A036968(2*n) = A001469(n).
a(n) = 2*(-1)^n*(1-4^n)*B_{2*n} (B = A027641/A027642 are Bernoulli numbers).
A002105(n) = 2^(n-1)/n * a(n). - Don Knuth, Jan 16 2007
A000111(2*n-1) = a(n)*2^(2*n-2)/n. - Alejandro H. Morales, Jul 26 2020
E.g.f.: x * tan(x/2) = Sum_{k > 0} a(k) * x^(2*k) / (2*k)!.
E.g.f.: x * tan(x/2) = x^2 / (2 - x^2 / (6 - x^2 / (... 4*k+2 - x^2 / (...)))). - Michael Somos, Mar 13 2014
O.g.f.: Sum_{n >= 0} n!^2 * x^(n+1) / Product_{k = 1..n} (1 + k^2*x). - Paul D. Hanna, Jul 21 2011
a(n) = Sum_{k = 0..2*n} (-1)^(n-k+1)*Stirling2(2*n, k)*A059371(k). - Vladeta Jovovic, Feb 07 2004
O.g.f.: A(x) = x/(1-x/(1-2*x/(1-4*x/(1-6*x/(1-9*x/(1-12*x/(... -[(n+1)/2]*[(n+2)/2]*x/(1- ...)))))))) (continued fraction). - Paul D. Hanna, Jan 16 2006
a(n) = Pi^(-2*n)*integral(log(t/(1-t))^(2*n)-log(1-1/t)^(2*n) dt,t=0,1). - Gerry Martens, May 25 2011
a(n) = the upper left term of M^(n-1); M is an infinite square production matrix with M[i,j] = C(i+1,j-1), i.e., Pascal's triangle without the first two rows and right border, see the examples and Maple program. - Gary W. Adamson, Jul 19 2011
G.f.: 1/U(0) where U(k) = 1 + 2*(k^2)*x - x*((k+1)^2)*(x*(k^2)+1)/U(k+1); (continued fraction, Euler's 1st kind, 1-step). - Sergei N. Gladkovskii, Sep 15 2012
a(n+1) = Sum_{k=0..n} A211183(n, k)*2^(n-k). - Philippe Deléham, Feb 03 2013
G.f.: 1 + x/(G(0)-x) where G(k) = 2*x*(k+1)^2 + 1 - x*(k+2)^2*(x*k^2+2*x*k+x+1)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Feb 10 2013
G.f.: G(0) where G(k) = 1 + x*(2*k+1)^2/( 1 + x + 4*x*k + 4*x*k^2 - 4*x*(k+1)^2*(1 + x + 4*x*k + 4*x*k^2)/(4*x*(k+1)^2 + (1 + 4*x + 8*x*k + 4*x*k^2)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Feb 11 2013
G.f.: R(0), where R(k) = 1 - x*(k+1)^2/( x*(k+1)^2 - 1/(1 - x*(k+1)*(k+2)/( x*(k+1)*(k+2) - 1/R(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Oct 27 2013
E.g.f. (offset 1): sqrt(x)*tan(sqrt(x)/2) = Q(0)*x/2, where Q(k) = 1 - x/(x - 4*(2*k+1)*(2*k+3)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Jan 06 2014
Pi^2/6 = 2*Sum_{k=1..N} (-1)^(k-1)/k^2 + (-1)^N/N^2(1 - 1/N + 1/N^3 - 3/N^5 + 17/N^7 - 155/N^9 +- ...), where the terms in the parenthesis are (-1)^n*a(n)/N^(2n-1). - M. F. Hasler, Mar 11 2015
a(n) = 2*n*|euler(2*n-1, 0)|. - Peter Luschny, Jun 09 2016
a(n) = 4^(1-n) * (4^n-1) * Pi^(-2*n) * (2*n)! * zeta(2*n). - Daniel Suteu, Oct 14 2016
a(n) ~ 8*Pi*(2^(2*n)-1)*(n/(Pi*exp(1)))^(2*n+1/2)*exp(1/2+(1/24)/n-(1/2880)/n^3+(1/40320)/n^5+...). [Given in A001469 by Peter Luschny, Jul 24 2013, copied May 14 2022.]
a(n) = A000182(n) * n / 4^(n-1) (Han and Liu, 2018). - Amiram Eldar, May 17 2024

Extensions

Edited by M. F. Hasler, Mar 22 2015

A103438 Square array T(m,n) read by antidiagonals: Sum_{k=1..n} k^m.

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 0, 1, 3, 3, 0, 1, 5, 6, 4, 0, 1, 9, 14, 10, 5, 0, 1, 17, 36, 30, 15, 6, 0, 1, 33, 98, 100, 55, 21, 7, 0, 1, 65, 276, 354, 225, 91, 28, 8, 0, 1, 129, 794, 1300, 979, 441, 140, 36, 9, 0, 1, 257, 2316, 4890, 4425, 2275, 784, 204, 45, 10
Offset: 0

Views

Author

Ralf Stephan, Feb 11 2005

Keywords

Comments

For the o.g.f.s of the column sequences for this array, see A196837 and the link given there. - Wolfdieter Lang, Oct 15 2011
T(m,n)/n is the m-th moment of the discrete uniform distribution on {1,2,...,n}. - Geoffrey Critzer, Dec 31 2018
T(1,n) divides T(m,n) for odd m. - Franz Vrabec, Dec 23 2020

Examples

			Square array begins:
  0, 1,  2,   3,    4,     5,     6,      7,      8,      9, ... A001477;
  0, 1,  3,   6,   10,    15,    21,     28,     36,     45, ... A000217;
  0, 1,  5,  14,   30,    55,    91,    140,    204,    285, ... A000330;
  0, 1,  9,  36,  100,   225,   441,    784,   1296,   2025, ... A000537;
  0, 1, 17,  98,  354,   979,  2275,   4676,   8772,  15333, ... A000538;
  0, 1, 33, 276, 1300,  4425, 12201,  29008,  61776, 120825, ... A000539;
  0, 1, 65, 794, 4890, 20515, 67171, 184820, 446964, 978405, ... A000540;
Antidiagonal triangle begins as:
  0;
  0, 1;
  0, 1,  2;
  0, 1,  3,  3;
  0, 1,  5,  6,  4;
  0, 1,  9, 14, 10,  5;
  0, 1, 17, 36, 30, 15, 6;
		

References

  • J. Faulhaber, Academia Algebrae, Darinnen die miraculosische inventiones zu den höchsten Cossen weiters continuirt und profitirt werden, Augspurg, bey Johann Ulrich Schönigs, 1631.

Crossrefs

Diagonals include A076015 and A031971.
Antidiagonal sums are in A103439.
Antidiagonals are the rows of triangle A192001.

Programs

  • Magma
    T:= func< n,k | n eq 0 select k else (&+[j^n: j in [0..k]]) >;
    [T(n-k,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 22 2021
    
  • Maple
    seq(print(seq(Zeta(0,-k,1)-Zeta(0,-k,n+1),n=0..9)),k=0..6);
    # (Produces the square array from the example.) Peter Luschny, Nov 16 2008
    # alternative
    A103438 := proc(m,n)
        (bernoulli(m+1,n+1)-bernoulli(m+1))/(m+1) ;
        if m = 0 then
            %-1 ;
        else
            % ;
        end if;
    end proc: # R. J. Mathar, May 10 2013
    # simpler:
    A103438 := proc(m,n)
        (bernoulli(m+1,n+1)-bernoulli(m+1,1))/(m+1) ;
    end proc: # Peter Luschny, Mar 20 2024
  • Mathematica
    T[m_, n_]:= HarmonicNumber[m, -n]; Flatten[Table[T[m-n, n], {m, 0, 11}, {n, m, 0, -1}]] (* Jean-François Alcover, May 11 2012 *)
  • PARI
    T(m,n)=sum(k=0,n,k^m)
    
  • Python
    from itertools import count, islice
    from math import comb
    from fractions import Fraction
    from sympy import bernoulli
    def A103438_T(m,n): return sum(k**m for k in range(1,n+1)) if n<=m else int(sum(comb(m+1,i)*(bernoulli(i) if i!=1 else Fraction(1,2))*n**(m-i+1) for i in range(m+1))/(m+1))
    def A103438_gen(): # generator of terms
        for m in count(0):
            for n in range(m+1):
                yield A103438_T(m-n,n)
    A103438_list = list(islice(A103438_gen(),100)) # Chai Wah Wu, Oct 23 2024
  • SageMath
    def T(n,k): return (bernoulli_polynomial(k+1, n+1) - bernoulli_polynomial(1, n+1)) /(n+1)
    flatten([[T(n-k,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Dec 22 2021
    

Formula

E.g.f.: e^x*(e^(x*y)-1)/(e^x-1).
T(m, n) = Zeta(-n, 1) - Zeta(-n, m + 1), for m >= 0 and n >= 0, where Zeta(z, v) is the Hurwitz zeta function. - Peter Luschny, Nov 16 2008
T(m, n) = HarmonicNumber(m, -n). - Jean-François Alcover, May 11 2012
T(m, n) = (Bernoulli(m + 1, n + 1) - Bernoulli(m + 1, 1)) / (m + 1). - Peter Luschny, Mar 20 2024
T(m, n) = Sum_{k=0...m-n} B(k)*(-1)^k*binomial(m-n,k)*n^(m-n-k+1)/(m-n-k+1), where B(k) = Bernoulli number A027641(k) / A027642(k). - Robert B Fowler, Aug 20 2024
T(m, n) = Sum_{i=1..n} J_m(i)*floor(n/i), where J_m is the m-th Jordan totient function. - Ridouane Oudra, Jul 19 2025

A260667 a(n) = (1/n^2) * Sum_{k=0..n-1} (2k+1)*S(k,n)^2, where S(k,x) denotes the polynomial Sum_{j=0..k} binomial(k,j)*binomial(x,j)*binomial(x+j,j).

Original entry on oeis.org

1, 37, 1737, 102501, 6979833, 523680739, 42129659113, 3572184623653, 315561396741609, 28807571694394593, 2701627814373536601, 259121323945378645947, 25330657454041707496017, 2516984276442279642274311, 253667099464270541534450025, 25884030861250181046253181349, 2670255662315910532447096232073
Offset: 1

Views

Author

Zhi-Wei Sun, Nov 14 2015

Keywords

Comments

Conjecture: For k = 0,1,2,... define S(k,x):= Sum_{j=0..k} binomial(k,j)*binomial(x,j)*binomial(x+j,j).
(i) For any integer n > 0, the polynomial (1/n^2) * Sum_{k=0..n-1}(2k+1)*S(k,x)^2 is integer-valued (and hence a(n) is always integral).
(ii) Let r be 0 or 1, and let x be any integer. Then, for any positive integers m and n, we have the congruence
Sum_{k=0..n-1} (-1)^(k*r)*(2k+1)*S(k,x)^(2m) == 0 (mod n).
(iii) For any odd prime p, we have Sum_{k=0..p-1} S(k,-1/2)^2 == (-1/p)(1-7*p^3*B_{p-3}) (mod p^4), where (a/p) is the Legendre symbol, and B_0,B_1,B_2,... are Bernoulli numbers. Also, for any prime p > 3 we have Sum_{k=0..p-1} S(k,-1/3)^2 == p - (14/3)*(p/3)*p^3*B_{p-2}(1/3) (mod p^4), where B_n(x) denotes the Bernoulli polynomial of degree n; Sum_{k=0..p-1} S(k,-1/4)^2 == (2/p)*p - 26*(-2/p)*p^3*E_{p-3} (mod p^4), where E_0,E_1,E_2,... are Euler numbers; Sum_{k=0..p-1} S(k,-1/6)^2 == (3/p)*p - (155/12)*(-1/p)*p^3*B_{p-2}(1/3) (mod p^4).
Our conjecture is motivated by a conjecture of Kimoto and Wakayama which states that Sum_{k=0..p-1} S(k,-1/2)^2 == (-1/p) (mod p^3) for any odd prime p. The Kimoto-Wakayama conjecture was confirmed by Long, Osburn and Swisher in 2014.
For more related conjectures, see Sun's paper arXiv.1512.00712. - Zhi-Wei Sun, Dec 03 2015

Examples

			a(2) = 37 since (1/2^2) * Sum_{k=0..1} (2k+1)*S(k,2)^2 = (S(0,2)^2 + 3*S(1,2)^2)/4 = (1^2 + 3*7^2)/4 = 148/4 = 37.
G.f. = x + 37*x^2 + 1737*x^3 + 102501*x^4 + 6979833*x^5 + 523680739*x^6 + ...
		

Crossrefs

The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692, A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)

Programs

  • Maple
    # Implementing Mark van Hoeij's formula.
    c := n -> binomial(2*n, n)/(n + 1):
    h := n -> simplify(hypergeom([-n,-n,-n], [1,-2*n], 1)):
    b := n -> c(n)^2*((n+11)*(2+4*n)^2*h(n+1)^2-2*(n+1)*(11*n+16)*(1+2*n)*h(n)*h(n+1)-h(n)^2*(n+1)^3)/(25*(n+2)):
    a := n -> b(n-1): seq(a(n), n = 1..17);  # Peter Luschny, Nov 11 2022
  • Mathematica
    S[k_,x_]:=S[k,x]=Sum[Binomial[k,j]Binomial[x,j]Binomial[x+j,j],{j,0,k}]
    a[n_]:=a[n]=Sum[(2k+1)*S[k,n]^2,{k,0,n-1}]/n^2
    Do[Print[n," ",a[n]],{n,1,17}]

Formula

a(n) ~ phi^(10*n + 3) / (10 * Pi^2 * n^3), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Nov 06 2021
Conjecture: a(p-1) == 1 (mod p^3) for all primes p >= 5. - Peter Bala, Aug 15 2022
a(n) = ((n+10)*A005258(n)^2 - (11*n+5)*A005258(n)*A005258(n-1) - n*A005258(n-1)^2)/(25*(n+1)). - Mark van Hoeij, Nov 11 2022

A088164 Wolstenholme primes: primes p such that binomial(2p-1,p-1) == 1 (mod p^4).

Original entry on oeis.org

16843, 2124679
Offset: 1

Views

Author

Christian Schroeder, Sep 21 2003

Keywords

Comments

McIntosh and Roettger showed that the next term, if it exists, must be larger than 10^9. - Felix Fröhlich, Aug 23 2014
When cb(m)=binomial(2m,m) denotes m-th central binomial coefficient then, obviously, cb(a(n))=2 mod a(n)^4. I have verified that among all naturals 1A246134). One might therefore wonder whether this is true in general. - Stanislav Sykora, Aug 26 2014
Romeo Mestrovic, Congruences for Wolstenholme Primes, Lemma 2.3, shows that the criterion for p to be a Wolstenholme prime is equivalent to p dividing A027641(p-3). In 1847 Cauchy proved that this was a necessary condition for the failure of the first case of Fermat's Last Theorem for the exponent p (see Ribenboim, 13 Lectures, p. 29). - John Blythe Dobson, May 01 2015
Primes p such that p^3 divides A001008(p-1) (Zhao, 2007, p. 18). Also: Primes p such that (p, p-3) is an irregular pair (cf. Buhler, Crandall, Ernvall, Metsänkylä, 1993, p. 152). Keith Conrad observes that for the two known (as of 2015) terms ord_p(H_p-1) = 3 is satisfied, where ord_p(H_p-1) gives the p-adic valuation of H_p-1 (cf. Conrad, p. 5). Romeo Mestrovic conjectures that p is a Wolstenholme prime if and only if S_(p-2)(p) == 0 (mod p^3), where S_k(i) denotes the sum of the k-th powers of the positive integers up to and including (i-1) (cf. Mestrovic, 2012, conjecture 2.10). - Felix Fröhlich, May 20 2015
Primes p that divide the Wolstenholme quotient W_p (A034602). Also, primes p such that p^2 divides the Babbage quotient b_p (A263882). - Jonathan Sondow, Nov 24 2015
The only known composite numbers n such that binomial(2n-1, n-1) is congruent to 1 mod n^2 are the numbers n = p^2 where p is a Wolstenholme prime: see A267824. - Jonathan Sondow, Jan 27 2016
The converse of Wolstenholme's theorem implies that if an integer n satisfies the congruence binomial(2*n-1, n-1) == 1 (mod n^4), then n is a term of this sequence, i.e., then n is necessarily prime, or, equivalently, A298946(i) > 1 for all i > 0. Whether this is true for all such n is an open problem. - Felix Fröhlich, Feb 21 2018
Primes p such that binomial(2*p-1, p-1) == 1-2*p*Sum_{k=1..p-1} 1/k - 2*p^2*Sum_{k=1..p-1} 1/k^2 (mod p^7) (cf. Mestrovic, 2011, Corollary 4). - Felix Fröhlich, Feb 21 2018
These are primes p such that p^2 divides A007406(p-1) (Mestrovic, 2015, p. 241, Lemma 2.3). - Amiram Eldar and Thomas Ordowski, Jul 29 2019
If a third Wolstenholme prime exists it is larger than 6*10^10 (cf. Hathi, Mossinghoff, Trudgian, 2021). - Felix Fröhlich, Apr 27 2021
Named after the English mathematician Joseph Wolstenholme (1829-1891). - Amiram Eldar, Jun 10 2021
Primes p such that tanh(Sum_{k=1..p-1} artanh(k/p)) == 0 (mod p^4). - Thomas Ordowski, Apr 17 2025

References

  • Richard K. Guy, Unsolved Problems in Number Theory, Sect. B31.
  • Paulo Ribenboim, 13 Lectures on Fermat's Last Theorem (Springer, 1979).
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 23.

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(2*10^4)| (Binomial(2*p-1,p-1) mod (p^4)eq 1)]; // Vincenzo Librandi, May 02 2015
  • Mathematica
    For[i = 2, i <= 20000, i++, {If[PrimeQ[i] && Mod[Binomial[2*i - 1, i - 1], i^4] == 1, Print[i]]}] (* Dylan Delgado, Mar 02 2021 *)
  • PARI
    forprime(n=2, 10^9, if(Mod(binomial(2*n-1, n-1), n^4)==1, print1(n, ", "))); \\ Felix Fröhlich, May 18 2014
    

Formula

A000984(a(n)) = 2 mod a(n)^4. - Stanislav Sykora, Aug 26 2014
A099908(a(n)) == 1 mod a(n)^4. - Jonathan Sondow, Nov 24 2015
A034602(PrimePi(a(n))) == 0 mod a(n) and A263882(PrimePi(a(n))) == 0 mod a(n)^2. - Jonathan Sondow, Dec 03 2015

A051717 1, followed by denominators of first differences of Bernoulli numbers (B(i)-B(i-1)).

Original entry on oeis.org

1, 2, 3, 6, 30, 30, 42, 42, 30, 30, 66, 66, 2730, 2730, 6, 6, 510, 510, 798, 798, 330, 330, 138, 138, 2730, 2730, 6, 6, 870, 870, 14322, 14322, 510, 510, 6, 6, 1919190, 1919190, 6, 6, 13530, 13530, 1806, 1806, 690, 690, 282, 282, 46410, 46410, 66, 66, 1590, 1590
Offset: 0

Views

Author

Keywords

Comments

Equivalently, denominators of Bernoulli twin numbers C(n) (cf. A051716).
The Bernoulli twin numbers C(n) are defined by C(0) = 1, then C(2n) = B(2n) + B(2n-1), C(2n+1) = -B(2n+1) - B(2n), where B() are the Bernoulli numbers A027641/A027642. The definition is due to Paul Curtz.
Denominators of column 1 of table described in A051714/A051715.

Examples

			Bernoulli numbers: 1, -1/2, 1/6, 0, -1/30, 0, 1/42, 0, -1/30, 0, 5/66, ...
First differences: -3/2, 2/3, -1/6, -1/30, 1/30, 1/42, -1/42, -1/30, ...
Numerators: -3, 2, -1, -1, 1, 1, -1, -1, 1, 5, -5, -691, 691, 7, ...
Denominators: 2, 3, 6, 30, 30, 42, 42, 30, 30, 66, 66, 2730, ...
Sequence of C(n)'s begins: 1, -1/2, -1/3, -1/6, -1/30, 1/30, 1/42, -1/42, -1/30, 1/30, 5/66, -5/66, -691/2730, 691/2730, 7/6, -7/6, ...
		

Crossrefs

Cf. A129724.
For numerators see A172083.

Programs

  • Magma
    f:= func< n | Bernoulli(n) + Bernoulli(n-1) >;
    function A051717(n)
      if n eq 0 then return 1;
      elif (n mod 2) eq 0 then return Denominator(f(n));
      else return Denominator(-f(n));
      end if;
    end function;
    [A051717(n): n in [0..50]]; // G. C. Greubel, Apr 22 2023
    
  • Maple
    C:=proc(n) if n=0 then RETURN(1); fi; if n mod 2 = 0 then RETURN(bernoulli(n)+bernoulli(n-1)); else RETURN(-bernoulli(n)-bernoulli(n-1)); fi; end;
  • Mathematica
    c[0]= 1; c[n_?EvenQ]:= BernoulliB[n] + BernoulliB[n-1]; c[n_?OddQ]:= -BernoulliB[n] - BernoulliB[n-1]; Table[Denominator[c[n]], {n,0,53}] (* Jean-François Alcover, Dec 19 2011 *)
    Join[{1},Denominator[Total/@Partition[BernoulliB[Range[0,60]],2,1]]] (* Harvey P. Dale, Mar 09 2013 *)
    Join[{1},Denominator[Differences[BernoulliB[Range[0,60]]]]] (* Harvey P. Dale, Jun 28 2021 *)
  • PARI
    a(n)=if(n<3,n+1,denominator(bernfrac(n)-bernfrac(n-1))) \\ Charles R Greathouse IV, May 18 2015
    
  • SageMath
    def f(n): return bernoulli(n)+bernoulli(n-1)
    def A051717(n):
        if (n==0): return 1
        elif (n%2==0): return denominator(f(n))
        else: return denominator(-f(n))
    [A051717(n) for n in range(51)] # G. C. Greubel, Apr 22 2023

Extensions

More terms from James Sellers, Dec 08 1999
Edited by N. J. A. Sloane, May 25 2008
Entry revised by N. J. A. Sloane, Apr 22 2021

A094816 Triangle read by rows: T(n,k) are the coefficients of Charlier polynomials: A046716 transposed, for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 8, 6, 1, 1, 24, 29, 10, 1, 1, 89, 145, 75, 15, 1, 1, 415, 814, 545, 160, 21, 1, 1, 2372, 5243, 4179, 1575, 301, 28, 1, 1, 16072, 38618, 34860, 15659, 3836, 518, 36, 1, 1, 125673, 321690, 318926, 163191, 47775, 8274, 834, 45, 1, 1, 1112083, 2995011
Offset: 0

Views

Author

Philippe Deléham, Jun 12 2004

Keywords

Comments

The a-sequence for this Sheffer matrix is A027641(n)/A027642(n) (Bernoulli numbers) and the z-sequence is A130189(n)/ A130190(n). See the W. Lang link.
Take the lower triangular matrix in A049020 and invert it, then read by rows! - N. J. A. Sloane, Feb 07 2009
Exponential Riordan array [exp(x), log(1/(1-x))]. Equal to A007318*A132393. - Paul Barry, Apr 23 2009
A signed version of the triangle appears in [Gessel]. - Peter Bala, Aug 31 2012
T(n,k) is the number of permutations over all subsets of {1,2,...,n} (Cf. A000522) that have exactly k cycles. T(3,2) = 6: We permute the elements of the subsets {1,2}, {1,3}, {2,3}. Each has one permutation with 2 cycles. We permute the elements of {1,2,3} and there are three permutations that have 2 cycles. 3*1 + 1*3 = 6. - Geoffrey Critzer, Feb 24 2013
From Wolfdieter Lang, Jul 28 2017: (Start)
In Chihara's book the row polynomials (with rising powers) are the Charlier polynomials (-1)^n*C^(a)_n(-x), with a = -1, n >= 0. See p. 170, eq. (1.4).
In Ismail's book the present Charlier polynomials are denoted by C_n(-x;a=1) on p. 177, eq. (6.1.25). (End)
The triangle T(n,k) is a representative of the parametric family of triangles T(m,n,k), whose columns are the coefficients of the standard expansion of the function f(x) = (-log(1-x))^(k)*exp(-m*x)/k! for the case m=-1. See A381082. - Igor Victorovich Statsenko, Feb 14 2025

Examples

			From _Paul Barry_, Apr 23 2009: (Start)
Triangle begins
  1;
  1,     1;
  1,     3,     1;
  1,     8,     6,     1;
  1,    24,    29,    10,     1;
  1,    89,   145,    75,    15,    1;
  1,   415,   814,   545,   160,   21,   1;
  1,  2372,  5243,  4179,  1575,  301,  28,  1;
  1, 16072, 38618, 34860, 15659, 3836, 518, 36, 1;
Production matrix is
  1, 1;
  0, 2, 1;
  0, 1, 3,  1;
  0, 1, 3,  4,  1;
  0, 1, 4,  6,  5,  1;
  0, 1, 5, 10, 10,  6,  1;
  0, 1, 6, 15, 20, 15,  7,  1;
  0, 1, 7, 21, 35, 35, 21,  8, 1;
  0, 1, 8, 28, 56, 70, 56, 28, 9, 1; (End)
		

References

  • T. S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, London, Paris, 1978, Ch. VI, 1., pp. 170-172.
  • Classical and Quantum Orthogonal Polynomials in One Variable, Cambridge University Press, 2005, EMA, Vol. 98, p. 177.

Crossrefs

Columns k=0..4 give A000012, A002104, A381021, A381022, A381023.
Diagonals: A000012, A000217.
Row sums A000522, alternating row sums A024000.
KummerU(-n,1-n-x,z): this sequence (z=1), |A137346| (z=2), A327997 (z=3).

Programs

  • Maple
    A094816 := (n,k) -> (-1)^(n-k)*add(binomial(-j-1,-n-1)*Stirling1(j,k), j=0..n):
    seq(seq(A094816(n, k), k=0..n), n=0..9); # Peter Luschny, Apr 10 2016
  • Mathematica
    nn=10;f[list_]:=Select[list,#>0&];Map[f,Range[0,nn]!CoefficientList[Series[ Exp[x]/(1-x)^y,{x,0,nn}],{x,y}]]//Grid  (* Geoffrey Critzer, Feb 24 2013 *)
    Flatten[Table[(-1)^(n-k) Sum[Binomial[-j-1,-n-1] StirlingS1[j,k],{j,0,n}], {n,0,9},{k,0,n}]] (* Peter Luschny, Apr 10 2016 *)
    p[n_] := HypergeometricU[-n, 1 - n - x, 1];
    Table[CoefficientList[p[n], x], {n,0,9}] // Flatten (* Peter Luschny, Oct 27 2019 *)
  • PARI
    {T(n, k)= local(A); if( k<0 || k>n, 0, A = x * O(x^n); polcoeff( n! * polcoeff( exp(x + A) / (1 - x + A)^y, n), k))} /* Michael Somos, Nov 19 2006 */
    
  • Sage
    def a_row(n):
        s = sum(binomial(n,k)*rising_factorial(x,k) for k in (0..n))
        return expand(s).list()
    [a_row(n) for n in (0..9)] # Peter Luschny, Jun 28 2019

Formula

E.g.f.: exp(t)/(1-t)^x = Sum_{n>=0} C(x,n)*t^n/n!.
Sum_{k = 0..n} T(n, k)*x^k = C(x, n), Charlier polynomials; C(x, n)= A024000(n), A000012(n), A000522(n), A001339(n), A082030(n), A095000(n), A095177(n), A096307(n), A096341(n), A095722(n), A095740(n) for x = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively. - Philippe Deléham, Feb 27 2013
T(n+1, k) = (n+1)*T(n, k) + T(n, k-1) - n*T(n-1, k) with T(0, 0) = 1, T(0, k) = 0 if k>0, T(n, k) = 0 if k<0.
PS*A008275*PS as infinite lower triangular matrices, where PS is a triangle with PS(n, k) = (-1)^k*A007318(n, k). PS = 1/PS. - Gerald McGarvey, Aug 20 2009
T(n,k) = (-1)^(n-k)*Sum_{j=0..n} C(-j-1, -n-1)*S1(j, k) where S1 are the signed Stirling numbers of the first kind. - Peter Luschny, Apr 10 2016
Absolute values T(n,k) of triangle (-1)^(n+k) T(n,k) where row n gives coefficients of x^k, 0 <= k <= n, in expansion of Sum_{k=0..n} binomial(n,k) (-1)^(n-k) x^{(k)}, where x^{(k)} := Product_{i=0..k-1} (x-i), k >= 1, and x^{(0)} := 1, the falling factorial powers. - Daniel Forgues, Oct 13 2019
From Peter Bala, Oct 23 2019: (Start)
The n-th row polynomial is
R(n, x) = Sum_{k = 0..n} (-1)^k*binomial(n, k)*k! * binomial(-x, k).
These polynomials occur in series acceleration formulas for the constant
1/e = n! * Sum_{k >= 0} (-1)^k/(k!*R(n,k)*R(n,k+1)), n >= 0. (cf. A068985, A094816 and A137346). (End)
R(n, x) = KummerU[-n, 1 - n - x, 1]. - Peter Luschny, Oct 27 2019
Sum_{j=0..m} (-1)^(m-j) * Bell(n+j) * T(m,j) = m! * Sum_{k=0..n} binomial(k,m) * Stirling2(n,k). - Vaclav Kotesovec, Aug 06 2021
From Natalia L. Skirrow, Jun 11 2025: (Start)
G.f.: 2F0(1,y;x/(1-x)) / (1-x).
Polynomial for the n-th row is R(n,y) = 2F0(-n,y;-1).
Falling g.f. for n-th row: Sum_{k=0..n} a(n,k)*(y)_k = [x^0] 2F0(1,-n;-1/x) * (1+log(1/(1-x)))^y = [x^n] e^x * Gamma(n+1,x) * (1+log(1/(1-x)))^y, where (y)_k = y!/(y-k)! denotes the falling factorial. (End)

A051716 Numerators of Bernoulli twin numbers C(n).

Original entry on oeis.org

1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 5, -5, -691, 691, 7, -7, -3617, 3617, 43867, -43867, -174611, 174611, 854513, -854513, -236364091, 236364091, 8553103, -8553103, -23749461029, 23749461029, 8615841276005, -8615841276005, -7709321041217, 7709321041217, 2577687858367
Offset: 0

Views

Author

Keywords

Comments

The Bernoulli twin numbers C(n) are defined by C(0) = 1, then C(2n) = B(2n) + B(2n-1), C(2n+1) = -B(2n+1) - B(2n), where B() are the Bernoulli numbers A027641/A027642. The definition is due to Paul Curtz.
For denominators see A051717.
Negatives of numerators of column 1 of table described in A051714/A051715.

Examples

			The C(n) sequence is 1, -1/2, -1/3, -1/6, -1/30, 1/30, 1/42, -1/42, -1/30, 1/30, 5/66, -5/66, -691/2730, 691/2730, 7/6, -7/6, ...
		

Crossrefs

Programs

  • Magma
    f:= func< n | Bernoulli(n) + Bernoulli(n-1) >;
    function A051716(n)
      if n eq 0 then return 1;
      elif (n mod 2) eq 0 then return Numerator(f(n));
      else return Numerator(-f(n));
      end if;
    end function;
    [A051716(n): n in [0..50]]; // G. C. Greubel, Apr 22 2023
    
  • Maple
    C:=proc(n) if n=0 then RETURN(1); fi; if n mod 2 = 0 then RETURN(bernoulli(n)+bernoulli(n-1)); else RETURN(-bernoulli(n)-bernoulli(n-1)); fi; end;
  • Mathematica
    c[0]= 1; c[n_?EvenQ]:= BernoulliB[n] + BernoulliB[n-1]; c[n_?OddQ]:= -BernoulliB[n] - BernoulliB[n-1]; Table[Numerator[c[n]], {n,0,34}] (* Jean-François Alcover, Dec 19 2011 *)
  • PARI
    a(n) = if (n==0, 1, nu = numerator(bernfrac(n)+bernfrac(n-1)); if (n%2, -nu, nu)); \\ Michel Marcus, Jan 29 2017
    
  • SageMath
    def f(n): return bernoulli(n)+bernoulli(n-1)
    def A051716(n):
        if (n==0): return 1
        elif (n%2==0): return numerator(f(n))
        else: return numerator(-f(n))
    [A051716(n) for n in range(51)] # G. C. Greubel, Apr 22 2023

Formula

Numerators of differences of the sequence of rational numbers 0 followed by A164555/A027642. - Paul Curtz, Jan 29 2017
The e.g.f. of the rationals a(n)/A051717(n) is -(1/x + x^2/2 + x/(1 - exp(x)) + dilog(exp(-x))), (with dilog(x) = polylog(2, 1-x)). From integrating the e.g.f. of the z-sequence (exp(x) - (1+x))/(exp(x) -1)^2 for the Bernoulli polynomials of the second kind (A290317 / A290318). - Wolfdieter Lang, Aug 07 2017

Extensions

More terms from James Sellers, Dec 08 1999
Edited by N. J. A. Sloane, May 25 2008

A014410 Elements in Pascal's triangle (by row) that are not 1.

Original entry on oeis.org

2, 3, 3, 4, 6, 4, 5, 10, 10, 5, 6, 15, 20, 15, 6, 7, 21, 35, 35, 21, 7, 8, 28, 56, 70, 56, 28, 8, 9, 36, 84, 126, 126, 84, 36, 9, 10, 45, 120, 210, 252, 210, 120, 45, 10, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11, 12, 66, 220, 495, 792, 924, 792, 495, 220, 66, 12, 13, 78
Offset: 2

Views

Author

Keywords

Comments

Also, rows of triangle formed using Pascal's rule except begin and end n-th row with n+2. - Asher Auel.
Row sums are A000918. - Roger L. Bagula and Gary W. Adamson, Jan 15 2009
Given the triangle signed by rows (+ - + ...) = M, with V = a variant of the Bernoulli numbers starting [1/2, 1/6, 0, -1/30, 0, 1/42, ...]; M*V = [1, 1, 1, ...]. - Gary W. Adamson, Mar 05 2012
Also A014410 * [1/2, 1/6, 0, -1/30, 0, 1/42, 0, ...] = [1, 2, 3, 4, ...]. For an alternative way to derive the Bernoulli numbers from a modified version of Pascal's triangle see A135225. - Peter Bala, Dec 18 2014
T(n,k) mod n = A053201(n,k), k=1..n-1. - Reinhard Zumkeller, Aug 17 2013
From Wolfdieter Lang, May 22 2015: (Start)
This is Johannes Scheubel's (1494-1570) (also Scheybl, Schöblin) version of the arithmetical triangle from his 1545 book "De numeris et diversis rationibus". See the Kac reference, p. 396 and the Table 12.1 on p. 395.
The row sums give 2*A000225(n-1) = A000918(n) = 2*(2^n - 1), n >= 2. (See the second comment above).
The alternating row sums give repeat(2,0) = 2*A059841(n), n >= 2. (End)
T(n+1,k) is the number of k-facets of the n-simplex. - Jianing Song, Oct 22 2023

Examples

			The triangle T(n,k) begins:
n\k  1  2   3   4    5    6    7    8   9  10 11
2:   2
3:   3  3
4:   4  6   4
5:   5 10  10   5
6:   6 15  20  15    6
7:   7 21  35  35   21    7
8:   8 28  56  70   56   28    8
9:   9 36  84 126  126   84   36    9
10: 10 45 120 210  252  210  120   45  10
11: 11 55 165 330  462  462  330  165  55  11
12: 12 66 220 495  792  924  792  495 220  66 12
... reformatted. - _Wolfdieter Lang_, May 22 2015
		

References

  • Victor J. Kac, A History of Mathematics, third edition, Addison-Wesley, 2009, pp. 395, 396.

Crossrefs

A180986 is the same sequence but regarded as a square array.
Cf. A000225,A059841, A257241 (Stifel's version).

Programs

  • Haskell
    a014410 n k = a014410_tabl !! (n-2) !! (k-1)
    a014410_row n = a014410_tabl !! (n-2)
    a014410_tabl = map (init . tail) $ drop 2 a007318_tabl
    -- Reinhard Zumkeller, Mar 12 2012
  • Maple
    for i from 0 to 12 do seq(binomial(i, j)*1^(i-j), j = 1 .. i-1) od; # Zerinvary Lajos, Dec 02 2007
  • Mathematica
    Select[ Flatten[ Table[ Binomial[ n, i ], {n, 0, 13}, {i, 0, n} ] ], #>1& ]

Formula

T(n,k) = binomial(n,k) = A007318(n,k), n >= 2, k = 1, 2, ..., n-1.
a(n) = C(A003057(n),A002260(n)) = C(A003057(n),A004736(n)). - Lekraj Beedassy, Jul 29 2006
T(n,k) = A028263(n,k) - A007318(n,k). - Reinhard Zumkeller, Mar 12 2012
gcd_{k=1..n-1} T(n, k) = A014963(n), see Theorem 1 of McTague link. - Michel Marcus, Oct 23 2015

Extensions

More terms from Erich Friedman

A104712 Pascal's triangle, with the first two columns removed.

Original entry on oeis.org

1, 3, 1, 6, 4, 1, 10, 10, 5, 1, 15, 20, 15, 6, 1, 21, 35, 35, 21, 7, 1, 28, 56, 70, 56, 28, 8, 1, 36, 84, 126, 126, 84, 36, 9, 1, 45, 120, 210, 252, 210, 120, 45, 10, 1, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1, 66, 220, 495, 792, 924, 792, 495, 220, 66, 12, 1, 78, 286, 715
Offset: 2

Views

Author

Gary W. Adamson, Mar 19 2005

Keywords

Comments

A000295 (Eulerian numbers) gives the row sums.
Write A004736 and Pascal's triangle as infinite lower triangular matrices A and B; then A*B is this triangle.
From Peter Luschny, Apr 10 2011: (Start)
A slight variation has a combinatorial interpretation: remove the last column and the second one from Pascal's triangle. Let P(m, k) denote the set partitions of {1,2,..,n} with the following properties:
(a) Each partition has at least one singleton block;
(c) k is the size of the largest block of the partition;
(b) m = n - k + 1 is the number of parts of the partition.
Then A000295(n) = Sum_{k=1..n} card(P(n-k+1,k)).
For instance, A000295(4) = P(4,1) + P(3,2) + P(2,3) + P(1,4) = card({1|2|3|4}) + card({1|2|34, 1|3|24,1|4|23, 2|3|14, 2|4|13, 3|4|12}) + card({1|234, 2|134, 3|124, 4|123}) = 1 + 6 + 4 = 11.
This interpretation can be superimposed on the sequence by changing the offset to 1 and adding the value 1 in front. The triangle then starts
1;
1, 3;
1, 6, 4;
1, 10, 10, 5;
1, 15, 20, 15, 6;
...
(End)
Diagonal sums are A001924(n+1). - Philippe Deléham, Jan 11 2014
Relation to K-theory: T acting on the column vector (d,-d^2,d^3,...) generates the Euler classes for a hypersurface of degree d in CP^n. Cf. Dugger p. 168, A111492, A238363, and A135278. - Tom Copeland, Apr 11 2014

Examples

			The triangle a(n, k) begins:
  n\k  2   3   4    5    6    7    8   9  10 11 12 13
  2:   1
  3:   3   1
  4:   6   4   1
  5:  10  10   5    1
  6:  15  20  15    6    1
  7:  21  35  35   21    7    1
  8:  28  56  70   56   28    8    1
  9:  36  84 126  126   84   36    9   1
  10: 45 120 210  252  210  120   45  10   1
  11: 55 165 330  462  462  330  165  55  11  1
  12: 66 220 495  792  924  792  495 220  66 12  1
  13: 78 286 715 1287 1716 1716 1287 715 286 78 13  1
... reformatted. - _Wolfdieter Lang_, Mar 20 2015
		

Crossrefs

Cf. A000295, A007318, A008292, A104713, A027641/A027642 (first Bernoulli numbers B-), A164555/A027642 (second Bernoulli numbers B+), A176327/A176289.

Programs

  • Magma
    /* As triangle */ [[Binomial(n, k): k in [2..n]]: n in [2..10]]; // G. C. Greubel, May 15 2018
  • Mathematica
    t[n_, k_] := Binomial[n, k]; Table[ t[n, k], {n, 2, 13}, {k, 2, n}] // Flatten (* Robert G. Wilson v, Apr 16 2011 *)
  • PARI
    for(n=2, 10, for(k=2,n, print1(binomial(n,k), ", "))) \\ G. C. Greubel, May 15 2018
    

Formula

T(n,k) = binomial(n,k), for 2 <= k <= n.
From Peter Bala, Jul 16 2013: (Start)
The following remarks assume an offset of 0.
Riordan array (1/(1 - x)^3, x/(1 - x)).
O.g.f.: 1/(1 - t)^2*1/(1 - (1 + x)*t) = 1 + (3 + x)*t + (6 + 4*x + x^2)*t^2 + ....
E.g.f.: (1/x*d/dt)^2 (exp(t)*(exp(x*t) - 1 - x*t)) = 1 + (3 + x)*t + (6 + 4*x + x^2)*t^2/2! + ....
The infinitesimal generator for this triangle has the sequence [3,4,5,...] on the main subdiagonal and 0's elsewhere. (End)
As triangle T(n,k), 0<=k<=n: T(n,k) = 3*T(n-1,k) + T(n-1,k-1) - 3*T(n-2,k) - 2*T(n-2,k-1) + T(n-3,k) + T(n-3,k-1), T(0,0)=1, T(n,k)=0 if k<0 or if k>n. - Philippe Deléham, Jan 11 2014
From Tom Copeland, Apr 11 2014: (Start)
A) The infinitesimal generator for this matrix is given in A132681 with m=2. See that entry for numerous relations to differential operators and the Laguerre polynomials of order m=2, i.e., Lag(n,t,2) = Sum_{j=0..n} binomial(n+2,n-j)*(-t)^j/j!.
B) O.g.f.: 1 / { [ 1 - t * x/(1-x) ] * (1-x)^3 }
C) O.g.f. of row e.g.f.s: exp[t*x/(1-x)]/(1-x)^3 = [Sum_{n>=0} x^n * Lag(n,-t,2)] = 1 + (3 + t)*x + (6 + 4t + t^2/2!)*x^2 + (10 + 10t + 5t^2/2! + t^3/3!)*x^3 + ....
D) E.g.f. of row o.g.f.s: [(1+t)*exp((1+t)*x) - (1+t+t*x)exp(x)]/t^2. (End)
O.g.f. for m-th row (m=n-2): [(1+x)^(m+2)-(1+(m+2)*x)]/x^2. - Tom Copeland, Apr 16 2014
Reverse T = [St2]*dP*[St1]- dP = [St2]*(exp(x*M)-I)*[St1]-(exp(x*M)-I) with top two rows of zeros removed, [St1]=padded A008275 just as [St2]=A048993=padded A008277, dP= A132440, M=A238385-I, and I=identity matrix. Cf. A238363. - Tom Copeland, Apr 26 2014
O.g.f. of column k (with k leading zeros): (x^k)/(1-x)^(k+1), k >= 2. - Wolfdieter Lang, Mar 20 2015

Extensions

Edited and extended by David Wasserman, Jul 03 2007

A266554 Decimal expansion of the generalized Glaisher-Kinkelin constant A(7).

Original entry on oeis.org

9, 8, 9, 9, 7, 5, 6, 5, 3, 3, 3, 3, 4, 1, 7, 0, 9, 4, 1, 7, 5, 3, 9, 6, 4, 8, 3, 0, 5, 8, 8, 6, 9, 2, 0, 0, 2, 0, 8, 2, 4, 7, 1, 5, 1, 4, 3, 0, 7, 4, 5, 3, 0, 5, 1, 2, 8, 5, 5, 3, 8, 6, 2, 4, 2, 3, 7, 7, 4, 6, 4, 2, 9, 5, 9, 6, 1, 6, 7, 5, 7, 4, 2, 7, 5, 6, 6, 8, 7, 7, 6, 3, 6
Offset: 0

Views

Author

G. C. Greubel, Dec 31 2015

Keywords

Comments

Also known as the 7th Bendersky constant.

Examples

			0.9899756533334170941753964830588692002082471514307453051285538624....
		

Crossrefs

Cf. A019727 (A(0)), A074962 (A(1)), A243262 (A(2)), A243263 (A(3)), A243264 (A(4)), A243265 (A(5)), A266553 (A(6)), A266555 (A(8)), A266556 (A(9)), A266557 (A(10)), A266558 (A(11)), A266559 (A(12)), A260662 (A(13)), A266560 (A(14)), A266562 (A(15)), A266563 (A(16)), A266564 (A(17)), A266565 (A(18)), A266566 (A(19)), A266567 (A(20)).

Programs

  • Mathematica
    Exp[N[(BernoulliB[8]/8)*(EulerGamma + Log[2*Pi] - Zeta'[8]/Zeta[8]), 200]]

Formula

A(k) = exp(H(k)*B(k+1)/(k+1) - zeta'(-k)), where B(k) is the k-th Bernoulli number, H(k) the k-th harmonic number, and zeta'(x) is the derivative of the Riemann zeta function.
A(7) = exp(H(7)*B(8)/8 - zeta'(-7)) = exp((B(8)/8)*(EulerGamma + log(2*Pi) - (zeta'(8)/zeta(8)))).
Equals (2*Pi*exp(gamma) * Product_{p prime} p^(1/(p^8-1)))^c, where gamma is Euler's constant (A001620), and c = Bernoulli(8)/8 = -1/240 (Van Gorder, 2012). - Amiram Eldar, Feb 08 2024
Previous Showing 31-40 of 255 results. Next