A028860 a(n+2) = 2*a(n+1) + 2*a(n); a(0) = -1, a(1) = 1.
-1, 1, 0, 2, 4, 12, 32, 88, 240, 656, 1792, 4896, 13376, 36544, 99840, 272768, 745216, 2035968, 5562368, 15196672, 41518080, 113429504, 309895168, 846649344, 2313089024, 6319476736, 17265131520, 47169216512, 128868696064, 352075825152, 961889042432, 2627929735168
Offset: 0
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- Martin Burtscher, Igor Szczyrba, and Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 924
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (2,2).
Programs
-
GAP
a:=[-1,1];; for n in [3..30] do a[n]:=2*a[n-1]+2*a[n-2]; od; a; # Muniru A Asiru, Aug 07 2018
-
Haskell
a028860 n = a028860_list !! n a028860_list = -1 : 1 : map (* 2) (zipWith (+) a028860_list (tail a028860_list)) -- Reinhard Zumkeller, Oct 15 2011
-
Magma
I:=[-1,1]; [n le 2 select I[n] else 2*Self(n-1)+2*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Aug 13 2018
-
Maple
seq(coeff(series((3*x-1)/(1-2*x-2*x^2), x,n+1),x,n),n=0..30); # Muniru A Asiru, Aug 07 2018
-
Mathematica
(With a different offset) M = {{0, 2}, {1, 2}} v[1] = {0, 1} v[n_] := v[n] = M.v[n - 1] a = Table[Abs[v[n][[1]]], {n, 1, 50}] (* Roger L. Bagula, May 29 2005 *) LinearRecurrence[{2,2},{-1,1},40] (* Harvey P. Dale, Dec 13 2012 *) CoefficientList[Series[(-3 x + 1)/(2 x^2 + 2 x - 1), {x, 0, 27}], x] (* Robert G. Wilson v, Aug 07 2018 *)
-
PARI
apply( A028860(n)=([2,2;1,0]^n)[2,]*[1,-1]~, [0..30]) \\ 15% faster than (A^n*[1,-1]~)[2]. - M. F. Hasler, Aug 06 2018
-
SageMath
A028860 = BinaryRecurrenceSequence(2,2,-1,1) [A028860(n) for n in range(51)] # G. C. Greubel, Dec 08 2022
Formula
a(n) = 4*A028859(n-4), for n > 3.
From R. J. Mathar, Nov 27 2008: (Start)
G.f.: -(1 - 3*x)/(1 - 2*x - 2*x^2).
a(n) = det A, where A is the Hessenberg matrix of order n+1 defined by: A[i,j] = p(j - i + 1) (i <= j), A[i,j] = -1 (i = j + 1), A[i,j] = 0 otherwise, with p(i) = fibonacci(2i - 4). - Milan Janjic, May 08 2010, edited by M. F. Hasler, Aug 06 2018
a(n) = (2*sqrt(3) - 3)/6*(1 + sqrt(3))^n - (2*sqrt(3) + 3)/6*(1 - sqrt(3))^n. - Sergei N. Gladkovskii, Jul 18 2012
a(n) = 2*A002605(n-2) for n >= 2. - M. F. Hasler, Aug 06 2018
E.g.f.: exp(x)*(2*sqrt(3)*sinh(sqrt(3)*x) - 3*cosh(sqrt(3)*x))/3. - Franck Maminirina Ramaharo, Nov 11 2018
Extensions
Edited by N. J. A. Sloane, Apr 11 2009
Edited and initial values added in definition by M. F. Hasler, Aug 06 2018
Comments