cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 42 results. Next

A001563 a(n) = n*n! = (n+1)! - n!.

Original entry on oeis.org

0, 1, 4, 18, 96, 600, 4320, 35280, 322560, 3265920, 36288000, 439084800, 5748019200, 80951270400, 1220496076800, 19615115520000, 334764638208000, 6046686277632000, 115242726703104000, 2311256907767808000, 48658040163532800000, 1072909785605898240000
Offset: 0

Views

Author

Keywords

Comments

A similar sequence, with the initial 0 replaced by 1, namely A094258, is defined by the recurrence a(2) = 1, a(n) = a(n-1)*(n-1)^2/(n-2). - Andrey Ryshevich (ryshevich(AT)notes.idlab.net), May 21 2002
Denominators in power series expansion of E_1(x) + gamma + log(x), x > 0. - Michael Somos, Dec 11 2002
If all the permutations of any length k are arranged in lexicographic order, the n-th term in this sequence (n <= k) gives the index of the permutation that rotates the last n elements one position to the right. E.g., there are 24 permutations of 4 items. In lexicographic order they are (0,1,2,3), (0,1,3,2), (0,2,1,3), ... (3,2,0,1), (3,2,1,0). Permutation 0 is (0,1,2,3), which rotates the last 1 element, i.e., it makes no change. Permutation 1 is (0,1,3,2), which rotates the last 2 elements. Permutation 4 is (0,3,1,2), which rotates the last 3 elements. Permutation 18 is (3,0,1,2), which rotates the last 4 elements. The same numbers work for permutations of any length. - Henry H. Rich (glasss(AT)bellsouth.net), Sep 27 2003
Stirling transform of a(n+1)=[4,18,96,600,...] is A083140(n+1)=[4,22,154,...]. - Michael Somos, Mar 04 2004
From Michael Somos, Apr 27 2012: (Start)
Stirling transform of a(n)=[1,4,18,96,...] is A069321(n)=[1,5,31,233,...].
Partial sums of a(n)=[0,1,4,18,...] is A033312(n+1)=[0,1,5,23,...].
Binomial transform of A000166(n+1)=[0,1,2,9,...] is a(n)=[0,1,4,18,...].
Binomial transform of A000255(n+1)=[1,3,11,53,...] is a(n+1)=[1,4,18,96,...].
Binomial transform of a(n)=[0,1,4,18,...] is A093964(n)=[0,1,6,33,...].
Partial sums of A001564(n)=[1,3,4,14,...] is a(n+1)=[1,4,18,96,...].
(End)
Number of small descents in all permutations of [n+1]. A small descent in a permutation (x_1,x_2,...,x_n) is a position i such that x_i - x_(i+1) =1. Example: a(2)=4 because there are 4 small descents in the permutations 123, 13\2, 2\13, 231, 312, 3\2\1 of {1,2,3} (shown by \). a(n)=Sum_{k=0..n-1}k*A123513(n,k). - Emeric Deutsch, Oct 02 2006
Equivalently, in the notation of David, Kendall and Barton, p. 263, this is the total number of consecutive ascending pairs in all permutations on n+1 letters (cf. A010027). - N. J. A. Sloane, Apr 12 2014
a(n-1) is the number of permutations of n in which n is not fixed; equivalently, the number of permutations of the positive integers in which n is the largest element that is not fixed. - Franklin T. Adams-Watters, Nov 29 2006
Number of factors in a determinant when writing down all multiplication permutations. - Mats Granvik, Sep 12 2008
a(n) is also the sum of the positions of the left-to-right maxima in all permutations of [n]. Example: a(3)=18 because the positions of the left-to-right maxima in the permutations 123,132,213,231,312 and 321 of [3] are 123, 12, 13, 12, 1 and 1, respectively and 1+2+3+1+2+1+3+1+2+1+1=18. - Emeric Deutsch, Sep 21 2008
Equals eigensequence of triangle A002024 ("n appears n times"). - Gary W. Adamson, Dec 29 2008
Preface the series with another 1: (1, 1, 4, 18, ...); then the next term = dot product of the latter with "n occurs n times". Example: 96 = (1, 1, 4, 8) dot (4, 4, 4, 4) = (4 + 4 + 16 + 72). - Gary W. Adamson, Apr 17 2009
Row lengths of the triangle in A030298. - Reinhard Zumkeller, Mar 29 2012
a(n) is also the number of minimum (n-)distinguishing labelings of the star graph S_{n+1} on n+1 nodes. - Eric W. Weisstein, Oct 14 2014
When the numbers denote finite permutations (as row numbers of A055089) these are the circular shifts to the right, i.e., a(n) is the permutation with the cycle notation (0 1 ... n-1 n). Compare array A051683 for circular shifts to the right in a broader sense. Compare sequence A007489 for circular shifts to the left. - Tilman Piesk, Apr 29 2017
a(n-1) is the number of permutations on n elements with no cycles of length n. - Dennis P. Walsh, Oct 02 2017
The number of pandigital numbers in base n+1, such that each digit appears exactly once. For example, there are a(9) = 9*9! = 3265920 pandigital numbers in base 10 (A050278). - Amiram Eldar, Apr 13 2020

Examples

			E_1(x) + gamma + log(x) = x/1 - x^2/4 + x^3/18 - x^4/96 + ..., x > 0. - _Michael Somos_, Dec 11 2002
G.f. = x + 4*x^2 + 18*x^3 + 96*x^4 + 600*x^5 + 4320*x^6 + 35280*x^7 + 322560*x^8 + ...
		

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 218.
  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 336.
  • F. N. David, M. G. Kendall, and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 263.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 37, equation 37:6:1 at page 354.

Crossrefs

Cf. A163931 (E(x,m,n)), A002775 (n^2*n!), A091363 (n^3*n!), A091364 (n^4*n!).
Cf. sequences with formula (n + k)*n! listed in A282466.
Row sums of A185105, A322383, A322384, A094485.

Programs

  • GAP
    List([0..20], n-> n*Factorial(n) ); # G. C. Greubel, Dec 30 2019
  • Haskell
    a001563 n = a001563_list !! n
    a001563_list = zipWith (-) (tail a000142_list) a000142_list
    -- Reinhard Zumkeller, Aug 05 2013
    
  • Magma
    [Factorial(n+1)-Factorial(n): n in [0..20]]; // Vincenzo Librandi, Aug 08 2014
    
  • Maple
    A001563 := n->n*n!;
  • Mathematica
    Table[n!n,{n,0,25}] (* Harvey P. Dale, Oct 03 2011 *)
  • PARI
    {a(n) = if( n<0, 0, n * n!)} /* Michael Somos, Dec 11 2002 */
    
  • Sage
    [n*factorial(n) for n in (0..20)] # G. C. Greubel, Dec 30 2019
    

Formula

From Michael Somos, Dec 11 2002: (Start)
E.g.f.: x / (1 - x)^2.
a(n) = -A021009(n, 1), n >= 0. (End)
The coefficient of y^(n-1) in expansion of (y+n!)^n, n >= 1, gives the sequence 1, 4, 18, 96, 600, 4320, 35280, ... - Artur Jasinski, Oct 22 2007
Integral representation as n-th moment of a function on a positive half-axis: a(n) = Integral_{x=0..oo} x^n*(x*(x-1)*exp(-x)) dx, for n>=0. This representation may not be unique. - Karol A. Penson, Sep 27 2001
a(0)=0, a(n) = n*a(n-1) + n!. - Benoit Cloitre, Feb 16 2003
a(0) = 0, a(n) = (n - 1) * (1 + Sum_{i=1..n-1} a(i)) for i > 0. - Gerald McGarvey, Jun 11 2004
Arises in the denominators of the following identities: Sum_{n>=1} 1/(n*(n+1)*(n+2)) = 1/4, Sum_{n>=1} 1/(n*(n+1)*(n+2)*(n+3)) = 1/18, Sum_{n>=1} 1/(n*(n+1)*(n+2)*(n+3)*(n+4)) = 1/96, etc. The general expression is Sum_{n>=k} 1/C(n, k) = k/(k-1). - Dick Boland, Jun 06 2005 [And the general expression implies that Sum_{n>=1} 1/(n*(n+1)*...*(n+k-1)) = (Sum_{n>=k} 1/C(n, k))/k! = 1/((k-1)*(k-1)!) = 1/a(k-1), k >= 2. - Jianing Song, May 07 2023]
a(n) = Sum_{m=2..n+1} |Stirling1(n+1, m)|, n >= 1 and a(0):=0, where Stirling1(n, m) = A048994(n, m), n >= m = 0.
a(n) = 1/(Sum_{k>=0} k!/(n+k+1)!), n > 0. - Vladeta Jovovic, Sep 13 2006
a(n) = Sum_{k=1..n(n+1)/2} k*A143946(n,k). - Emeric Deutsch, Sep 21 2008
The reciprocals of a(n) are the lead coefficients in the factored form of the polynomials obtained by summing the binomial coefficients with a fixed lower term up to n as the upper term, divided by the term index, for n >= 1: Sum_{k = i..n} C(k, i)/k = (1/a(n))*n*(n-1)*..*(n-i+1). The first few such polynomials are Sum_{k = 1..n} C(k, 1)/k = (1/1)*n, Sum_{k = 2..n} C(k, 2)/k = (1/4)*n*(n-1), Sum_{k = 3..n} C(k, 3)/k = (1/18)*n*(n-1)*(n-2), Sum_{k = 4..n} C(k, 4)/k = (1/96)*n*(n-1)*(n-2)*(n-3), etc. - Peter Breznay (breznayp(AT)uwgb.edu), Sep 28 2008
If we define f(n,i,x) = Sum_{k=i..n} Sum_{j=i..k} binomial(k,j)*Stirling1(n,k)* Stirling2(j,i)*x^(k-j) then a(n) = (-1)^(n-1)*f(n,1,-2), (n >= 1). - Milan Janjic, Mar 01 2009
Sum_{n>=1} (-1)^(n+1)/a(n) = 0.796599599... [Jolley eq. 289]
G.f.: 2*x*Q(0), where Q(k) = 1 - 1/(k+2 - x*(k+2)^2*(k+3)/(x*(k+2)*(k+3)-1/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Apr 19 2013
G.f.: W(0)*(1-sqrt(x)) - 1, where W(k) = 1 + sqrt(x)/( 1 - sqrt(x)*(k+2)/(sqrt(x)*(k+2) + 1/W(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 18 2013
G.f.: T(0)/x - 1/x, where T(k) = 1 - x^2*(k+1)^2/( x^2*(k+1)^2 - (1-x-2*x*k)*(1-3*x-2*x*k)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 17 2013
G.f.: Q(0)*(1-x)/x - 1/x, where Q(k) = 1 - x*(k+1)/( x*(k+1) - 1/(1 - x*(k+1)/( x*(k+1) - 1/Q(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Oct 22 2013
D-finite with recurrence: a(n) +(-n-2)*a(n-1) +(n-1)*a(n-2)=0. - R. J. Mathar, Jan 14 2020
a(n) = (-1)^(n+1)*(n+1)*Sum_{k=1..n} A094485(n,k)*Bernoulli(k). The inverse of the Worpitzky representation of the Bernoulli numbers. - Peter Luschny, May 28 2020
From Amiram Eldar, Aug 04 2020: (Start)
Sum_{n>=1} 1/a(n) = Ei(1) - gamma = A229837.
Sum_{n>=1} (-1)^(n+1)/a(n) = gamma - Ei(-1) = A239069. (End)
a(n) = Gamma(n)*A000290(n) for n > 0. - Jacob Szlachetka, Jan 01 2022

A001286 Lah numbers: a(n) = (n-1)*n!/2.

Original entry on oeis.org

1, 6, 36, 240, 1800, 15120, 141120, 1451520, 16329600, 199584000, 2634508800, 37362124800, 566658892800, 9153720576000, 156920924160000, 2845499424768000, 54420176498688000, 1094805903679488000, 23112569077678080000, 510909421717094400000
Offset: 2

Views

Author

Keywords

Comments

Number of surjections from {1,...,n} to {1,...,n-1}. - Benoit Cloitre, Dec 05 2003
First Eulerian transform of 0,1,2,3,4,... . - Ross La Haye, Mar 05 2005
With offset 0 : determinant of the n X n matrix m(i,j)=(i+j+1)!/i!/j!. - Benoit Cloitre, Apr 11 2005
These numbers arise when expressing n(n+1)(n+2)...(n+k)[n+(n+1)+(n+2)+...+(n+k)] as sums of squares: n(n+1)[n+(n+1)] = 6(1+4+9+16+ ... + n^2), n(n+1)(n+2)(n+(n+1)+(n+2)) = 36(1+(1+4)+(1+4+9)+...+(1+4+9+16+ ... + n^2)), n(n+1)(n+2)(n+3)(n+(n+1)+(n+2)+(n+3)) = 240(...), ... . - Alexander R. Povolotsky, Oct 16 2006
a(n) is the number of edges in the Hasse diagram for the weak Bruhat order on the symmetric group S_n. For permutations p,q in S_n, q covers p in the weak Bruhat order if p,q differ by an adjacent transposition and q has one more inversion than p. Thus 23514 covers 23154 due to the transposition that interchanges the third and fourth entries. Cf. A002538 for the strong Bruhat order. - David Callan, Nov 29 2007
a(n) is also the number of excedances in all permutations of {1,2,...,n} (an excedance of a permutation p is a value j such p(j)>j). Proof: j is exceeded (n-1)! times by each of the numbers j+1, j+2, ..., n; now, Sum_{j=1..n} (n-j)(n-1)! = n!(n-1)/2. Example: a(3)=6 because the number of excedances of the permutations 123, 132, 312, 213, 231, 321 are 0, 1, 1, 1, 2, 1, respectively. - Emeric Deutsch, Dec 15 2008
(-1)^(n+1)*a(n) is the determinant of the n X n matrix whose (i,j)-th element is 0 for i = j, is j-1 for j>i, and j for j < i. - Michel Lagneau, May 04 2010
Row sums of the triangle in A030298. - Reinhard Zumkeller, Mar 29 2012
a(n) is the total number of ascents (descents) over all n-permutations. a(n) = Sum_{k=1..n} A008292(n,k)*k. - Geoffrey Critzer, Jan 06 2013
For m>=4, a(m-2) is the number of Hamiltonian cycles in a simple graph with m vertices which is complete, except for one edge. Proof: think of distinct round-table seatings of m persons such that persons "1" and "2" may not be neighbors; the count is (m-3)(m-2)!/2. See also A001710. - Stanislav Sykora, Jun 17 2014
Popularity of left (right) children in treeshelves. Treeshelves are ordered binary (0-1-2) increasing trees where every child is connected to its parent by a left or a right link. Popularity is the sum of a certain statistic (number of left children, in this case) over all objects of size n. See A278677, A278678 or A278679 for more definitions and examples. See A008292 for the distribution of the left (right) children in treeshelves. - Sergey Kirgizov, Dec 24 2016

Examples

			G.f. = x^2 + 6*x^3 + 36*x^4 + 240*x^5 + 1800*x^6 + 15120*x^7 + 141120*x^8 + ...
a(10) = (1+2+3+4+5+6+7+8+9)*(1*2*3*4*5*6*7*8*9) = 16329600. - _Reinhard Zumkeller_, May 15 2010
		

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 90, ex. 4.
  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 156.
  • A. P. Prudnikov, Yu. A. Brychkov and O.I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992.
  • John Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 44.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A002868 is an essentially identical sequence.
Column 2 of |A008297|.
Third column (m=2) of triangle |A111596(n, m)|: matrix product of |S1|.S2 Stirling number matrices.
Cf. also A000110, A000111.

Programs

Formula

a(n) = Sum_{i=0..n-1} (-1)^(n-i-1) * i^n * binomial(n-1,i). - Yong Kong (ykong(AT)curagen.com), Dec 26 2000 [corrected by Amiram Eldar, May 02 2022]
E.g.f.: x^2/[2(1-x)^2]. - Ralf Stephan, Apr 02 2004
a(n+1) = (-1)^(n+1)*det(M_n) where M_n is the n X n matrix M_(i,j)=max(i*(i+1)/2,j*(j+1)/2). - Benoit Cloitre, Apr 03 2004
Row sums of table A051683. - Alford Arnold, Sep 29 2006
5th binomial transform of A135218: (1, 1, 1, 25, 25, 745, 3145, ...). - Gary W. Adamson, Nov 23 2007
If we define f(n,i,x) = Sum_{k=i..n} Sum_{j=i..k} binomial(k,j)*Stirling1(n,k)*Stirling2(j,i)*x^(k-j) then a(n)=(-1)^n*f(n,2,-2), (n>=2). - Milan Janjic, Mar 01 2009
a(n) = A000217(n-1)*A000142(n-1). - Reinhard Zumkeller, May 15 2010
a(n) = (n+1)!*Sum_{k=1..n-1} 1/(k^2+3*k+2). - Gary Detlefs, Sep 14 2011
Sum_{n>=2} 1/a(n) = 2*(2 - exp(1) - gamma + Ei(1)) = 1.19924064599..., where gamma = A001620 and Ei(1) = A091725. - Ilya Gutkovskiy, Nov 24 2016
a(n+1) = a(n)*n*(n+1)/(n-1). - Chai Wah Wu, Apr 11 2018
Sum_{n>=2} (-1)^n/a(n) = 2*(gamma - Ei(-1)) - 2/e, where e = A001113 and Ei(-1) = -A099285. - Amiram Eldar, May 02 2022

A055089 List of all finite permutations in reversed colexicographic ordering.

Original entry on oeis.org

1, 2, 1, 1, 3, 2, 3, 1, 2, 2, 3, 1, 3, 2, 1, 1, 2, 4, 3, 2, 1, 4, 3, 1, 4, 2, 3, 4, 1, 2, 3, 2, 4, 1, 3, 4, 2, 1, 3, 1, 3, 4, 2, 3, 1, 4, 2, 1, 4, 3, 2, 4, 1, 3, 2, 3, 4, 1, 2, 4, 3, 1, 2, 2, 3, 4, 1, 3, 2, 4, 1, 2, 4, 3, 1, 4, 2, 3, 1, 3, 4, 2, 1, 4, 3, 2, 1, 1, 2, 3, 5, 4, 2, 1, 3, 5, 4, 1, 3, 2, 5, 4, 3, 1, 2
Offset: 0

Views

Author

Antti Karttunen, Apr 18 2000

Keywords

Examples

			In this table, each row consists of A001563(n) permutations of n+1 terms; i.e., we have (1/) 2,1/ 1,3,2; 3,1,2; 2,3,1; 3,2,1/ 1,2,4,3; 2,1,4,3; ... .
Append to each an infinite number of fixed terms and we get a list of rearrangements of the natural numbers, but with only a finite number of terms permuted:
1/2,3,4,5,6,7,8,9,...
2,1/3,4,5,6,7,8,9,...
1,3,2/4,5,6,7,8,9,...
3,1,2/4,5,6,7,8,9,...
2,3,1/4,5,6,7,8,9,...
3,2,1/4,5,6,7,8,9,...
1,2,4,3/5,6,7,8,9,...
2,1,4,3/5,6,7,8,9,...
Alternatively, if we take only the first n terms of each such infinite row, then the first n! rows give all permutations of the elements 1,2,...,n.
		

Crossrefs

Inversion vectors: A007623, cycle counts: A055090, minimum number of transpositions: A055091, minimum number of adjacent transpositions: A034968, order of each permutation: A055092, number of non-fixed elements: A055093, positions of inverses: A056019, positions after Foata transform: A065181; positions of fixed-point-free involutions: A064640.
Cf. A195663, array of the infinite rows.
This permutation list gives essentially the same information as A030298/A030299, but in a more compact way, by skipping those permutations of A030298 that start with a fixed element.
A220658(n) gives the rank r of the permutation of which the term at a(n) is an element.
A220659(n) gives the zero-based position (from the left) of that a(n) in that permutation of rank r.
A084558(r)+1 gives the size of the finite subsequence (of the r-th infinite, but finitary permutation) which has been included in this list.

Programs

  • Maple
    factorial_base := proc(nn) local n,a,d,j,f; n := nn; if(0 = n) then RETURN([0]); fi; a := []; f := 1; j := 2; while(n > 0) do d := floor(`mod`(n,(j*f))/f); a := [d,op(a)]; n := n - (d*f); f := j*f; j := j+1; od; RETURN(a); end;
    fexlist2permlist := proc(a) local n,b,j; n := nops(a); if(0 = n) then RETURN([1]); fi; b := fexlist2permlist(cdr(a)); for j from 1 to n do if(b[j] >= ((n+1)-a[1])) then b[j] := b[j]+1; fi; od; RETURN([op(b),(n+1)-a[1]]); end;
    fac_base := n -> fac_base_aux(n,2); fac_base_aux := proc(n,i) if(0 = n) then RETURN([]); else RETURN([op(fac_base_aux(floor(n/i),i+1)), (n mod i)]); fi; end;
    PermRevLexUnrank := n -> `if`((0 = n),[1],fexlist2permlist(fac_base(n)));
    cdr := proc(l) if 0 = nops(l) then ([]) else (l[2..nops(l)]); fi; end; # "the tail of the list"
    # Same algorithm in different guise, showing how permutations are composed of adjacent transpositions (compare to algorithm PermUnrank3R at A060117):
    PermRevLexUnrankAMSDaux := proc(n,r, pp) local s,p,k; p := pp; if(0 = r) then RETURN(p); else s := floor(r/((n-1)!)); for k from n-s to n-1 do p := permul(p,[[k,k+1]]); od; RETURN(PermRevLexUnrankAMSDaux(n-1, r-(s*((n-1)!)), p)); fi; end;
    PermRevLexUnrankAMSD := proc(r) local n; n := nops(factorial_base(r)); convert(PermRevLexUnrankAMSDaux(n+1,r,[]),'permlist',1+(((r+2) mod (r+1))*n)); end;
  • Mathematica
    A055089L[n_] := Reverse@SortBy[DeleteCases[Permutations@Range@n, {, n}], Reverse]; Flatten@Array[A055089L, 4] (* JungHwan Min, Aug 28 2016 *)

Formula

[seq(op(PermRevLexUnrank(j)), j=0..)]; (see Maple code given below).

Extensions

Name changed by Tilman Piesk, Feb 01 2012

A030299 Decimal representation of permutations of lengths 1, 2, 3, ... arranged lexicographically.

Original entry on oeis.org

1, 12, 21, 123, 132, 213, 231, 312, 321, 1234, 1243, 1324, 1342, 1423, 1432, 2134, 2143, 2314, 2341, 2413, 2431, 3124, 3142, 3214, 3241, 3412, 3421, 4123, 4132, 4213, 4231, 4312, 4321, 12345, 12354, 12435, 12453, 12534, 12543, 13245, 13254, 13425
Offset: 1

Views

Author

Keywords

Comments

This is a list of the permutations in "one-line" notation (cf. Dixon and Mortimer, p. 2). The i-th element of the string is the image of i under the permutation. For example 231 is the permutation that sends 1 to 2, 2 to 3, and 3 to 1. - N. J. A. Sloane, Apr 12 2014
Precise definition of the term "Decimal representation" (required for indices n>409113): Numbers N(s) = Sum_{i=1..m} s(i)*10^(m-i), where s runs over the permutations of (1,...,m), and m=1,2,3,.... This also defines the "lexicographical" order: Obviously 21 comes before 123, etc. The lexicographical order of the permutations, for given m, is the same as the natural order of the numbers N(s). - M. F. Hasler, Jan 28 2013
An alternate variant, using concatenation of the permutations, is very clumsy once the length exceeds 9. For example, after 987654321 (= A030299(409113), where 409113 = A007489(9)) we would get 12345678910, 12345678109, ... In A030298 this problem has been avoided by listing the elements of permutations as separate terms. [Edited by M. F. Hasler, Jan 28 2013]
Sequence A051845 is a base-independent version of this sequence: Permutations of 1...m are considered as numbers written in base m+1. - M. F. Hasler, Jan 28 2013

References

  • John D. Dixon and Brian Mortimer, Permutation groups. Graduate Texts in Mathematics, 163. Springer-Verlag, New York, 1996. xii+346 pp. ISBN: 0-387-94599-7 MR1409812 (98m:20003).

Crossrefs

A007489(n) gives the position (index) of the term corresponding to last permutation of n elements: (n,n-1,...,1).
The first differences A220664 has interesting fractal structure, see A219664 and A217626.
Cf. also A030298, A055089, A060117, A181073, A352991 (by concatenation).
See A240763 for preferential arrangements.

Programs

  • Maple
    seq(seq(add(s[i]*10^(m-i),i=1..m),s=combinat:-permute([$1..m])),m=1..5); # Robert Israel, Oct 14 2015
  • Mathematica
    Flatten @ Table[FromDigits /@ Permutations[Table[i,{i,n}]],{n,9}] (* For first 409113 terms; Zak Seidov, Oct 03 2015 *)
  • PARI
    is_A030299(n)={ (n>1234567890 & print("maybe")) || vecsort(digits(n))==vector(#Str(n),i,i) } \\ /* use digits(n)=eval(Vec(Str(n))) in older versions lacking this function */ \\ M. F. Hasler, Dec 12 2012
    (MIT/GNU Scheme)
    ;; Antti Karttunen, Dec 18 2012
    ;; Requires also code from A030298 and A055089:
    (define (A030299 n) (vector->base-k (A030298permvec (A084556 n) (A220660 n)) 10))
    (define (vector->base-k vec k) (let loop ((i 0) (s 0)) (cond ((= (vector-length vec) i) s) ((>= (vector-ref vec i) k) (error (format #f "Cannot interpret vector ~a in base ~a!" vec k))) (else (loop (+ i 1) (+ (* k s) (vector-ref vec i)))))))
    
  • Python
    from itertools import permutations
    def pmap(s, m): return sum(s[i-1]*10**(m-i) for i in range(1, len(s)+1))
    def agen():
      m = 1
      while True:
        for s in permutations(range(1, m+1)): yield pmap(s, m)
        m += 1
    def aupton(terms):
      alst, g = [], agen()
      while len(alst) < terms: alst += [next(g)]
      return alst
    print(aupton(42)) # Michael S. Branicky, Jan 12 2021

Extensions

Edited by N. J. A. Sloane, Feb 23 2010

A170942 Take the permutations of lengths 1, 2, 3, ... arranged lexicographically, and replace each permutation with the number of its fixed points.

Original entry on oeis.org

1, 2, 0, 3, 1, 1, 0, 0, 1, 4, 2, 2, 1, 1, 2, 2, 0, 1, 0, 0, 1, 1, 0, 2, 1, 0, 0, 0, 1, 1, 2, 0, 0, 5, 3, 3, 2, 2, 3, 3, 1, 2, 1, 1, 2, 2, 1, 3, 2, 1, 1, 1, 2, 2, 3, 1, 1, 3, 1, 1, 0, 0, 1, 2, 0, 1, 0, 0, 1, 1, 0, 2, 1, 0, 0, 0, 1, 1, 2, 0, 0, 2, 0, 1, 0, 0, 1, 3, 1, 2, 1, 1, 2, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0
Offset: 1

Views

Author

Neven Juric (neven.juric(AT)apis-it.hr) and N. J. A. Sloane, Feb 23 2010

Keywords

Comments

Length of n-th row = sum of n-th row = n!; number of zeros in n-th row = A000166(n); number of positive terms in n-th row = A002467(n). [Reinhard Zumkeller, Mar 29 2012]

Examples

			123,132,213,231,312,321 (corresponding to 3rd row of triangle A030298) have respectively 3,1,1,0,0,1 fixed points.
		

Crossrefs

Programs

  • Haskell
    import Data.List (permutations, sort)
    a170942 n k = a170942_tabf !! (n-1) (k-1)
    a170942_row n = map fps $ sort $ permutations [1..n] where
       fps perm = sum $ map fromEnum $ zipWith (==) perm [1..n]
    a170942_tabf = map a170942_row [1..]
    -- Reinhard Zumkeller, Mar 29 2012

Extensions

a(36)-a(105) from John W. Layman, Feb 23 2010
Keyword tabf added by Reinhard Zumkeller, Mar 29 2012

A084556 n occurs n! times.

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
Offset: 0

Views

Author

Antti Karttunen, Jun 02 2003

Keywords

Comments

Also minimum i such that A007489(i) >= n.
For n>=1, a(n) gives the length of the n-th permutation in the sequences like A030298 & A030496.

Crossrefs

First differences of A084555. Used to compute A084557. Differs from A084506 first time at the 130th term, where A084506(130) = 6, while A084556(130) = 5. Cf. also A002024, A072643, A072649, A090529.

Programs

  • Mathematica
    Flatten[ Table[#, {#!}] & /@ Range[0, 5]]

A098282 Iterate the map k -> A087712(k) starting at n; a(n) is the number of steps at which we see a repeated term for the first time; or -1 if the trajectory never repeats.

Original entry on oeis.org

1, 2, 3, 6, 4, 31, 7, 55, 4, 33, 5, 30, 32, 1, 4, 19, 8, 112, 56, 16, 27, 4, 4, 26, 2, 20, 223, 102, 34, 14, 6, 162, 2, 9, 10, 75, 31, 113, 21, 100, 33, 20, 2, 23, 30, 57, 5, 28, 24, 30, 224, 269, 20, 295, 11, 85, 103, 140, 9, 71, 113, 55, 34, 110, 76, 49, 57
Offset: 1

Views

Author

Eric Angelini, Feb 02 2009

Keywords

Comments

The old entry with this A-number was a duplicate of A030298.
a(52) is currently unknown. - Donovan Johnson
a(52)-a(10000) were found using a conjunction of Mathematica and Kim Walisch's primecount program. The additional values of the prime-counting function can be found in the second a-file. - Matthew House, Dec 23 2016

Examples

			1 -> 1; 1 step to see a repeat, so a(1) = 1.
2 -> 1 -> 1; 2 steps to see a repeat.
3 -> 2 -> 1 -> 1; 3 steps to see a repeat.
4 -> 11 -> 5 -> 3 -> 2 -> 1 -> 1; 6 steps to see a repeat.
6 -> 12 -> 112 -> 11114 -> 1733 -> 270 -> 12223 -> 7128 -> 11122225 -> 33991010 -> 13913661 -> 2107998 -> 12222775 -> 33910130 -> 131212367 -> 56113213 -> 6837229 -> 4201627 -> 266366 -> 112430 -> 131359 -> 7981 -> 969 -> 278 -> 134 -> 119 -> 47 -> 15 -> 23 -> 9 -> 22 -> 15; 31 steps to see a repeat.
9 -> 22 -> 15 -> 23 -> 9; 4 steps to see a repeat.
From _David Applegate_ and _N. J. A. Sloane_, Feb 09 2009: (Start)
The trajectories of the numbers 1 through 17, up to and including the first repeat, are as follows. Note that a(n) is one less than the number of terms shown.
[1, 1]
[2, 1, 1]
[3, 2, 1, 1]
[4, 11, 5, 3, 2, 1, 1]
[5, 3, 2, 1, 1]
[6, 12, 112, 11114, 1733, 270, 12223, 7128, 11122225, 33991010, 13913661, 2107998, 12222775, 33910130, 131212367, 56113213, 6837229, 4201627, 266366, 112430, 131359, 7981, 969, 278, 134, 119, 47, 15, 23, 9, 22, 15]
[7, 4, 11, 5, 3, 2, 1, 1]
[8, 111, 212, 1116, 112211, 52626, 124441, 28192, 11111152, 111165448, 1117261018, 1910112963, 252163429, 42205629, 2914219, 454002, 127605, 231542, 110938, 15631, 44510, 13605, 23155, 3582, 12246, 12637, 1509, 296, 11112, 111290, 131172, 1127117, 76613, 9470, 13161, 21328, 11111114, 14142115, 3625334, 1125035, 348169, 78151, 11369, 1373, 220, 1135, 349, 70, 134, 119, 47, 15, 23, 9, 22, 15]
[9, 22, 15, 23, 9]
[10, 13, 6, 12, 112, 11114, 1733, 270, 12223, 7128, 11122225, 33991010, 13913661, 2107998, 12222775, 33910130, 131212367, 56113213, 6837229, 4201627, 266366, 112430, 131359, 7981, 969, 278, 134, 119, 47, 15, 23, 9, 22, 15]
[11, 5, 3, 2, 1, 1]
[12, 112, 11114, 1733, 270, 12223, 7128, 11122225, 33991010, 13913661, 2107998, 12222775, 33910130, 131212367, 56113213, 6837229, 4201627, 266366, 112430, 131359, 7981, 969, 278, 134, 119, 47, 15, 23, 9, 22, 15]
[13, 6, 12, 112, 11114, 1733, 270, 12223, 7128, 11122225, 33991010, 13913661, 2107998, 12222775, 33910130, 131212367, 56113213, 6837229, 4201627, 266366, 112430, 131359, 7981, 969, 278, 134, 119, 47, 15, 23, 9, 22, 15]
[14, 14]
[15, 23, 9, 22, 15]
[16, 1111, 526, 156, 1126, 1103, 185, 312, 11126, 1734, 1277, 206, 127, 31, 11, 5, 3, 2, 1, 1]
[17, 7, 4, 11, 5, 3, 2, 1, 1]
For n = 18 see A077960.
(End)
		

Crossrefs

See A156055 for another version.

Programs

  • GBnums
    void ea (n)
    {
    mpz u[] ; // factors
    mpz tr[]; // sequence
    print(n);
    while(n > 1)
    {
    lfactors(u,n); // factorize into u
    vmap(u,pi); // replace factors by rank
    n = catv(u); // concatenate
    print(n);
    if(vsearch(tr,n) > 0) break; // loop found
    vpush(tr,n); // remember n
    }
    println('');
    }
    // Jacques Tramu
    
  • Haskell
    import Data.List (genericIndex)
    a098282 n = f [n] where
       f xs = if y `elem` xs then length xs else f (y:xs) where
         y = genericIndex (map a087712 [1..]) (head xs - 1)
    -- Reinhard Zumkeller, Jul 14 2013
  • Maple
    with(numtheory):
    f := proc(n) local t1, v, r, x, j;
    if (n = 1) then return 1; end if;
    t1 := ifactors(n): v := 0;
    for x in op(2,t1) do r := pi(x[1]):
    for j from 1 to x[2] do
    v := v * 10^length(r) + r;
    end do; end do; v; end proc;
    t := proc(n) local v, l, s; v := n; s := {v}; l := [v]; v := f(v);
    while not v in s do s := s union {v}; l := [op(l),v]; v := f(v); end do;
    [op(l),v];
    end proc; [seq(nops(t(n))-1, n=1..17)];
    # David Applegate and N. J. A. Sloane, Feb 09 2009
  • Mathematica
    f[n_] := If[n==1,1,FromDigits@ Flatten[ IntegerDigits@# & /@ (PrimePi@#
    & /@ Flatten[ Table[ First@#, {Last@#}] & /@ FactorInteger@n])]];
    g[n_] := Length@ NestWhileList[f, n, UnsameQ, All] - 1; Array[g, 39]
    (* Robert G. Wilson v, Feb 02 2009; modified slightly by Farideh Firoozbakht, Feb 10 2009 *)

Extensions

a(8) and a(10) found by Jacques Tramu
Extended through a(39) by Robert G. Wilson v, Feb 02 2009
Terms through a(39) corrected by Farideh Firoozbakht, Feb 10 2009
a(40)-a(51) from Donovan Johnson, Jan 08 2011
More terms from and a(40) corrected by Matthew House, Dec 23 2016

A030496 Permutations of 1,2,...,n for n=1,2,3,..., arranged antilexicographically.

Original entry on oeis.org

1, 2, 1, 1, 2, 3, 2, 1, 3, 1, 2, 2, 3, 1, 2, 1, 3, 1, 3, 2, 1, 2, 3, 4, 3, 2, 1, 4, 3, 1, 2, 4, 2, 3, 1, 4, 2, 1, 3, 4, 1, 3, 2, 4, 1, 2, 3, 3, 4, 2, 1, 3, 4, 1, 2, 3, 2, 4, 1, 3, 2, 1, 4, 3, 1, 4, 2, 3, 1, 2, 4, 2, 4, 3, 1, 2, 4, 1, 3, 2, 3, 4, 1, 2, 3, 1, 4, 2, 1, 4
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A030298.

Formula

a(n)=m+1-s(n) where m=MAX{a(k): k<=n} and s=A030298.

A084555 Partial sums of A084556.

Original entry on oeis.org

0, 1, 3, 5, 8, 11, 14, 17, 20, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63, 67, 71, 75, 79, 83, 87, 91, 95, 99, 103, 107, 111, 115, 119, 124, 129, 134, 139, 144, 149, 154, 159, 164, 169, 174, 179, 184, 189, 194, 199, 204, 209, 214, 219, 224, 229, 234, 239, 244, 249
Offset: 0

Views

Author

Antti Karttunen, Jun 02 2003

Keywords

Comments

For n>=1, (A130664(n),a(n)) = (1,1),(2,3),(4,5),(6,8),(9,11),(12,14),... gives the starting and ending offsets of the n-th permutation in the sequences like A030298 & A030496.
Note: this sequence is related to (ordinary) permutations. For a similar sequence related to juggling with three objects, see A084505.

Crossrefs

Differs from A084505 first time at the 130th term, where A084505(130) = 605, while A084555(130) = 604.

Programs

  • Mathematica
    Accumulate@ Flatten[ Table[#, {#!}] & /@ Range[0, 5]]

Formula

a(0)=0; for n >= 1, a(n) = a(n-1) + A084556(n). Also a(n) = A130664(n+1) - 1. - Antti Karttunen, Dec 18 2012

Extensions

Moved the misplaced Mathematica code from A084505. - Antti Karttunen, Oct 24 2012

A084557 a(0)=0, after which each n occurs A084556(n) times.

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 22, 22, 22, 22, 23
Offset: 0

Views

Author

Antti Karttunen, Jun 02 2003

Keywords

Comments

Also minimum i such that A084555(i) >= n.
For n>=1, a(n) tells that the n-th term in A030298 belongs to the a(n):th lexicographically ordered permutation.

Crossrefs

Differs from A084500 first time at the 605th term, where A084500(605) = 130, while A084557(605) = 131.
Previous Showing 11-20 of 42 results. Next