cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 73 results. Next

A035263 Trajectory of 1 under the morphism 0 -> 11, 1 -> 10; parity of 2-adic valuation of 2n: a(n) = A000035(A001511(n)).

Original entry on oeis.org

1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1
Offset: 1

Views

Author

Keywords

Comments

First Feigenbaum symbolic (or period-doubling) sequence, corresponding to the accumulation point of the 2^{k} cycles through successive bifurcations.
To construct the sequence: start with 1 and concatenate: 1,1, then change the last term (1->0; 0->1) gives: 1,0. Concatenate those 2 terms: 1,0,1,0, change the last term: 1,0,1,1. Concatenate those 4 terms: 1,0,1,1,1,0,1,1 change the last term: 1,0,1,1,1,0,1,0, etc. - Benoit Cloitre, Dec 17 2002
Let T denote the present sequence. Here is another way to construct T. Start with the sequence S = 1,0,1,,1,0,1,,1,0,1,,1,0,1,,... and fill in the successive holes with the successive terms of the sequence T (from paper by Allouche et al.). - Emeric Deutsch, Jan 08 2003 [Note that if we fill in the holes with the terms of S itself, we get A141260. - N. J. A. Sloane, Jan 14 2009]
From N. J. A. Sloane, Feb 27 2009: (Start)
In more detail: define S to be 1, 0, 1___1, 0, 1___1, 0, 1___1, 0, 1___1, 0, 1___1,0,1___...
If we fill the holes with S we get A141260:
1, 0, 1___1, 0, 1___1, 0, 1___1, 0, 1___1, 0, 1___1, 0, 1___1, 0, 1___1, 0, 1___1, 0,
........1.........0.........1.........1.........0.......1.........1.........0...
- the result is
1..0..1.1.1..0..1.0.1..0..1.1.1..0..1.1.1..0..1.0.1.... = A141260.
But instead, if we define T recursively by filling the holes in S with the terms of T itself, we get A035263:
1, 0, 1___1, 0, 1___1, 0, 1___1, 0, 1___1, 0, 1___1, 0, 1___1, 0, 1___1, 0, 1___1, 0,
........1.........0.........1.........1.........1.......0.........1.........0...
- the result is
1..0..1.1.1..0..1.0.1..0..1.1.1..0..1.1.1..0..1.1.1.0.1.0.1..0..1.1.1..0..1.0.1.. = A035263. (End)
Characteristic function of A003159, i.e., A035263(n)=1 if n is in A003159 and A035263(n)=0 otherwise (from paper by Allouche et al.). - Emeric Deutsch, Jan 15 2003
This is the sequence of R (=1), L (=0) moves in the Towers of Hanoi puzzle: R, L, R, R, R, L, R, L, R, L, R, R, R, ... - Gary W. Adamson, Sep 21 2003
Manfred Schroeder, p. 279 states, "... the kneading sequences for unimodal maps in the binary notation, 0, 1, 0, 1, 1, 1, 0, 1..., are obtained from the Morse-Thue sequence by taking sums mod 2 of adjacent elements." On p. 278, in the chapter "Self-Similarity in the Logistic Parabola", he writes, "Is there a closer connection between the Morse-Thue sequence and the symbolic dynamics of the superstable orbits? There is indeed. To see this, let us replace R by 1 and C and L by 0." - Gary W. Adamson, Sep 21 2003
Partial sums modulo 2 of the sequence 1, a(1), a(1), a(2), a(2), a(3), a(3), a(4), a(4), a(5), a(5), a(6), a(6), ... . - Philippe Deléham, Jan 02 2004
Parity of A007913, A065882 and A065883. - Philippe Deléham, Mar 28 2004
The length of n-th run of 1's in this sequence is A080426(n). - Philippe Deléham, Apr 19 2004
Also parity of A005043, A005773, A026378, A104455, A117641. - Philippe Deléham, Apr 28 2007
Equals parity of the Towers of Hanoi, or ruler sequence (A001511), where the Towers of Hanoi sequence (1, 2, 1, 3, 1, 2, 1, 4, ...) denotes the disc moved, labeled (1, 2, 3, ...) starting from the top; and the parity of (1, 2, 1, 3, ...) denotes the direction of the move, CW or CCW. The frequency of CW moves converges to 2/3. - Gary W. Adamson, May 11 2007
A conjectured identity relating to the partition sequence, A000041: p(x) = A(x) * A(x^2) when A(x) = the Euler transform of A035263 = polcoeff A174065: (1 + x + x^2 + 2x^3 + 3x^4 + 4x^5 + ...). - Gary W. Adamson, Mar 21 2010
a(n) is 1 if the number of trailing zeros in the binary representation of n is even. - Ralf Stephan, Aug 22 2013
From Gary W. Adamson, Mar 25 2015: (Start)
A conjectured identity relating to the partition sequence, A000041 as polcoeff p(x); A003159, and its characteristic function A035263: (1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, ...); and A036554 indicating n-th terms with zeros in A035263: (2, 6, 8, 10, 14, 18, 22, ...).
The conjecture states that p(x) = A(x) = A(x^2) when A(x) = polcoeffA174065 = the Euler transform of A035263 = 1/(1-x)*(1-x^3)*(1-x^4)*(1-x^5)*... = (1 + x + x^2 + 2x^3 + 3x^4 + 4x^5 + ...) and the aerated variant = the Euler transform of the complement of A035263: 1/(1-x^2)*(1-x^6)*(1-x^8)*... = (1 + x^2 + x^4 + 2x^6 + 3x^8 + 4x^10 + ...).
(End)
The conjecture above was proved by Jean-Paul Allouche on Dec 21 2013.
Regarded as a column vector, this sequence is the product of A047999 (Sierpinski's gasket) regarded as an infinite lower triangular matrix and A036497 (the Fredholm-Rueppel sequence) where the 1's have alternating signs, 1, -1, 0, 1, 0, 0, 0, -1, .... - Gary W. Adamson, Jun 02 2021
The numbers of 1's through n (A050292) can be determined by starting with the binary (say for 19 = 1 0 0 1 1) and writing: next term is twice current term if 0, otherwise twice plus 1. The result is 1, 2, 4, 9, 19. Take the difference row, = 1, 1, 2, 5, 10; and add the odd-indexed terms from the right: 5, 4, 3, 2, 1 = 10 + 2 + 1 = 13. The algorithm is the basis for determining the disc configurations in the tower of Hanoi game, as shown in the Jul 24 2021 comment of A060572. - Gary W. Adamson, Jul 28 2021

References

  • Karamanos, Kostas. "From symbolic dynamics to a digital approach." International Journal of Bifurcation and Chaos 11.06 (2001): 1683-1694. (Full version. See p. 1685)
  • Karamanos, K. (2000). From symbolic dynamics to a digital approach: chaos and transcendence. In Michel Planat (Ed.), Noise, Oscillators and Algebraic Randomness (Lecture Notes in Physics, pp. 357-371). Springer, Berlin, Heidelberg. (Short version. See p. 359)
  • Manfred R. Schroeder, "Fractals, Chaos, Power Laws", W. H. Freeman, 1991
  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 892, column 2, Note on p. 84, part (a).

Crossrefs

Parity of A001511. Anti-parity of A007814.
Absolute values of first differences of A010060. Apart from signs, same as A029883. Essentially the same as A056832.
Swapping 0 and 1 gives A096268.
Cf. A033485, A050292 (partial sums), A089608, A088172, A019300, A039982, A073675, A121701, A141260, A000041, A174065, A220466, A154269 (Mobius transform).
Limit of A317957(n) for large n.

Programs

  • Haskell
    import Data.Bits (xor)
    a035263 n = a035263_list !! (n-1)
    a035263_list = zipWith xor a010060_list $ tail a010060_list
    -- Reinhard Zumkeller, Mar 01 2012
    
  • Maple
    nmax:=105: for p from 0 to ceil(simplify(log[2](nmax))) do for n from 1 to ceil(nmax/(p+2)) do a((2*n-1)*2^p) := (p+1) mod 2 od: od: seq(a(n), n=1..nmax); # Johannes W. Meijer, Feb 07 2013
    A035263 := n -> 1 - padic[ordp](n, 2) mod 2:
    seq(A035263(n), n=1..105); # Peter Luschny, Oct 02 2018
  • Mathematica
    a[n_] := a[n] = If[ EvenQ[n], 1 - a[n/2], 1]; Table[ a[n], {n, 1, 105}] (* Or *)
    Rest[ CoefficientList[ Series[ Sum[ x^(2^k)/(1 + (-1)^k*x^(2^k)), {k, 0, 20}], {x, 0, 105}], x]]
    f[1] := True; f[x_] := Xor[f[x - 1], f[Floor[x/2]]]; a[x_] := Boole[f[x]] (* Ben Branman, Oct 04 2010 *)
    a[n_] := If[n == 0, 0, 1 - Mod[ IntegerExponent[n, 2], 2]]; (* Jean-François Alcover, Jul 19 2013, after Michael Somos *)
    Nest[ Flatten[# /. {0 -> {1, 1}, 1 -> {1, 0}}] &, {0}, 7] (* Robert G. Wilson v, Jul 23 2014 *)
    SubstitutionSystem[{0->{1,1},1->{1,0}},1,{7}][[1]] (* Harvey P. Dale, Jun 06 2022 *)
  • PARI
    {a(n) = if( n==0, 0, 1 - valuation(n, 2)%2)}; /* Michael Somos, Sep 04 2006 */
    
  • PARI
    {a(n) = if( n==0, 0, n = abs(n); subst( Pol(binary(n)) - Pol(binary(n-1)), x, 1)%2)}; /* Michael Somos, Sep 04 2006 */
    
  • PARI
    {a(n) = if( n==0, 0, n = abs(n); direuler(p=2, n, 1 / (1 - X^((p<3) + 1)))[n])}; /* Michael Somos, Sep 04 2006 */
    
  • Python
    def A035263(n): return (n&-n).bit_length()&1 # Chai Wah Wu, Jan 09 2023
  • Scheme
    (define (A035263 n) (let loop ((n n) (i 1)) (cond ((odd? n) (modulo i 2)) (else (loop (/ n 2) (+ 1 i)))))) ;; (Use mod instead of modulo in R6RS) Antti Karttunen, Sep 11 2017
    

Formula

Absolute values of first differences (A029883) of Thue-Morse sequence (A001285 or A010060). Self-similar under 10->1 and 11->0.
Series expansion: (1/x) * Sum_{i>=0} (-1)^(i+1)*x^(2^i)/(x^(2^i)-1). - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Feb 17 2003
a(n) = Sum_{k>=0} (-1)^k*(floor((n+1)/2^k)-floor(n/2^k)). - Benoit Cloitre, Jun 03 2003
Another g.f.: Sum_{k>=0} x^(2^k)/(1+(-1)^k*x^(2^k)). - Ralf Stephan, Jun 13 2003
a(2*n) = 1-a(n), a(2*n+1) = 1. - Ralf Stephan, Jun 13 2003
a(n) = parity of A033485(n). - Philippe Deléham, Aug 13 2003
Equals A088172 mod 2, where A088172 = 1, 2, 3, 7, 13, 26, 53, 106, 211, 422, 845, ... (first differences of A019300). - Gary W. Adamson, Sep 21 2003
a(n) = a(n-1) - (-1)^n*a(floor(n/2)). - Benoit Cloitre, Dec 02 2003
a(1) = 1 and a(n) = abs(a(n-1) - a(floor(n/2))). - Benoit Cloitre, Dec 02 2003
a(n) = 1 - A096268(n+1); A050292 gives partial sums. - Reinhard Zumkeller, Aug 16 2006
Multiplicative with a(2^k) = 1 - (k mod 2), a(p^k) = 1, p > 2. Dirichlet g.f.: Product_{n = 4 or an odd prime} (1/(1-1/n^s)). - Christian G. Bower, May 18 2005
a(-n) = a(n). a(0)=0. - Michael Somos, Sep 04 2006
Dirichlet g.f.: zeta(s)*2^s/(2^s+1). - Ralf Stephan, Jun 17 2007
a(n+1) = a(n) XOR a(ceiling(n/2)), a(1) = 1. - Reinhard Zumkeller, Jun 11 2009
Let D(x) be the generating function, then D(x) + D(x^2) == x/(1-x). - Joerg Arndt, May 11 2010
a(n) = A010060(n) XOR A010060(n+1); a(A079523(n)) = 0; a(A121539(n)) = 1. - Reinhard Zumkeller, Mar 01 2012
a((2*n-1)*2^p) = (p+1) mod 2, p >= 0 and n >= 1. - Johannes W. Meijer, Feb 07 2013
a(n) = A000035(A001511(n)). - Omar E. Pol, Oct 29 2013
a(n) = 2-A056832(n) = (5-A089608(n))/4. - Antti Karttunen, Sep 11 2017, after Benoit Cloitre
For n >= 0, a(n+1) = M(2n) mod 2 where M(n) is the Motzkin number A001006 (see Deutsch and Sagan 2006 link). - David Callan, Oct 02 2018
a(n) = A038712(n) mod 3. - Kevin Ryde, Jul 11 2019
Given any n in the form (k * 2^m, k odd), extract k and m. Categorize the results into two outcomes of (k, m, even or odd). If (k, m) is (odd, even) substitute 1. If (odd, odd), denote the result 0. Example: 5 = (5 * 2^0), (odd, even, = 1). (6 = 3 * 2^1), (odd, odd, = 0). - Gary W. Adamson, Jun 23 2021

Extensions

Alternative description added to the name by Antti Karttunen, Sep 11 2017

A062383 a(0) = 1: for n>0, a(n) = 2^floor(log_2(n)+1) or a(n) = 2*a(floor(n/2)).

Original entry on oeis.org

1, 2, 4, 4, 8, 8, 8, 8, 16, 16, 16, 16, 16, 16, 16, 16, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 128, 128, 128, 128, 128, 128
Offset: 0

Views

Author

Antti Karttunen, Jun 19 2001

Keywords

Comments

Informally, write down 1 followed by 2^k 2^(k-1) times, for k = 1,2,3,4,... These are the denominators of the binary van der Corput sequence (see A030101 for the numerators). - N. J. A. Sloane, Dec 01 2019
a(n) is the denominator of the form 2^k needed to make the ratio (2n-1)/2^k lie in the interval [1-2], i.e. such ratios are 1/1, 3/2, 5/4, 7/4, 9/8, 11/8, 13/8, 15/8, 17/16, 19/16, 21/16, ... where the numerators are A005408 (The odd numbers).
Let A_n be the upper triangular matrix in the group GL(n,2) that has zero entries below the diagonal and 1 elsewhere. For example for n=4 the matrix is / 1,1,1,1 / 0,1,1,1 / 0,0,1,1 / 0,0,0,1 /. The order of this matrix as an element of GL(n,2) is a(n-1). - Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 14 2001
A006257(n)/a(n) = (0, 0.1, 0.01, 0.11, 0.001, ...) enumerates all binary fractions in the unit interval [0, 1). - Fredrik Johansson, Aug 14 2006
a(n) = maximum of row n+1 in A240769. - Reinhard Zumkeller, Apr 13 2014
This is the discriminator sequence for the odious numbers. - N. J. A. Sloane, May 10 2016
From Jianing Song, Jul 05 2025: (Start)
a(n) is the period of {binomial(N,n) mod 2: N in Z}. For the general result, see A349593.
Since the modulus (2) is a prime, the remainder of binomial(N,n) is given by Lucas's theorem. (End)

Crossrefs

Apart from the initial term, equals 2 * A053644. MASKTRANSi(A062383) seems to give a signed form of A038712. (See identities at A053644). floor_log_2 given in A054429.
Equals A003817(n)+1. Cf. A002884.
Bisection of A065285. Cf. A076877.
Equals for n>=1 the r(n) sequence of A160464. - Johannes W. Meijer, May 24 2009
Equals the r(n) sequence of A162440 for n>=1. - Johannes W. Meijer, Jul 06 2009
Discriminator of the odious numbers (A000069). - Jeffrey Shallit, May 08 2016
Column 2 of A349593. A064235 (if offset 0), A385552, A385553, and A385554 are respectively columns 3, 5, 6, and 10.

Programs

  • Haskell
    import Data.List (transpose)
    a062383 n = a062383_list !! n
    a062383_list = 1 : zs where
       zs = 2 : (map (* 2) $ concat $ transpose [zs, zs])
    -- Reinhard Zumkeller, Aug 27 2014, Mar 13 2014
    
  • Magma
    [2^Floor(Log(2,2*n+1)): n in [0..70]]; // Bruno Berselli, Mar 04 2016
    
  • Maple
    [seq(2^(floor_log_2(j)+1),j=0..127)]; or [seq(coerce1st_octave((2*j)+1),j=0..127)]; or [seq(a(j),j=0..127)];
    coerce1st_octave := proc(r) option remember; if(r < 1) then coerce1st_octave(2*r); else if(r >= 2) then coerce1st_octave(r/2); else (r); fi; fi; end;
    A062383 := proc(n)
        option remember;
        if n = 0 then
            1 ;
        else
            2*procname(floor(n/2));
        end if;
    end proc:
    A062383 := n -> 1 + Bits:-Iff(n, n):
    seq(A062383(n), n=0..69); # Peter Luschny, Sep 23 2019
  • Mathematica
    a[n_] := a[n] = 2 a[n/2 // Floor]; a[0] = 1; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Mar 04 2016 *)
    Table[2^Floor[Log2[n] + 1], {n, 0, 20}] (* Eric W. Weisstein, Nov 17 2017 *)
    2^Floor[Log2[Range[0, 20]] + 1] (* Eric W. Weisstein, Nov 17 2017 *)
    2^BitLength[Range[0, 100]] (* Paolo Xausa, Jan 29 2025 *)
  • PARI
    { a=1; for (n=0, 1000, write("b062383.txt", n, " ", a*=ceil((n + 1)/a)) ) } \\ Harry J. Smith, Aug 06 2009
    
  • PARI
    a(n)=1<<(log(2*n+1)\log(2)) \\ Charles R Greathouse IV, Dec 08 2011
    
  • Python
    def A062383(n): return 1 << n.bit_length() # Chai Wah Wu, Jun 30 2022

Formula

a(1) = 1 and a(n+1) = a(n)*ceiling(n/a(n)). - Benoit Cloitre, Aug 17 2002
G.f.: 1/(1-x) * (1 + Sum_{k>=0} 2^k*x^2^k). - Ralf Stephan, Apr 18 2003
a(n) = A142151(2*n)/2 + 1. - Reinhard Zumkeller, Jul 15 2008
log(a(n))/log(2) = A029837(n+1). - Johannes W. Meijer, Jul 06 2009
a(n+1) = a(n) + A099894(n). - Reinhard Zumkeller, Aug 06 2009
a(n) = A264619(n) - A264618(n). - Reinhard Zumkeller, Dec 01 2015
a(n) is the smallest power of 2 > n. - Chai Wah Wu, Nov 04 2016
a(n) = 2^ceiling(log_2(n+1)). - M. F. Hasler, Sep 20 2017

A220466 a((2*n-1)*2^p) = 4^p*(n-1) + 2^(p-1)*(1+2^p), p >= 0 and n >= 1.

Original entry on oeis.org

1, 3, 2, 10, 3, 7, 4, 36, 5, 11, 6, 26, 7, 15, 8, 136, 9, 19, 10, 42, 11, 23, 12, 100, 13, 27, 14, 58, 15, 31, 16, 528, 17, 35, 18, 74, 19, 39, 20, 164, 21, 43, 22, 90, 23, 47, 24, 392, 25, 51, 26, 106, 27, 55, 28, 228, 29, 59, 30, 122, 31, 63, 32, 2080, 33, 67, 34, 138, 35
Offset: 1

Views

Author

Johannes W. Meijer, Dec 24 2012

Keywords

Comments

The a(n) appeared in the analysis of A220002, a sequence related to the Catalan numbers.
The first Maple program makes use of a program by Peter Luschny for the calculation of the a(n) values. The second Maple program shows that this sequence has a beautiful internal structure, see the first formula, while the third Maple program makes optimal use of this internal structure for the fast calculation of a(n) values for large n.
The cross references lead to sequences that have the same internal structure as this sequence.

Crossrefs

Cf. A000027 (the natural numbers), A000120 (1's-counting sequence), A000265 (remove 2's from n), A001316 (Gould's sequence), A001511 (the ruler function), A003484 (Hurwitz-Radon numbers), A003602 (a fractal sequence), A006519 (highest power of 2 dividing n), A007814 (binary carry sequence), A010060 (Thue-Morse sequence), A014577 (dragon curve), A014707 (dragon curve), A025480 (nim-values), A026741, A035263 (first Feigenbaum symbolic sequence), A037227, A038712, A048460, A048896, A051176, A053381 (smooth nowhere-zero vector fields), A055975 (Gray code related), A059134, A060789, A060819, A065916, A082392, A085296, A086799, A088837, A089265, A090739, A091512, A091519, A096268, A100892, A103391, A105321 (a fractal sequence), A109168 (a continued fraction), A117973, A129760, A151930, A153733, A160467, A162728, A181988, A182241, A191488 (a companion to Gould's sequence), A193365, A220466 (this sequence).

Programs

  • Haskell
    -- Following Ralf Stephan's recurrence:
    import Data.List (transpose)
    a220466 n = a006519_list !! (n-1)
    a220466_list = 1 : concat
       (transpose [zipWith (-) (map (* 4) a220466_list) a006519_list, [2..]])
    -- Reinhard Zumkeller, Aug 31 2014
  • Maple
    # First Maple program
    a := n -> 2^padic[ordp](n, 2)*(n+1)/2 : seq(a(n), n=1..69); # Peter Luschny, Dec 24 2012
    # Second Maple program
    nmax:=69: for p from 0 to ceil(simplify(log[2](nmax))) do for n from 1 to ceil(nmax/(p+2)) do a((2*n-1)*2^p) := 4^p*(n-1)  + 2^(p-1)*(1+2^p) od: od: seq(a(n), n=1..nmax);
    # Third Maple program
    nmax:=69: for p from 0 to ceil(simplify(log[2](nmax))) do n:=2^p: n1:=1: while n <= nmax do a(n) := 4^p*(n1-1)+2^(p-1)*(1+2^p): n:=n+2^(p+1): n1:= n1+1: od: od:  seq(a(n), n=1..nmax);
  • Mathematica
    A220466 = Module[{n, p}, p = IntegerExponent[#, 2]; n = (#/2^p + 1)/2; 4^p*(n - 1) + 2^(p - 1)*(1 + 2^p)] &; Array[A220466, 50] (* JungHwan Min, Aug 22 2016 *)
  • PARI
    a(n)=if(n%2,n\2+1,4*a(n/2)-2^valuation(n/2,2)) \\ Ralf Stephan, Dec 17 2013
    

Formula

a((2*n-1)*2^p) = 4^p*(n-1) + 2^(p-1)*(1+2^p), p >= 0 and n >= 1. Observe that a(2^p) = A007582(p).
a(n) = ((n+1)/2)*(A060818(n)/A060818(n-1))
a(n) = (-1/64)*(q(n+1)/q(n))/(2*n+1) with q(n) = (-1)^(n+1)*2^(4*n-5)*(2*n)!*A060818(n-1) or q(n) = (1/8)*A220002(n-1)*1/(A098597(2*n-1)/A046161(2*n))*1/(A008991(n-1)/A008992(n-1))
Recurrence: a(2n) = 4a(n) - 2^A007814(n), a(2n+1) = n+1. - Ralf Stephan, Dec 17 2013

A146076 Sum of even divisors of n.

Original entry on oeis.org

0, 2, 0, 6, 0, 8, 0, 14, 0, 12, 0, 24, 0, 16, 0, 30, 0, 26, 0, 36, 0, 24, 0, 56, 0, 28, 0, 48, 0, 48, 0, 62, 0, 36, 0, 78, 0, 40, 0, 84, 0, 64, 0, 72, 0, 48, 0, 120, 0, 62, 0, 84, 0, 80, 0, 112, 0, 60, 0, 144, 0, 64, 0, 126, 0, 96, 0, 108, 0, 96, 0, 182, 0, 76, 0, 120, 0, 112, 0, 180, 0, 84, 0, 192, 0, 88, 0, 168, 0, 156
Offset: 1

Views

Author

N. J. A. Sloane, Apr 09 2009

Keywords

Comments

The usual OEIS policy is not to include sequences like this where alternate terms are zero; this is an exception. A074400 is the main entry.
a(n) is also the total number of parts in all partitions of n into an even number of equal parts. - Omar E. Pol, Jun 04 2017

Crossrefs

Programs

  • Maple
    A146076 := proc(n)
        if type(n,'even') then
            2*numtheory[sigma](n/2) ;
        else
            0;
        end if;
    end proc: # R. J. Mathar, Dec 07 2017
  • Mathematica
    f[n_] := Plus @@ Select[Divisors[n], EvenQ]; Array[f, 150] (* Vincenzo Librandi, May 17 2013 *)
    a[n_] := DivisorSum[n, Boole[EvenQ[#]]*#&]; Array[a, 100] (* Jean-François Alcover, Dec 01 2015 *)
    Table[CoefficientList[Series[-Log[QPochhammer[x^2, x^2]], {x, 0, 60}],x][[n + 1]] n, {n, 1, 60}] (* Benedict W. J. Irwin, Jul 04 2016 *)
    a[n_] := If[OddQ[n], 0, 2*DivisorSigma[1, n/2]]; Array[a, 100] (* Amiram Eldar, Jan 11 2023 *)
  • PARI
    vector(80, n, if (n%2, 0, sumdiv(n, d, d*(1-(d%2))))) \\ Michel Marcus, Mar 30 2015
    
  • PARI
    a(n) = if (n%2, 0, 2*sigma(n/2)); \\ Michel Marcus, Apr 01 2015

Formula

a(2k-1) = 0, a(2k) = 2*sigma(k) for positive k.
Dirichlet g.f.: zeta(s - 1)*zeta(s)*2^(1 - s). - Geoffrey Critzer, Mar 29 2015
a(n) = A000203(n) - A000593(n). - Omar E. Pol, Apr 05 2016
L.g.f.: -log(Product_{ k>0 } (1-x^(2*k))) = Sum_{ n>=0 } (a(n)/n)*x^n. - Benedict W. J. Irwin, Jul 04 2016
a(n) = A000203(n)*(1 - (1/A038712(n))). - Omar E. Pol, Aug 01 2018
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/24 = 0.411233... (A222171). - Amiram Eldar, Nov 06 2022
Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A000203(k) = 2 - A065442 = 0.393304... . - Amiram Eldar, Dec 14 2024

Extensions

Corrected by Jaroslav Krizek, May 07 2011

A106400 Thue-Morse sequence: let A_k denote the first 2^k terms; then A_0 = 1 and for k >= 0, A_{k+1} = A_k B_k, where B_k is obtained from A_k by interchanging 1's and -1's.

Original entry on oeis.org

1, -1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1
Offset: 0

Views

Author

Michael Somos, May 02 2005

Keywords

Comments

See A010060, the main entry for the Thue-Morse sequence, for additional information. - N. J. A. Sloane, Aug 13 2014
a(A000069(n)) = -1; a(A001969(n)) = +1. - Reinhard Zumkeller, Apr 29 2012
Partial sums of every third terms give A005599. - Reinhard Zumkeller, May 26 2013
Fixed point of the morphism 1 --> 1,-1 and -1 --> -1,1. - Robert G. Wilson v, Apr 07 2014
Fibbinary numbers (A003714) gives the numbers n for which a(n) = A132971(n). - Antti Karttunen, May 30 2017

Examples

			G.f. = 1 - x - x^2 + x^3 - x^4 + x^5 + x^6 - x^7 - x^8 + x^9 + x^10 + ...
The first 2^2 = 4 terms are 1, -1, -1, 1. Exchanging 1 and -1 gives -1, 1, 1, -1, which are a(4) through a(7). - _Michael B. Porter_, Jul 29 2016
		

Crossrefs

Convolution inverse of A018819.
Partial sums of A292118.

Programs

  • Haskell
    import Data.List (transpose)
    a106400 n = a106400_list !! n
    a106400_list =  1 : concat
       (transpose [map negate a106400_list, tail a106400_list])
    -- Reinhard Zumkeller, Apr 29 2012
    
  • Magma
    [1-2*(&+Intseq(n,2) mod(2)): n in [0..100]]; // Vincenzo Librandi, Sep 01 2015
    
  • Maple
    A106400 := proc(n)
            1-2*A010060(n) ;
    end proc: # R. J. Mathar, Jul 22 2012
    subs("0"=1,"1"=-1, StringTools:-Explode(StringTools:-ThueMorse(1000))); # Robert Israel, Sep 01 2015
    # third Maple program:
    a:= n-> (-1)^add(i, i=Bits[Split](n)):
    seq(a(n), n=0..120);  # Alois P. Heinz, Apr 13 2020
  • Mathematica
    tm[0] = 0; tm[n_?EvenQ] := tm[n/2]; tm[n_] := 1 - tm[(n-1)/2]; Table[(-1)^tm[n], {n, 0, 101}] (* Jean-François Alcover, Oct 24 2013 *)
    Nest[ Flatten[# /. {1 -> {1, -1}, -1 -> {-1, 1}}] &, {1}, 7] (* Robert G. Wilson v, Apr 07 2014 *)
    Table[Coefficient[Product[1 - x^(2^k), {k, 0, Log2[n + 1]}], x, n], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 11 2016 *)
    (-1)^ThueMorse[Range[0,100]] (* Paolo Xausa, Dec 18 2023 *)
  • PARI
    {a(n) = if( n<1, n>=0, a(n\2) * (-1)^(n%2))};
    
  • PARI
    {a(n) = my(A, m); if( n<1, n==0, m=1; A = 1 + O(x); while( m<=n, m*=2; A = subst(A, x, x^2) * (1-x)); polcoeff(A, n))};
    
  • PARI
    a(n) = { 1 - 2 * (hammingweight(n) % 2) };  \\ Gheorghe Coserea, Aug 30 2015
    
  • PARI
    apply( {A106400(n)=(-1)^hammingweight(n)}, [0..99]) \\ M. F. Hasler, Feb 07 2020
    
  • Python
    def aupto(nn):
        A = [1]
        while len(A) < nn+1: A += [-i for i in A]
        return A[:nn+1]
    print(aupto(101)) # Michael S. Branicky, Jun 26 2022
    
  • Python
    def A106400(n): return -1 if n.bit_count()&1 else 1 # Chai Wah Wu, Mar 01 2023

Formula

a(n) = (-1)^A010060(n).
a(n) = (-1)^wt(n), where wt(n) is the binary weight of n, A000120(n).
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = v^3 - 2*u*v*w + u^2*w.
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u6*u1^3 - 3*u6*u2*u1^2 + 3*u6*u2^2*u1 - u3*u2^3.
Euler transform of sequence b(n) where b(2^k) = -1 and zero otherwise.
G.f.: Product_{k>=0} (1 - x^(2^k)) = A(x) = (1-x) * A(x^2).
a(n) = B_n(-A038712(1)*0!, ..., -A038712(n)*(n-1)!)/n!, where B_n(x_1, ..., x_n) is the n-th complete Bell polynomial. See the Wikipedia link for complete Bell polynomials , and A036040 for the coefficients of these partition polynomials. - Gevorg Hmayakyan, Jul 10 2016 (edited by - Wolfdieter Lang, Aug 31 2016)
a(n) = A008836(A005940(1+n)). [Analogous to Liouville's lambda] - Antti Karttunen, May 30 2017
a(n) = (-1)^A309303(n), see the closed form (5) in the MathWorld link. - Vladimir Reshetnikov, Jul 23 2019

A129527 a(2n) = a(n) + 2n, a(2n+1) = 2n + 1.

Original entry on oeis.org

0, 1, 3, 3, 7, 5, 9, 7, 15, 9, 15, 11, 21, 13, 21, 15, 31, 17, 27, 19, 35, 21, 33, 23, 45, 25, 39, 27, 49, 29, 45, 31, 63, 33, 51, 35, 63, 37, 57, 39, 75, 41, 63, 43, 77, 45, 69, 47, 93, 49, 75, 51, 91, 53, 81, 55, 105, 57, 87, 59, 105, 61, 93, 63, 127, 65, 99, 67
Offset: 0

Views

Author

Ralf Stephan, May 29 2007

Keywords

Comments

Sum of odd part of n and its double, fourfold, eightfold etc. <= n.
Starting with 1 = the ruler function triangle A115361 * [1, 2, 3, ...]. - Gary W. Adamson, Nov 27 2009
Starting with 1 and parsed into subsets of 1, 2, 4, 8, ... terms, sum of terms in the subsets = A006516: (1, 6, 28, 120, ...). Example: 120 = (15 + 9 + 15 + 11 + 21 + 13 + 21 + 15). - Gary W. Adamson Mar 18 2011
a(n) = Sum(even divisors of 2(n-1) not including 2(n-1) that are obtained dividing repeatedly by 2) + (greatest odd divisor of 2(n-1), including 1), for the initial case 2(1-1)=0 will be set to 0. E.g., (offset is starting with n=1) a(3) = Sum(even divisors of 2*(3-1)=2*2=4 not including 4 obtained dividing repeatedly by 2) + greatest odd divisor of 4 = (2)+(1)=3; a(4) = Sum(even divisors of 2*(4-1)=6 not including 6 obtained dividing repeatedly by 2) + greatest odd divisor of 6 = (0) + (3) = 3; a(5) = Sum(even divisors of 2*(5-1)=8 not including 8 obtained dividing repeatedly by 2) + greatest odd divisor of 8 = (4+2) + (1) = 7, etc. - David Morales Marciel, Dec 21 2015
For n >=1, a(n) is the sum of divisors d of n such that n/d is a power of 2. - Amiram Eldar, Nov 17 2022

Crossrefs

Row sums of A129265 and A129559.

Programs

  • Maple
    f:= proc(n) option remember;
      if n::odd then n else n + procname(n/2) fi
    end proc:
    f(0):= 0:
    seq(f(n),n=0..100); # Robert Israel, Dec 20 2015
  • Mathematica
    a[n_] := a[n] = If[EvenQ@ n, a[n/2] + n, n]; {0}~Join~Array[a, 67] (* Michael De Vlieger, Jun 26 2017 *)
  • PARI
    a(n)=if (n==0, 0, sum(k=0,valuation(n,2),n/2^k)); \\ corrected by Michel Marcus, Dec 22 2021
    
  • PARI
    a(n)=if(n<2,return(n)); my(k=valuation(n,2)); 2*n-n>>k \\ Charles R Greathouse IV, Feb 09 2016
    
  • PARI
    a(n)=sumdiv(n, d, eulerphi(2*d)) \\ Andrew Howroyd, Aug 07 2018

Formula

G.f.: Sum_{k>=0} x^(2^k)/(1-x^(2^k))^2.
Dirichlet g.f.: zeta(s-1)*2^s/(2^s-1). - Ralf Stephan, Jun 17 2007
G.f. satisfies g(x) = g(x^2) + x/(1-x)^2. - Robert Israel, Dec 20 2015
n <= a(n) <= 2n - 1 for n > 0. - Charles R Greathouse IV, Feb 09 2016
Conjecture: a(n) = 2*n-A000265(n) for n > 0. - Velin Yanev, Jun 23 2017. [Joerg Arndt, Jun 23 2017: For odd n the conjecture holds, for even n induction should work.
Andrey Zabolotskiy, Aug 03 2017: Confirm: induction works, the conjecture holds for all n.]
a(n) for n > 0 is multiplicative with a(2^e) = 2^(e+1)-1 and a(p^e) = p^e for prime p > 2 and e >= 0. - Werner Schulte, Jul 02 2018
Inverse Moebius transform of A062570. - Andrew Howroyd, Aug 07 2018
Sum_{k=1..n} a(k) ~ 2*n^2/3. - Vaclav Kotesovec, Jun 11 2020
a(n) = A038712(n)*A000265(n), for n > 0. - Ivan N. Ianakiev, Feb 24 2025

A135416 a(n) = A036987(n)*(n+1)/2.

Original entry on oeis.org

1, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

N. J. A. Sloane, based on a message from Guy Steele and Don Knuth, Mar 01 2008

Keywords

Comments

Guy Steele defines a family of 36 integer sequences, denoted here by GS(i,j) for 1 <= i, j <= 6, as follows. a[1]=1; a[2n] = i-th term of {0,1,a[n],a[n]+1,2a[n],2a[n]+1}; a[2n+1] = j-th term of {0,1,a[n],a[n]+1,2a[n],2a[n]+1}. The present sequence is GS(1,5).
The full list of 36 sequences:
GS(1,1) = A000007
GS(1,2) = A000035
GS(1,3) = A036987
GS(1,4) = A007814
GS(1,5) = A135416 (the present sequence)
GS(1,6) = A135481
GS(2,1) = A135528
GS(2,2) = A000012
GS(2,3) = A000012
GS(2,4) = A091090
GS(2,5) = A135517
GS(2,6) = A135521
GS(3,1) = A036987
GS(3,2) = A000012
GS(3,3) = A000012
GS(3,4) = A000120
GS(3,5) = A048896
GS(3,6) = A038573
GS(4,1) = A135523
GS(4,2) = A001511
GS(4,3) = A008687
GS(4,4) = A070939
GS(4,5) = A135529
GS(4,6) = A135533
GS(5,1) = A048298
GS(5,2) = A006519
GS(5,3) = A080100
GS(5,4) = A087808
GS(5,5) = A053644
GS(5,6) = A000027
GS(6,1) = A135534
GS(6,2) = A038712
GS(6,3) = A135540
GS(6,4) = A135542
GS(6,5) = A054429
GS(6,6) = A003817
(with a(0)=1): Moebius transform of A038712.

Crossrefs

Equals A048298(n+1)/2. Cf. A036987, A182660.

Programs

  • Maple
    GS:=proc(i,j,M) local a,n; a:=array(1..2*M+1); a[1]:=1;
    for n from 1 to M do
    a[2*n] :=[0,1,a[n],a[n]+1,2*a[n],2*a[n]+1][i];
    a[2*n+1]:=[0,1,a[n],a[n]+1,2*a[n],2*a[n]+1][j];
    od: a:=convert(a,list); RETURN(a); end;
    GS(1,5,200):
  • Mathematica
    i = 1; j = 5; Clear[a]; a[1] = 1; a[n_?EvenQ] := a[n] = {0, 1, a[n/2], a[n/2]+1, 2*a[n/2], 2*a[n/2]+1}[[i]]; a[n_?OddQ] := a[n] = {0, 1, a[(n-1)/2], a[(n-1)/2]+1, 2*a[(n-1)/2], 2*a[(n-1)/2]+1}[[j]]; Array[a, 105] (* Jean-François Alcover, Sep 12 2013 *)
  • PARI
    A048298(n) = if(!n,0,if(!bitand(n,n-1),n,0));
    A135416(n) = (A048298(n+1)/2); \\ Antti Karttunen, Jul 22 2018
    
  • Python
    def A135416(n): return int(not(n&(n+1)))*(n+1)>>1 # Chai Wah Wu, Jul 06 2022

Formula

G.f.: sum{k>=1, 2^(k-1)*x^(2^k-1) }.
Recurrence: a(2n+1) = 2a(n), a(2n) = 0, starting a(1) = 1.

Extensions

Formulae and comments by Ralf Stephan, Jun 20 2014

A067856 Sum_{n >= 1} a(n)/n^s = 1/(Sum_{n >= 1} (-1)^(n + 1)/n^s).

Original entry on oeis.org

1, 1, -1, 2, -1, -1, -1, 4, 0, -1, -1, -2, -1, -1, 1, 8, -1, 0, -1, -2, 1, -1, -1, -4, 0, -1, 0, -2, -1, 1, -1, 16, 1, -1, 1, 0, -1, -1, 1, -4, -1, 1, -1, -2, 0, -1, -1, -8, 0, 0, 1, -2, -1, 0, 1, -4, 1, -1, -1, 2, -1, -1, 0, 32, 1, 1, -1, -2, 1, 1, -1, 0, -1, -1, 0, -2, 1, 1, -1, -8, 0, -1, -1, 2, 1, -1, 1, -4, -1, 0, 1, -2, 1, -1, 1, -16, -1, 0, 0, 0
Offset: 1

Views

Author

Leroy Quet, Feb 15 2002

Keywords

Comments

Dirichlet inverse of A062157. - R. J. Mathar, Jul 15 2010
The first 31 terms equal the values of the Ramanujan sum c_n(8) -- see for example A085906 -- but a(32) <> c_{32}(8). - R. J. Mathar, Apr 02 2011
From Peter Bala, Mar 12 2019: (Start)
Let Mu(n) = (-1)^(n+1)*a(n), an analog of the Möbius function mu(n). Then for arithmetic functions f(n) and g(n) we have the following analog of the Möbius inversion formula: f(n) = Sum_{d divides n} (-1)^((1+d)*(1+n/d))*g(d) iff g(n) = Sum_{d divides n} (-1)^((1+d)*(1+n/d))*Mu(n/d)*f(d).
Each of the following two equations implies the other: F(x) = Sum_{n >= 1} (-1)^(n+1)*G(n*x); G(x) = Sum_{n >= 1} a(n)*F(n*x). See G. Pólya and G. Szegő, Part V111, Chap. 1, Nos. 66-68.2. (End)
Let D(n) denote the set of partitions of n into distinct parts. Then Sum_{parts k in D(n)} a(k) = |D(n-1)| = A000009(n-1). For example, D(6) = {6, 1 + 5, 2 + 4, 1 + 2 + 3} and the sum a(6) + (a(1) + a(5)) + (a(2) + a(4)) + (a(1) + a(2) + a(3)) = 3 = |D(5)|. - Peter Bala, Mar 14 2019
From Petros Hadjicostas, Jul 25 2020: (Start)
For p prime >= 2, Petrogradsky (2003) defined the multiplicative functions 1_p and mu_p in the following way:
1_p(n) = 1 when gcd(n,p) = 1 and 1_p(n) = 1 - p when gcd(n,p) = p;
mu_p(n) = mu(n) when gcd(n,p) = 1 and mu_p(n) = mu(m)*(p^s - p^(s-1)) when n = m*p^s with gcd(m,p) = 1 and s >= 1.
We have 1_2(n) = A062157(n), 1_3(n) = A061347(n) (with offset 1), a(n) = mu_2(n), and A117997(n) = mu_3(n) for n >= 1.
Some of the results by other contributors can be generalized:
(i) Rogel's (1897) formula becomes Sum_{d | n} 1_p(d) * mu_p(n/d) = 0 for n > 1. Thus, 1_p is the Dirichlet inverse of mu_p.
(ii) R. J. Mathar's Dirichlet g.f. for mu_p becomes 1/(zeta(s) * (1 - p^(1-s))). The Dirichlet g.f. for 1_p is zeta(s) * (1 - p^(1-s)).
(iii) Benoit Cloitre's formula becomes 1 = Sum_{k=1..n} mu_p(k)*g_p(n/k), where g_p(x) = floor(x) - p*floor(x/p) = floor(x) mod p.
(iv) Paul D. Hanna's formula becomes Sum_{n >= 1} (mu_p(n)/n)*log((1 - x^(n*p))/(1 - x^n)) = x.
(v) The definition of A117997 generalizes to Sum_{d | n} mu_p(d) = n, if n = p^s for s >= 0, and = 0, otherwise.
(vi) By differentiating both sides of (iv) w.r.t. x and multiplying both sides by x, we get Sum_{n >= 1} mu_p(n)*(x^n + 2*x^(2*n) + ... + (p-1)*x^(n*(p-1)))/(1 + x^n + x^(2*n) + ... + x^(n*(p-1))) = x, which generalizes one of Peter Bala's formulas. It can be thought as a "generalized Lambert series".
(vii) Obviously, f(n) = Sum_{d | n} 1_p(n/d)*g(d) if and only if g(n) = Sum_{d | n} mu_p(n/d)*f(d). (End)

References

  • G. Pólya and G. Szegő, Problems and Theorems in Analysis Volume II. Springer_Verlag 1976.

Crossrefs

Cf. A000009, A038712, A038838, A048298 (inverse Mobius transform), A061347, A062157, A085906, A117997, A321088 (Euler transform), A321558.

Programs

  • Mathematica
    a[n_] := If[n == 1, 1, Product[{p, e} = pe; If[2 == p, e--, If[e > 1, p = 0, p = -1]]; p^e, {pe, FactorInteger[n]}]];
    a /@ Range[1, 100] (* Jean-François Alcover, Oct 01 2019 *)
  • PARI
    {a(n)=local(k); if(n<1, 0, k=valuation(n, 2); moebius(n/2^k)*2^max(0, k-1))} /* Michael Somos, Aug 22 2006 */
    
  • PARI
    A067856(n) =  { my(f=factor(n)); for(i=1,#f~,if(2==f[i,1],f[i,2]--,if(f[i,2]>1,f[i,1]=0,f[i,1]=-1))); factorback(f); }; \\ Antti Karttunen, Sep 27 2018, after Vladeta Jovovic_'s multiplicative formula.

Formula

a(1) = 1 and a(n) = Sum{k | n, 1 < k} (-1)^k a(n/k) for n >= 2; the sum is over the divisors, k, of n, where k > 1. If n is odd, a(n) = mu(n), where mu(.) is the Moebius function. If n is even, a(n) = mu(m)* 2^(k-1), where n = m*2^k, m is odd integer, and k is a positive integer.
Sum_{n > 0} a(n)*x^n/(1 + x^n) = x. Moebius transform of A048298. Multiplicative with a(2^e) = 2^(e - 1), a(p) = -1 for p > 2, a(p^e) = 0 for p > 2 and e > 1. - Vladeta Jovovic, Jan 02 2003
Sum_{n > 0} a(n)*log(1 + x^n)/n = x. - Paul D. Hanna, May 06 2003
a(n) = 0 if and only if n is divisible by the square of an odd prime (A038838). - Michael Somos, Aug 22 2006
1 = Sum_{k=1..n} a(k)*g(n/k), where g(x) = floor(x) - 2*floor(x/2). - Benoit Cloitre, Nov 11 2010
Dirichlet g.f.: 1/( zeta(s) * (1 - 2^(1-s)) ). - R. J. Mathar, Apr 02 2011
From Peter Bala, Mar 13 2019: (Start)
Sum_{n >= 1} a(n)*x^n/(1 + x^n) = x
Sum_{n >= 1} a(n)*x^n/(1 - x^n) = x + 2*x^2 + 4*x^4 + 8*x^8 + 16*x^16 + ...
Sum_{n >= 1} a(n)*x^n/(1 + (-x)^n) = x + 2*(x^2 + x^4 + x^8 + x^16 + ...)
Sum_{n >= 1} a(n)*x^n/(1 - (-x)^n) = x + 2*(x^4 + 3*x^8 + 7*x^16 + 15*x^32 + ...). (End)
G.f. A(x) satisfies: A(x) = x + A(x^2) - A(x^3) + A(x^4) - A(x^5) + ... - Ilya Gutkovskiy, May 11 2019
Sum_{k=1..n} abs(a(k)) ~ 2*n*(log(n) - 1 + gamma + 11*log(2)/6 - 12*zeta'(2)/Pi^2) / (log(2)*Pi^2), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, May 30 2024

A129760 Bitwise AND of binary representation of n-1 and n.

Original entry on oeis.org

0, 0, 2, 0, 4, 4, 6, 0, 8, 8, 10, 8, 12, 12, 14, 0, 16, 16, 18, 16, 20, 20, 22, 16, 24, 24, 26, 24, 28, 28, 30, 0, 32, 32, 34, 32, 36, 36, 38, 32, 40, 40, 42, 40, 44, 44, 46, 32, 48, 48, 50, 48, 52, 52, 54, 48, 56, 56, 58, 56, 60, 60, 62, 0, 64, 64, 66, 64, 68, 68, 70, 64, 72, 72, 74
Offset: 1

Views

Author

Russ Cox, May 15 2007

Keywords

Comments

Also the number of Ducci sequences with period n.
Also largest number less than n having in binary representation fewer ones than n has; A048881(n-1) = A000120(a(n)) = A000120(n)-1. - Reinhard Zumkeller, Jun 30 2010
a(n) is the parent of vertex n in the binomial tree. The binomial tree is root vertex n=0, then for n>=1 the parent of n is n with its least significant 1-bit changed to a 0-bit. Binomial tree order 5, n=0 to 31 inclusive, is the frontispiece of Knuth volume 1, second and subsequent editions. Vertices are shown there with n in binary dots and a(n) is the next vertex towards the root at the bottom of the page. - Kevin Ryde, Jul 24 2019

Examples

			a(6) = 6 AND 5 = binary 110 AND 101 = binary 100 = 4.
		

References

  • Donald E. Knuth, The Art of Computer Programming, volume 1, second edition, frontispiece. Reproduced with brief description of the art in Donald E. Knuth, Selected Papers on Fun and Games, 2010, Chapter 47 Geek Art, figure 16, page 679.

Crossrefs

Programs

  • C
    int a(int n) { return n & (n-1); }
    
  • Magma
    [n - 2^Valuation(n, 2): n in [1..100]]; // Vincenzo Librandi, Jul 25 2019
    
  • Maple
    nmax := 75: for p from 0 to ceil(simplify(log[2](nmax))) do for n from 1 to ceil(nmax/(p+2)) do a((2*n-1)*2^p) := (2*n-2) * 2^p od: od: seq(a(n), n=1..nmax); # Johannes W. Meijer, Jun 22 2011, revised Jan 25 2013
    A129760 := n -> Bits:-And(n-1, n):
    seq(A129760(n), n=1..75); # Peter Luschny, Sep 26 2019
  • Mathematica
    Table[BitAnd[n, n - 1], {n, 1, 100}] (* Vladimir Joseph Stephan Orlovsky, Jul 19 2011 *)
  • PARI
    a(n)=bitand(n,n-1) \\ Charles R Greathouse IV, Jun 23 2011
    
  • Python
    def a(n): return n & (n-1)
    print([a(n) for n in range(1, 71)]) # Michael S. Branicky, Jul 13 2022

Formula

a(n) = n AND n-1.
Equals n - A006519(n). - N. J. A. Sloane, May 26 2008
From Johannes W. Meijer, Jun 22 2011: (Start)
a((2*n-1)*2^p) = (2*n-2)*(2^p), p>=0.
a(2*n-1) = (2*n-2), n>=1, and a(2^p+1) = 2^p, p>=1. (End)

A324054 a(n) = A000203(A005940(1+n)).

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 13, 15, 8, 18, 24, 28, 31, 39, 40, 31, 12, 24, 32, 42, 48, 72, 78, 60, 57, 93, 124, 91, 156, 120, 121, 63, 14, 36, 48, 56, 72, 96, 104, 90, 96, 144, 192, 168, 248, 234, 240, 124, 133, 171, 228, 217, 342, 372, 403, 195, 400, 468, 624, 280, 781, 363, 364, 127, 18, 42, 56, 84, 84, 144, 156, 120, 112, 216, 288, 224
Offset: 0

Views

Author

Antti Karttunen, Feb 14 2019

Keywords

Comments

As noted by David A. Corneth, the function f(n) = a(n-1) [that is, the offset-1 version of this sequence] seems to be "almost multiplicative". Sequence A324109 gives the positions n where f(n) satisfies the multiplicativity in a sense that f(n) = f(p(1)^e(1)) * ... * f(p(k)^e(k)), when n = p(1)^e(1) * ... * p(k)^e(k), and A324110 the positions where this does not hold.

Crossrefs

Cf. also A106737, A290077 (tau and phi similarly permuted).

Programs

  • Mathematica
    nn = 76; a[0] = 1; Do[Set[a[n], Prime[1 + DigitCount[n, 2, 0]]*a[n - 2^Floor@ Log2@ n]], {n, nn}]; Array[DivisorSigma[1, a[#]] &, nn, 0] (* Michael De Vlieger, Aug 03 2022 *)
  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ From A005940
    A324054(n) = sigma(A005940(1+n));
    
  • PARI
    A324054(n) = { my(p=2,mp=p*p,m=1); while(n, if(!(n%2), p=nextprime(1+p); mp = p*p, if(3==(n%4),mp *= p,m *= (mp-1)/(p-1))); n>>=1); (m); };
    
  • Python
    from math import prod
    from itertools import accumulate
    from collections import Counter
    from sympy import prime
    def A324054(n): return prod(((p:=prime(len(a)+1))**(b+1)-1)//(p-1) for a, b in Counter(accumulate(bin(n)[2:].split('1')[:0:-1])).items()) # Chai Wah Wu, Mar 10 2023

Formula

a(n) = A000203(A005940(1+n)).
a(n) = A324056(n) * A038712(1+n).
Previous Showing 11-20 of 73 results. Next