cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 38 results. Next

A033890 a(n) = Fibonacci(4*n + 2).

Original entry on oeis.org

1, 8, 55, 377, 2584, 17711, 121393, 832040, 5702887, 39088169, 267914296, 1836311903, 12586269025, 86267571272, 591286729879, 4052739537881, 27777890035288, 190392490709135, 1304969544928657, 8944394323791464, 61305790721611591, 420196140727489673
Offset: 0

Views

Author

Keywords

Comments

(x,y) = (a(n), a(n+1)) are solutions of (x+y)^2/(1+xy)=9, the other solutions are in A033888. - Floor van Lamoen, Dec 10 2001
This sequence consists of the odd-indexed terms of A001906 (whose terms are the values of x such that 5*x^2 + 4 is a square). The even-indexed terms of A001906 are in A033888. Limit_{n->infinity} a(n)/a(n-1) = phi^4 = (7 + 3*sqrt(5))/2. - Gregory V. Richardson, Oct 13 2002
General recurrence is a(n) = (a(1)-1)*a(n-1) - a(n-2), a(1) >= 4, lim_{n->infinity} a(n) = x*(k*x+1)^n, k = a(1) - 3, x = (1 + sqrt((a(1)+1)/(a(1)-3)))/2. Examples in OEIS: a(1)=4 gives A002878. a(1)=5 gives A001834. a(1)=6 gives A030221. a(1)=7 gives A002315. a(1)=8 gives A033890. a(1)=9 gives A057080. a(1)=10 gives A057081. - Ctibor O. Zizka, Sep 02 2008
Indices of square numbers which are also 12-gonal. - Sture Sjöstedt, Jun 01 2009
For positive n, a(n) equals the permanent of the (2n) X (2n) tridiagonal matrix with 3's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011
If we let b(0) = 0 and, for n >= 1, b(n) = A033890(n-1), then the sequence b(n) will be F(4n-2) and the first difference is L(4n) or A056854. F(4n-2) is also the ratio of golden spiral length (rounded to the nearest integer) after n rotations. L(4n) is also the pitch length ratio. See illustration in links. - Kival Ngaokrajang, Nov 03 2013
The aerated sequence (b(n))n>=1 = [1, 0, 8, 0, 55, 0, 377, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -5, Q = -1 of the 3-parameter family of divisibility sequences found by Williams and Guy. See A100047. - Peter Bala, Mar 22 2015
Solutions y of Pell equation x^2 - 5*y^2 = 4; corresponding x values are in A342710 (see A342709). - Bernard Schott, Mar 19 2021

Crossrefs

Programs

  • Magma
    [Fibonacci(4*n +2): n in [0..100]]; // Vincenzo Librandi, Apr 17 2011
  • Maple
    A033890 := proc(n)
        option remember;
        if n <= 1 then
            op(n+1,[1,8]);
        else
            7*procname(n-1)-procname(n-2) ;
        end if;
    end proc: # R. J. Mathar, Apr 30 2017
  • Mathematica
    Table[Fibonacci[4n + 2], {n, 0, 14}] (* Vladimir Joseph Stephan Orlovsky, Jul 21 2008 *)
    LinearRecurrence[{7, -1}, {1, 8}, 50] (* G. C. Greubel, Jul 13 2017 *)
    a[n_] := (GoldenRatio^(2 (1 + 2 n)) - GoldenRatio^(-2 (1 + 2 n)))/Sqrt[5]
    Table[a[n] // FullSimplify, {n, 0, 21}] (* Gerry Martens, Aug 20 2025 *)
  • PARI
    a(n)=fibonacci(4*n+2);
    

Formula

G.f.: (1+x)/(1-7*x+x^2).
a(n) = 7*a(n-1) - a(n-2), n > 1; a(0)=1, a(1)=8.
a(n) = S(n,7) + S(n-1,7) = S(2*n,sqrt(9) = 3), where S(n,x) = U(n,x/2) are Chebyshev's polynomials of the 2nd kind. Cf. A049310. S(n,7) = A004187(n+1), S(n,3) = A001906(n+1).
a(n) = ((7+3*sqrt(5))^n - (7-3*sqrt(5))^n + 2*((7+3*sqrt(5))^(n-1) - ((7-3*sqrt(5))^(n-1)))) / (3*(2^n)*sqrt(5)). - Gregory V. Richardson, Oct 13 2002
Let q(n, x) = Sum_{i=0..n} x^(n-i)*binomial(2*n-i, i); then a(n) = (-1)^n*q(n, -9). - Benoit Cloitre, Nov 10 2002
a(n) = L(n,-7)*(-1)^n, where L is defined as in A108299; see also A049685 for L(n,+7). - Reinhard Zumkeller, Jun 01 2005
Define f(x,s) = s*x + sqrt((s^2-1)*x^2+1); f(0,s)=0. a(n) = f(a(n-1),7/2) + f(a(n-2),7/2). - Marcos Carreira, Dec 27 2006
a(n+1) = 8*a(n) - 8*a(n-1) + a(n-2); a(1)=1, a(2)=8, a(3)=55. - Sture Sjöstedt, May 27 2009
a(n) = A167816(4*n+2). - Reinhard Zumkeller, Nov 13 2009
a(n)=b such that (-1)^n*Integral_{0..Pi/2} (cos((2*n+1)*x))/(3/2-sin(x)) dx = c + b*log(3). - Francesco Daddi, Aug 01 2011
a(n) = A000045(A016825(n)). - Michel Marcus, Mar 22 2015
a(n) = A001906(2*n+1). - R. J. Mathar, Apr 30 2017
E.g.f.: exp(7*x/2)*(5*cosh(3*sqrt(5)*x/2) + 3*sqrt(5)*sinh(3*sqrt(5)*x/2))/5. - Stefano Spezia, Apr 14 2025
From Peter Bala, Jun 08 2025: (Start)
Sum_{n >= 1} (-1)^(n+1)/(a(n) - 1/a(n)) = 1/9 [telescoping series: 3/(a(n) - 1/a(n)) = 1/Fibonacci(4*n+4) + 1/Fibonacci(4*n)].
Product_{n >= 1} (a(n) + 3)/(a(n) - 3) = 5/2 [telescoping product:
(a(n) + 3)/(a(n) - 3) = b(n)/b(n-1), where b(n) = (Lucas(4*n+4) - 3)/(Lucas(4*n+4) + 3)].
Product_{n >= 1} (a(n) + 1)/(a(n) - 1) = sqrt(9/5) [telescoping product:
(a(n) + 1)/(a(n) - 1) = c(n)/c(n-1) for n >= 1, where c(n) = Fibonacci(2*n+2)/Lucas(2*n+2)]. (End)
From Gerry Martens, Aug 20 2025: (Start)
a(n) = ((3 + sqrt(5))^(1 + 2*n) - (3 - sqrt(5))^(1 + 2*n)) / (2^(1 + 2*n)*sqrt(5)).
a(n) = Sum_{k=0..2*n} binomial(2*n + k + 1, 2*k + 1). (End)

A014448 Even Lucas numbers: L(3n).

Original entry on oeis.org

2, 4, 18, 76, 322, 1364, 5778, 24476, 103682, 439204, 1860498, 7881196, 33385282, 141422324, 599074578, 2537720636, 10749957122, 45537549124, 192900153618, 817138163596, 3461452808002, 14662949395604, 62113250390418
Offset: 0

Views

Author

Keywords

Comments

This is the Lucas sequence V(4,-1). - Bruno Berselli, Jan 08 2013

Examples

			a(4) = L(3 * 4) = L(12) = 322. - _Indranil Ghosh_, Feb 05 2017
		

Crossrefs

Cf. Lucas(k*n): A005248 (k = 2), A056854 (k = 4), A001946 (k = 5), A087215 (k = 6), A087281 (k = 7), A087265 (k = 8), A087287 (k = 9), A089772 (k = 11), A089775 (k = 12).

Programs

  • Magma
    [Lucas(3*n) : n in [0..100]]; // Vincenzo Librandi, Apr 14 2011
  • Mathematica
    Table[LucasL[3*n], {n,0,100}] (* G. C. Greubel, Nov 07 2018 *)
  • PARI
    polsym(x^2-4*x-1,100)
    
  • PARI
    a(n)=sum(k=0,n,binomial(n,k)*(fibonacci(n+k-1)+fibonacci(n+k+1))) \\ Paul D. Hanna, Oct 19 2010
    
  • Sage
    [lucas_number2(n,4,-1) for n in range(0, 23)] # Zerinvary Lajos, May 14 2009
    

Formula

G.f.: (2-4*x)/(1-4*x-x^2).
a(n) = 4*a(n-1) +a(n-2) with n>1, a(0)=2, a(1)=4.
a(n) = (2+sqrt(5))^n + (2-sqrt(5))^n.
a(n) = 2*A001077(n).
a(n) = A000032(3*n).
a(n) = Sum_{k=0..n} C(n,k)*Lucas(n+k). - Paul D. Hanna, Oct 19 2010
a(n) = Fibonacci(6*n)/Fibonacci(3*n), n>0. - Gary Detlefs, Dec 26 2010
From Peter Bala, Mar 22 2015: (Start)
a(n) = ( Fibonacci(3*n + 2*k) - F(3*n - 2*k) )/Fibonacci(2*k) for nonzero integer k.
a(n) = ( Fibonacci(3*n + 2*k + 1) + F(3*n - 2*k - 1) )/Fibonacci(2*k + 1) for arbitrary integer k. (End)
a(n) = [x^n] ( (1 + 4*x + sqrt(1 + 8*x + 20*x^2))/2 )^n for n >= 1. - Peter Bala, Jun 23 2015
a(n) = L(n)*(L(n-1)*L(n+1) + 2*(-1)^n). - J. M. Bergot, Feb 05 2016
From Peter Bala Oct 14 2019: (Start)
Sum_{n >= 1} 1/( a(n) + (-1)^(n+1)*20/a(n) ) = 3/16.
Sum_{n >= 1} (-1)^(n+1)/( a(n) + (-1)^(n+1)*20/a(n) ) = 1/16. (End)
a(n) = (15*Fibonacci(n)^2*Lucas(n) + Lucas(n)^3)/4 (Ferns, 1967). - Amiram Eldar, Feb 06 2022
E.g.f.: 2*exp(2*x)*cosh(sqrt(5)*x). - Stefano Spezia, Jan 18 2025

Extensions

More terms from Erich Friedman

A049685 a(n) = L(4*n+2)/3, where L=A000032 (the Lucas sequence).

Original entry on oeis.org

1, 6, 41, 281, 1926, 13201, 90481, 620166, 4250681, 29134601, 199691526, 1368706081, 9381251041, 64300051206, 440719107401, 3020733700601, 20704416796806, 141910183877041, 972666870342481, 6666757908520326, 45694638489299801, 313195711516578281
Offset: 0

Views

Author

Keywords

Comments

In general, Sum_{k=0..n} binomial(2*n-k,k)j^(n-k) = (-1)^n*U(2n, I*sqrt(j)/2), i=sqrt(-1). - Paul Barry, Mar 13 2005
a(n) = L(n,7), where L is defined as in A108299; see also A033890 for L(n,-7). - Reinhard Zumkeller, Jun 01 2005
Take 7 numbers consisting of 5 ones together with any two successive terms from this sequence. This set has the property that the sum of their squares is 7 times their product. (R. K. Guy, Oct 12 2005.) See also A111216.
Number of 01-avoiding words of length n on alphabet {0,1,2,3,4,5,6} which do not end in 0. - Tanya Khovanova, Jan 10 2007
For positive n, a(n) equals the permanent of the (2n) X (2n) tridiagonal matrix with sqrt(5)'s along the main diagonal, and 1's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 08 2011
From Wolfdieter Lang, Feb 09 2021: (Start)
All positive solutions of the Diophantine equation x^2 + y^2 - 7*x*y = -5 are given by [x(n) = S(n, 7) - S(n-1, 7), y(n) = x(n-1)], for all integer numbers n, with the Chebyshev S-polynomials (A049310), with S(-1, 0) = 0, and S(-n, x) = -S(n-2, x), for n >= 2. x(n) = a(n), for n >= 0.
This indefinite binary quadratic form has discriminant D = +45. There is only this family representing -5 properly with x and y positive, and there are no improper solutions.
All proper and improper solutions of the generalized Pell equation X^2 - 45*Y^2 = +4 are given, up to a combined sign change in X and Y, in terms of x(n) = a(n) from the preceding comment, by X(n) = x(n) + x(n-1) = S(n-1, 7) - S(n-2, 7) and Y(n) = (x(n) - x(n-1))/3 = S(n-1, 7), for all integer numbers n. For positive integers X(n) = A056854(n) and Y(n) = A004187(n). X(-n) = X(n) and Y(-n) = - Y(n), for n >= 1.
The two conjugated proper family of solutions are given by [X(3*n+1), Y(3*n+1)] and [X(3*n+2), Y(3*n+2)], and the one improper family by [X(3*n), Y(3*n)], for all integer numbers n.
This comment is inspired by a paper by Robert K. Moniot (private communication). See his Oct 04 2020 comment in A027941 related to the case of x^2 + y^2 - 3*x*y = -1 (special Markov solutions). (End)

Examples

			a(3) = L(4*3 + 2)/3 = 843/3 = 281. - _Indranil Ghosh_, Feb 06 2017
		

Crossrefs

Row 7 of array A094954. First differences of A004187.
Cf. similar sequences listed in A238379.

Programs

  • Magma
    [Lucas(4*n+2)/3: n in [0..30]]; // G. C. Greubel, Dec 17 2017
  • Mathematica
    Table[LucasL[4*n+2]/3, {n,0,50}] (* or *) LinearRecurrence[{7,-1}, {1,6}, 50] (* G. C. Greubel, Dec 17 2017 *)
  • PARI
    a(n)=(fibonacci(4*n+1)+fibonacci(4*n+3))/3 \\ Charles R Greathouse IV, Jun 16 2014
    
  • Sage
    [lucas_number1(n,7,1)-lucas_number1(n-1,7,1) for n in range(1, 20)] # Zerinvary Lajos, Nov 10 2009
    

Formula

Let q(n, x) = Sum_{i=0, n} x^(n-i)*binomial(2*n-i, i); then q(n, 5)=a(n); a(n) = 7a(n-1) - a(n-2). - Benoit Cloitre, Nov 10 2002
From Ralf Stephan, May 29 2004: (Start)
a(n+2) = 7a(n+1) - a(n).
G.f.: (1-x)/(1-7x+x^2).
a(n)*a(n+3) = 35 + a(n+1)*a(n+2). (End)
a(n) = Sum_{k=0..n} binomial(n+k, 2k)*5^k. - Paul Barry, Aug 30 2004
If another "1" is inserted at the beginning of the sequence, then A002310, A002320 and A049685 begin with 1, 2; 1, 3; and 1, 1; respectively and satisfy a(n+1) = (a(n)^2+5)/a(n-1). - Graeme McRae, Jan 30 2005
a(n) = (-1)^n*U(2n, i*sqrt(5)/2), U(n, x) Chebyshev polynomial of second kind, i=sqrt(-1). - Paul Barry, Mar 13 2005
[a(n), A004187(n+1)] = [1,5; 1,6]^(n+1) * [1,0]. - Gary W. Adamson, Mar 21 2008
a(n) = S(n, 7) - S(n-1, 7) with Chebyshev S polynomials S(n-1, 7) = A004187(n), for n >= 0. - Wolfdieter Lang, Feb 09 2021
E.g.f.: exp(7*x/2)*(3*cosh(3*sqrt(5)*x/2) + sqrt(5)*sinh(3*sqrt(5)*x/2))/3. - Stefano Spezia, Apr 14 2025
From Peter Bala, May 04 2025: (Start)
a(n) = sqrt(2/9) * sqrt(1 - T(2*n+1, -7/2)), where T(k, x) denotes the k-th Chebyshev polynomial of the first kind.
a(n) divides a(3*n+1); a(n) divides a(5*n+2); in general, for k >= 0, a(n) divides a((2*k+1)*n + k).
The aerated sequence [b(n)]n>=1 = [1, 0, 6, 0, 41, 0, 281, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -9, Q = 1 of the 3-parameter family of divisibility sequences found by Williams and Guy.
Sum_{n >= 1} 1/(a(n) - 1/a(n)) = 1/5 (telescoping series: for n >= 1, 1/(a(n) - 1/a(n)) = 1/A290903(n-1) - 1/A290903(n).) (End)

A049684 a(n) = Fibonacci(2n)^2.

Original entry on oeis.org

0, 1, 9, 64, 441, 3025, 20736, 142129, 974169, 6677056, 45765225, 313679521, 2149991424, 14736260449, 101003831721, 692290561600, 4745030099481, 32522920134769, 222915410843904, 1527884955772561, 10472279279564025, 71778070001175616, 491974210728665289
Offset: 0

Views

Author

Keywords

Comments

This is the r=9 member of the r-family of sequences S_r(n) defined in A092184 where more information can be found.
Apparently, this sequence consists of those nonnegative integers k for which x*(x^2-1)*y*(y^2-1) = k*(k^2-1) has a solution in nonnegative integers x, y. If k = a(n), x = A000045(2*n-1) and y = A000045(2*n+1) are a solution. See A374375 for numbers k*(k^2-1) that can be written as a product of two or more factors of the form x*(x^2-1). - Pontus von Brömssen, Jul 14 2024

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 27.
  • H. J. H. Tuenter, Fibonacci summation identities arising from Catalan's identity, Fib. Q., 60:4 (2022), 312-319.

Crossrefs

First differences give A033890.
First differences of A103434.
Bisection of A007598 and A064841.
a(n) = A064170(n+2) - 1 = (1/5) A081070.

Programs

  • Mathematica
    Join[{a=0, b=1}, Table[c=7*b-1*a+2; a=b; b=c, {n, 60}]] (* Vladimir Joseph Stephan Orlovsky, Jan 18 2011 *)
    Fibonacci[Range[0, 40, 2]]^2 (* Harvey P. Dale, Mar 22 2012 *)
    Table[Fibonacci[n - 1] Fibonacci[n + 1] - 1, {n, 0, 40, 2}] (* Bruno Berselli, Feb 12 2015 *)
    LinearRecurrence[{8, -8, 1},{0, 1, 9},21] (* Ray Chandler, Sep 23 2015 *)
  • MuPAD
    numlib::fibonacci(2*n)^2 $ n = 0..35; // Zerinvary Lajos, May 13 2008
    
  • PARI
    a(n)=fibonacci(2*n)^2
    
  • Sage
    [fibonacci(2*n)^2 for n in range(0, 21)] # Zerinvary Lajos, May 15 2009

Formula

G.f.: (x+x^2) / ((1-x)*(1-7*x+x^2)).
a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3) with n>2, a(0)=0, a(1)=1, a(2)=9.
a(n) = 7*a(n-1) - a(n-2) + 2 = A001906(n)^2.
a(n) = (A000032(4*n)-2)/5. [This is in Koshy's book (reference under A065563) on p. 88, attributed to Lucas 1876.] - Wolfdieter Lang, Aug 27 2012
a(n) = 1/5*(-2 + ( (7+sqrt(45))/2 )^n + ( (7-sqrt(45))/2 )^n). - Ralf Stephan, Apr 14 2004
a(n) = 2*(T(n, 7/2)-1)/5 with twice the Chebyshev polynomials of the first kind evaluated at x=7/2: 2*T(n, 7/2)= A056854(n). - Wolfdieter Lang, Oct 18 2004
a(n) = F(2*n-1)*F(2*n+1)-1, see A064170 - Bruno Berselli, Feb 12 2015
a(n) = Sum_{i=1..n} F(4*i-2) for n>0. - Bruno Berselli, Aug 25 2015
From Peter Bala, Nov 20 2019: (Start)
Sum_{n >= 1} 1/(a(n) + 1) = (sqrt(5) - 1)/2.
Sum_{n >= 1} 1/(a(n) + 4) = (3*sqrt(5) - 2)/16. More generally, it appears that
Sum_{n >= 1} 1/(a(n) + F(2*k+1)^2) = ((2*k+1)*F(2*k+1)*sqrt(5) - Lucas(2*k+1))/ (2*F(2*k+1)*F(4*k+2)) for k = 0,1,2,....
Sum_{n >= 2} 1/(a(n) - 1) = (8 - 3*sqrt(5))/9. (End)
E.g.f.: (1/5)*(-2*exp(x) + exp((16*x)/(1 + sqrt(5))^4) + exp((1/2)*(7 + 3*sqrt(5))*x)). - Stefano Spezia, Nov 23 2019
Product_{n>=2} (1 - 1/a(n)) = phi^2/3, where phi is the golden ratio (A001622) (Davlianidze, 2020). - Amiram Eldar, Dec 01 2021
a(n) = A092521(n-1)+A092521(n). - R. J. Mathar, Nov 22 2024

Extensions

Better description and more terms from Michael Somos

A087215 Lucas(6*n): a(n) = 18*a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 18.

Original entry on oeis.org

2, 18, 322, 5778, 103682, 1860498, 33385282, 599074578, 10749957122, 192900153618, 3461452808002, 62113250390418, 1114577054219522, 20000273725560978, 358890350005878082, 6440026026380244498, 115561578124838522882, 2073668380220713167378
Offset: 0

Views

Author

Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Oct 19 2003

Keywords

Comments

a(n+1)/a(n) converges to 9 + sqrt(80) = 17.9442719... a(0)/a(1) = 2/18; a(1)/a(2) = 18/322; a(2)/a(3) = 322/5778; a(3)/a(4) = 5778/103682; etc.
Lim_{n -> oo} a(n)/a(n+1) = 0.05572809000084... = 1/(9 + sqrt(80)) = 9 - sqrt(80).
From Peter Bala, Oct 13 2019: (Start)
Let F(x) = Product_{n >= 0} (1 + x^(4*n+1))/(1 + x^(4*n+3)). Let Phi = (1/2)*(sqrt(5) - 1). This sequence gives the partial denominators in the simple continued fraction expansion of the number F(Phi^6) = 1.0555459720... = 1 + 1/(18 + 1/(322 + 1/(5778 + ...))).
Also F(-Phi^6) = 0.9444348576... has the continued fraction representation 1 - 1/(18 - 1/(322 - 1/(5788 - ...))) and the simple continued fraction expansion 1/(1 + 1/((18 - 2) + 1/(1 + 1/((322 - 2) + 1/(1 + 1/((5788 - 2) + 1/(1 + ...))))))).
F(Phi^6)*F(-Phi^6) = 0.9968944099... has the simple continued fraction expansion 1/(1 + 1/((18^2 - 4) + 1/(1 + 1/((322^2 - 4) + 1/(1 + 1/((5788^2 - 4) + 1/(1 + ...))))))).
1/2 + (1/2)*F(Phi^6)/F(-Phi^6) = 1.0588241282... has the simple continued fraction expansion 1 + 1/((18 - 2) + 1/(1 + 1/((5778 - 2) + 1/(1 + 1/(1860498 - 2) + 1/(1 + ...))))). (End)

Examples

			a(4) = 103682 = 18*a(3) - a(2) = 18*5778 - 322 = (9 + sqrt(80))^4 + (9 - sqrt(80))^4 = 103681.99999035512... + 0.00000964487... = 103682.
		

References

  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 91.
  • R. P. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999.

Crossrefs

Cf. A074919.
Row 2 * 2 of array A188645.
Cf. Lucas(k*n): A000032 (k = 1), A005248 (k = 2), A014448 (k = 3), A056854 (k = 4), A001946 (k = 5), A087281 (k = 7), A087265 (k = 8), A087287 (k = 9), A065705 (k = 10), A089772 (k = 11), A089775 (k = 12).

Programs

  • Magma
    [ Lucas(6*n) : n in [0..100]]; // Vincenzo Librandi, Apr 14 2011
    
  • Mathematica
    a[0] = 2; a[1] = 18; a[n_] := 18a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 15}] (* Robert G. Wilson v, Jan 30 2004 *)
    Table[LucasL[6n], {n, 0, 18}]  (* or *) CoefficientList[Series[2*(1 - 9*x)/(1 - 18*x + x^2), {x, 0, 17}], x] (* Indranil Ghosh, Mar 15 2017 *)
  • PARI
    Vec(2*(1-9*x)/(1-18*x+x^2) + O(x^20)) \\ Colin Barker, Jan 24 2016
    
  • PARI
    a(n) = if(n<2, 17^n + 1, 18*a(n - 1) - a(n - 2));
    for(n=0, 17, print1(a(n),", ")) \\ Indranil Ghosh, Mar 15 2017

Formula

a(n) = A000032(6*n).
a(n) = 18*a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 18.
a(n) = (9 + sqrt(80))^n + (9 - sqrt(80))^n.
G.f.: 2*(1-9*x)/(1-18*x+x^2). - Philippe Deléham, Nov 17 2008
a(n) = 2*A023039(n). - R. J. Mathar, Oct 22 2010
From Peter Bala, Oct 13 2019: (Start)
a(n) = F(6*n+6)/F(6) - F(6*n-6)/F(6) = A049660(n+1) - A049660(n-1).
a(n) = trace(M^n), where M is the 2 X 2 matrix [0, 1; 1, 1]^6 = [5, 8; 8, 13].
Consequently the Gauss congruences hold: a(n*p^k) = a(n*p^(k-1)) ( mod p^k ) for all prime p and positive integers n and k. See Zarelua and also Stanley (Ch. 5, Ex. 5.2(a) and its solution).
16*Sum_{n >= 1} 1/(a(n) - 20/a(n)) = 1: (20 = Lucas(6) + 2 and 16 = Lucas(6) - 2)
20*Sum_{n >= 1} (-1)^(n+1)/(a(n) + 16/a(n)) = 1.
Series acceleration formulas for sum of reciprocals:
Sum_{n >= 1} 1/a(n) = 1/16 - 20*Sum_{n >= 1} 1/(a(n)*(a(n)^2 - 20)).
Sum_{n >= 1} (-1)^(n+1)/a(n) = 1/20 + 16*Sum_{n >= 1} (-1)^(n+1)/(a(n)*(a(n)^2 + 16)).
Sum_{n >= 1} 1/a(n) = ( (theta_3(9-4*sqrt(5)))^2 - 1 )/4 and
Sum_{n >= 1} (-1)^(n+1)/a(n) = ( 1 - (theta_3(4*sqrt(5)-9))^2 )/4,
where theta_3(x) = 1 + 2*Sum_{n >= 1} x^(n^2) (see A000122). Cf. A153415 and A003499.
x*exp(Sum_{n >= 1} a(n)*x^/n) = x + 18*x^2 + 323*x^3 + ... is the o.g.f. for A049660. (End)
E.g.f.: 2*exp(9*x)*cosh(4*sqrt(5)*x). - Stefano Spezia, Oct 18 2019
a(n) = L(2n-1)^2 * F(2n+1) + L(2n+1)^2 * F(2n-1), where F(n) = A000045(n) and L(n) = A000032(n). - Diego Rattaggi, Nov 12 2020
From Peter Bala, Apr 16 2025: (Start)
a(n) = Lucas(2*n)^3 - 3*Lucas(2*n) = 2*T(3, (1/2)*Lucas(2*n)), where T(k, x) denotes the k-th Chebyshev polynomial of the first kind; more generally, for k >= 0, Lucas(2*k*n) = 2*T(k, Lucas(2*n)/2).
Sum_{n >= 1} 1/a(n) = (1/4) * (theta_3(9 - sqrt(80))^2 - 1) and
Sum_{n >= 1} (-1)^(n+1)/a(n) = (1/4) * (1 - theta_3(sqrt(80) - 9)^2), where theta_3(x) = 1 + 2*Sum_{n >= 1} x^(n^2) (see A000122). See Borwein and Borwein, Proposition 3.5 (i), p. 91. Cf. A153415 and A003499. (End)

A153415 Decimal expansion of Sum_{n>=1} 1/A000032(2*n).

Original entry on oeis.org

5, 6, 6, 1, 7, 7, 6, 7, 5, 8, 1, 1, 3, 8, 4, 5, 5, 0, 2, 7, 5, 9, 2, 9, 3, 2, 1, 2, 1, 2, 0, 6, 2, 0, 0, 3, 7, 3, 6, 1, 4, 4, 1, 9, 7, 8, 6, 5, 9, 0, 5, 5, 7, 0, 4, 9, 2, 3, 4, 4, 4, 1, 3, 2, 5, 4, 5, 7, 5, 5, 5, 4, 5, 3, 0, 2, 0, 8, 6, 8, 5, 6, 1, 4, 8, 5, 5, 6, 7, 8, 4, 2, 1, 8, 1, 8, 3, 2, 6, 6, 4, 6, 1, 5, 3
Offset: 0

Views

Author

Eric W. Weisstein, Dec 25 2008

Keywords

Comments

From Peter Bala, Oct 15 2019: (Start)
c = (1/4)*(theta_3( (3-sqrt(5))/2 )^2 - 1 ), where theta_3(q) = 1 + 2*Sum_{n >= 1} q^n^2. See Borwein and Borwein, Proposition 3.5 (i), p. 91. Cf. A056854.
Series acceleration formulas (L(n) = A000032(n)):
c = 1 - 5*Sum_{n >= 1} 1/( L(2*n)*(L(2*n)^2 - 5) ).
c = (1/6) + 15*Sum_{n >= 1} 1/( L(2*n)*(L(2*n)^2 + 5) ).
c = (11/16) - 10*Sum_{n >= 1} (L(2*n)^2 - 10)/( L(2*n)*(L(2*n)^2 - 5)*(L(2*n)^2 - 20) ). (End)
Compare with Sum_{n >= 1} 1/(L(2*n) - sqrt(5)) = phi and Sum_{n >= 1} 1/(L(2*n) + sqrt(5)) = 2 - phi, where phi = (sqrt(5) + 1)/2. - Peter Bala, Nov 23 2019
This constant is transcendental (Duverney et al., 1997). - Amiram Eldar, Oct 30 2020

Examples

			0.56617767581138455027...
		

References

  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 91.

Crossrefs

Programs

A087265 Lucas numbers L(8*n).

Original entry on oeis.org

2, 47, 2207, 103682, 4870847, 228826127, 10749957122, 505019158607, 23725150497407, 1114577054219522, 52361396397820127, 2459871053643326447, 115561578124838522882, 5428934300813767249007, 255044350560122222180447
Offset: 0

Views

Author

Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Oct 19 2003

Keywords

Comments

a(n+1)/a(n) converges to (47+sqrt(2205))/2 = 46.9787137... a(0)/a(1)=2/47; a(1)/a(2)=47/2207; a(2)/a(3)=2207/103682; a(3)/a(4)=103682/4870847; etc. Lim_{n->infinity} a(n)/a(n+1) = 0.02128623625... = 2/(47+sqrt(2205)) = (47-sqrt(2205))/2.
a(n) = a(-n). - Alois P. Heinz, Aug 07 2008
From Peter Bala, Oct 14 2019: (Start)
Let F(x) = Product_{n >= 0} (1 + x^(4*n+1))/(1 + x^(4*n+3)). Let Phi = 1/2*(sqrt(5) - 1). This sequence gives the partial denominators in the simple continued fraction expansion of the number F(Phi^8) = 1.0212763906... = 1 + 1/(47 + 1/(2207 + 1/(103682 + ...))).
Also F(-Phi^8) = 0.9787231991... has the continued fraction representation 1 - 1/(47 - 1/(2207 - 1/(103682 - ...))) and the simple continued fraction expansion 1/(1 + 1/((47 - 2) + 1/(1 + 1/((2207 - 2) + 1/(1 + 1/((103682 - 2) + 1/(1 + ...))))))).
F(Phi^8)*F(-Phi^8) = 0.9995468962... has the simple continued fraction expansion 1/(1 + 1/((47^2 - 4) + 1/(1 + 1/((2207^2 - 4) + 1/(1 + 1/((103682^2 - 4) + 1/(1 + ...))))))).
1/2 + 1/2*F(Phi^8)/F(-Phi^8) = 1.0217391349... has the simple continued fraction expansion 1 + 1/((47 - 2) + 1/(1 + 1/((103682 - 2) + 1/(1 + 1/(228826127 - 2) + 1/(1 + ...))))). (End)

Examples

			a(4) = 4870847 = 47*a(3) - a(2) = 47*103682 - 2207=((47+sqrt(2205))/2)^4 + ( (47-sqrt(2205))/2)^4 =4870846.999999794696 + 0.000000205303 = 4870847.
		

References

  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 91.
  • R. P. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999.

Crossrefs

Cf. A000032. Cf. Lucas(k*n): A005248 (k = 2), A014448 (k = 3), A056854 (k = 4), A001946 (k = 5), A087215 (k = 6), A087281 (k = 7), A087287 (k = 9), A065705 (k = 10), A089772 (k = 11), A089775 (k = 12).
a(n) = A000032(8n).

Programs

  • Magma
    [ Lucas(8*n) : n in [0..100]]; // Vincenzo Librandi, Apr 14 2011
  • Maple
    a:= n-> (Matrix([[2,47]]). Matrix([[47,1],[ -1,0]])^(n))[1,1]:
    seq(a(n), n=0..14);  # Alois P. Heinz, Aug 07 2008
  • Mathematica
    LucasL[8*Range[0,20]] (* or *) LinearRecurrence[{47,-1},{2,47},20] (* Harvey P. Dale, Oct 23 2017 *)

Formula

a(n) = 47*a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 47.
a(n) = ((47+sqrt(2205))/2)^n + ((47-sqrt(2205))/2)^n
(a(n))^2 = a(2n)+2.
G.f.: (2-47*x)/(1-47*x+x^2). - Alois P. Heinz, Aug 07 2008
From Peter Bala, Oct 14 2019: (Start)
a(n) = F(8*n+8)/F(8) - F(8*n-8)/F(8) = A049668(n+1) - A049668(n-1).
a(n) = trace(M^n), where M is the 2 X 2 matrix [0, 1; 1, 1]^8 = [13, 21; 21, 34].
Consequently the Gauss congruences hold: a(n*p^k) = a(n*p^(k-1)) ( mod p^k ) for all prime p and positive integers n and k. See Zarelua and also Stanley (Ch. 5, Ex. 5.2(a) and its solution).
45*Sum_{n >= 1} 1/(a(n) - 49/a(n)) = 1: (49 = Lucas(8) + 2 and 45 = Lucas(8) - 2)
49*Sum_{n >= 1} (-1)^(n+1)/(a(n) + 45/a(n)) = 1.
x*exp(Sum_{n >= 1} a(n)*x^/n) = x + 47*x^2 + 2208*x^3 + ... is the o.g.f. for A049668. (End)
E.g.f.: 2*exp(47*x/2)*cosh(21*sqrt(5)*x/2). - Stefano Spezia, Oct 18 2019
From Peter Bala, Apr 16 2025: (Start)
a(n) = Lucas(2*n)^4 - 4*Lucas(2*n)^2 + 2 = 2*T(4, (1/2)*Lucas(2*n)), where T(k, x) denotes the k-th Chebyshev polynomial of the first kind; more generally, for k >= 0, Lucas(2*k*n) = 2*T(k, Lucas(2*n)/2).
Sum_{n >= 1} 1/a(n) = (1/4) * (theta_3( (47 - sqrt(2205))/2 )^2 - 1) and
Sum_{n >= 1} (-1)^(n+1)/a(n) = (1/4) * (1 - theta_3( (sqrt(2205) - 47)/2 )^2),
where theta_3(x) = 1 + 2*Sum_{n >= 1} x^(n^2) (see A000122). See Borwein and Borwein, Proposition 3.5 (i), p. 91. Cf. A153415 and A003499. (End)

Extensions

Terms a(22)-a(27) from John W. Layman, Jun 14 2004

A056914 a(n) = Lucas(4*n+1).

Original entry on oeis.org

1, 11, 76, 521, 3571, 24476, 167761, 1149851, 7881196, 54018521, 370248451, 2537720636, 17393796001, 119218851371, 817138163596, 5600748293801, 38388099893011, 263115950957276, 1803423556807921, 12360848946698171
Offset: 0

Views

Author

Barry E. Williams, Jul 11 2000

Keywords

Comments

a(n) = (t(i+4n+1) - t(i))/(t(i+2n+1) - t(i+2n)), where (t) is any sequence of the form t(n+2) = 4t(n+1) - 4t(n) + t(n-1) or of the form t(n+1) = 3t(n) - t(n-1) without regard to initial values as long as t(i+2n+1) - t(i+2n) != 0. - Klaus Purath, Jun 24 2024

References

  • V. E. Hoggatt, Jr., Fibonacci and Lucas Numbers, A Publication of the Fibonacci Association, Houghton Mifflin Co., 1969, pp. 27-29.

Crossrefs

Cf. (A056914) = sqrt{5*(A033889)^2 - 4}.
Cf. quadrisection of A000032: A056854 (first), this sequence (second), A246453 (third, without 11), A288913 (fourth).

Programs

  • GAP
    List([0..30], n-> Lucas(1,-1,4*n+1)[2] ); # G. C. Greubel, Jan 16 2020
  • Magma
    [Lucas(4*n+1): n in [0..30]]; // G. C. Greubel, Dec 24 2017
    
  • Maple
    with(combinat); seq(fibonacci(4*n+2)+fibonacci(4*n), n = 0..30); # G. C. Greubel, Jan 16 2020
  • Mathematica
    LucasL[4*Range[0,30]+1] (* or *) LinearRecurrence[{7,-1}, {1,11}, 30] (* G. C. Greubel, Dec 24 2017 *)
  • PARI
    my(x='x+O('x^30)); Vec((1+4*x)/(1-7*x+x^2)) \\ G. C. Greubel, Dec 24 2017
    
  • Sage
    [lucas_number2(4*n+1,1,-1) for n in (0..30)] # G. C. Greubel, Jan 16 2020
    

Formula

a(n) = 7*a(n-1) - a(n-2), with a(0)=1, a(1)=11.
a(n) = (11*(((7+3*sqrt(5))/2)^n - ((7-3*sqrt(5))/2)^n) - (((7+3*sqrt(5))/2)^(n-1) - ((7-3*sqrt(5))/2)^(n-1)))/3*sqrt(5).
G.f.: (1+4*x)/(1-7*x+x^2). - Philippe Deléham, Nov 02 2008

A065705 a(n) = Lucas(10*n).

Original entry on oeis.org

2, 123, 15127, 1860498, 228826127, 28143753123, 3461452808002, 425730551631123, 52361396397820127, 6440026026380244498, 792070839848372253127, 97418273275323406890123, 11981655542024930675232002, 1473646213395791149646646123, 181246502592140286475862241127
Offset: 0

Views

Author

Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Oct 25 2003

Keywords

Comments

Lim_{n->infinity} a(n+1)/a(n) = (123 + sqrt(15125))/2 = 122.9918693812...
Lim_{n->infinity} a(n)/a(n+1) = (123 - sqrt(15125))/2 = 0.00813061875578...
From Peter Bala, Oct 14 2019: (Start)
Let F(x) = Product_{n >= 0} (1 + x^(4*n+1))/(1 + x^(4*n+3)). Let Phi = 1/2*(sqrt(5) - 1). This sequence gives the partial denominators in the simple continued fraction expansion of the number F(Phi^10) = 1.0081300769... = 1 + 1/(123 + 1/(15127 + 1/(1860498 + ...))).
Also F(-Phi^10) = 0.9918699143... has the continued fraction representation 1 - 1/(123 - 1/(15127 - 1/(1860498 - ...))) and the simple continued fraction expansion 1/(1 + 1/((123 - 2) + 1/(1 + 1/((15127 - 2) + 1/(1 + 1/((1860498 - 2) + 1/(1 + ...))))))).
F(Phi^10)*F(-Phi^10) = 0.9999338930... has the simple continued fraction expansion 1/(1 + 1/((123^2 - 4) + 1/(1 + 1/((15127^2 - 4) + 1/(1 + 1/((1860498^2 - 4) + 1/(1 + ...))))))).
1/2 + (1/2)*F(Phi^10)/F(-Phi^10) = 1.0081967213... has the simple continued fraction expansion 1 + 1/((123 - 2) + 1/(1 + 1/((1860498 - 2) + 1/(1 + 1/(28143753123 - 2) + 1/(1 + ...))))). (End)

Examples

			a(4) = 228826127 = 123*a(3) - a(2) = 123*1860498 - 15127=((123+sqrt(15125))/2)^4 + ( (123-sqrt(15125))/2)^4 =228826126.99999999562986 + 0.00000000437013 = 228826127.
a(4) = L(10 * 4) = L(40) = 228826127. - _Indranil Ghosh_, Feb 08 2017
		

References

  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 91.
  • R. P. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999.

Crossrefs

Cf. A000032: a(n) = A000032(10*n).
Cf. Lucas(k*n): A005248 (k = 2), A014448 (k = 3), A056854 (k = 4), A001946 (k = 5), A087215 (k = 6), A087281 (k = 7), A087265 (k = 8), A087287 (k = 9), A089772 (k = 11), A089775 (k = 12).

Programs

Formula

a(n) = 123*a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 123.
a(n) = ((123 + sqrt(15125))/2)^n + ((123 - sqrt(15125))/2)^n.
a(n)^2 = a(2*n) + 2.
G.f.: (2 - 123*x)/(1 - 123*x + x^2). - Philippe Deléham, Nov 18 2008
From Peter Bala, Oct 14 2019: (Start)
a(n) = F(10*n+10)/F(10) - F(10*n-10)/F(10) = A049670(n+1) - A049670(n-1).
a(n) = trace(M^n), where M is the 2 X 2 matrix [0, 1; 1, 1]^10 = [34, 55; 55, 89].
Consequently the Gauss congruences hold: a(n*p^k) = a(n*p^(k-1)) ( mod p^k ) for all prime p and positive integers n and k. See Zarelua and also Stanley (Ch. 5, Ex. 5.2(a) and its solution).
121*Sum_{n >= 1} 1/(a(n) - 125/a(n)) = 1: (125 = Lucas(10) + 2 and 121 = Lucas(10) - 2)
125*Sum_{n >= 1} (-1)^(n+1)/(a(n) + 121/a(n)) = 1.
x*exp(Sum_{n >= 1} a(n)*x^/n) = x + 123*x^2 + 15128*x^3 + ... is the o.g.f. for A049670. (End)
E.g.f.: exp((1/2)*(123 - 55*sqrt(5))*x)*(1 + exp(55*sqrt(5)*x)). - Stefano Spezia, Oct 18 2019
From Peter Bala, Apr 16 2025: (Start)
a(n) = Lucas(2*n)^5 - 5*Lucas(2*n)^3 + 5*Lucas(2*n) = 2*T(5, (1/2)*Lucas(2*n)), where T(k, x) denotes the k-th Chebyshev polynomial of the first kind.
Sum_{n >= 1} 1/a(n) = (1/4) * (theta_3( (123 - sqrt(15125))/2 )^2 - 1) and
Sum_{n >= 1} (-1)^(n+1)/a(n) = (1/4) * (1 - theta_3( (sqrt(15125) - 123)/2 )^2),
where theta_3(x) = 1 + 2*Sum_{n >= 1} x^(n^2) (see A000122). See Borwein and Borwein, Proposition 3.5 (i), p. 91. Cf. A153415 and A003499. (End)

A089775 Lucas numbers L(12n).

Original entry on oeis.org

2, 322, 103682, 33385282, 10749957122, 3461452808002, 1114577054219522, 358890350005878082, 115561578124838522882, 37210469265847998489922, 11981655542024930675232002, 3858055874062761829426214722, 1242282009792667284144565908482, 400010949097364802732720796316482
Offset: 0

Views

Author

Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 09 2004

Keywords

Comments

a(n+1)/a(n) converges to (322 + sqrt(103680))/2 = 321.996894379... a(0)/a(1) = 2/322; a(1)/a(2) = 322/103682; a(2)/a(3) = 103682/33385282; a(3)/a(4) = 33385282/10749957122; etc. Lim_{n -> inf} a(n)/a(n+1) = 0.00310562... = 2/(322 + sqrt(103680)) = (322 - sqrt(103680))/2.

Examples

			a(4) = 10749957122 = 322*a(3) - a(2) = 322*33385282 - 103682 = ((322 + sqrt(103680))/2)^4 + ((322 - sqrt(103680))/2)^4.
		

References

  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 91.

Crossrefs

a(n) = A000032(12n).
Row 9 * 2 of array A188644
Cf. Lucas(k*n): A005248 (k = 2), A014448 (k = 3), A056854 (k = 4), A001946 (k = 5), A087215 (k = 6), A087281 (k = 7), A087265 (k = 8), A087287 (k = 9), A065705 (k = 10), A089772 (k = 11).

Programs

  • Magma
    [ Lucas(12*n) : n in [0..70]]; // Vincenzo Librandi, Apr 15 2011
    
  • Mathematica
    Table[LucasL[12n], {n, 0, 13}] (* Indranil Ghosh, Mar 15 2017 *)
  • PARI
    Vec((2 - 322*x)/(1 - 322*x + x^2) + O(x^14)) \\ Indranil Ghosh, Mar 15 2017

Formula

a(n) = 322*a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 322
a(n) = ((322 + sqrt(103680))/2)^n + ((322 - sqrt(103680))/2)^n.
(a(n))^2 = a(2n) + 2.
G.f.: (2-322*x)/(1-322*x+x^2). - Philippe Deléham, Nov 02 2008
From Peter Bala, Apr 16 2025: (Start)
a(n) = Lucas(2*n)^6 - 6*Lucas(2*n)^4 + 9*Lucas(2*n)^2 - 2 = 2*T(6, (1/2)*Lucas(2*n)), where T(k, x) denotes the k-th Chebyshev polynomial of the first kind.
320*Sum_{n >= 1} 1/(a(n) - 324/a(n)) = 1: (324 = Lucas(12) + 2 and 320 = Lucas(12) - 2)
324*Sum_{n >= 1} (-1)^(n+1)/(a(n) + 320/a(n)) = 1.
Sum_{n >= 1} 1/a(n) = (1/4) * (theta_3( (322 - sqrt(103680))/2 )^2 - 1) and
Sum_{n >= 1} (-1)^(n+1)/a(n) = (1/4) * (1 - theta_3( (sqrt(103680) - 322)/2 )^2),
where theta_3(x) = 1 + 2*Sum_{n >= 1} x^(n^2) (see A000122). See Borwein and Borwein, Proposition 3.5 (i), p. 91. (End)

Extensions

a(11) - a(13) from Vincenzo Librandi, Apr 15 2011
Previous Showing 11-20 of 38 results. Next