cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 43 results. Next

A335670 Odd composite integers m such that A014448(m) == 4 (mod m).

Original entry on oeis.org

9, 85, 161, 341, 705, 897, 901, 1105, 1281, 1853, 2465, 2737, 3745, 4181, 4209, 4577, 5473, 5611, 5777, 6119, 6721, 9701, 9729, 10877, 11041, 12209, 12349, 13201, 13481, 14981, 15251, 16185, 16545, 16771, 19669, 20591, 20769, 20801, 21845, 23323, 24465, 25345
Offset: 1

Views

Author

Ovidiu Bagdasar, Jun 17 2020

Keywords

Comments

If p is a prime, then A014448(p)==4 (mod p).
This sequence contains the odd composite integers for which the congruence holds.
The generalized Pell-Lucas sequence of integer parameters (a,b) defined by V(n+2)=a*V(n+1)-b*V(n) and V(0)=2, V(1)=a, satisfy the identity V(p)==a (mod p) whenever p is prime and b=-1,1.
For a=4, b=-1, V(n) recovers A014448(n) (even Lucas numbers).

Examples

			9 is the first odd composite integer for which A014448(9)=439204==4 (mod 9).
		

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer (to appear, 2020).

Crossrefs

Cf. A006497, A005845 (a=1), A330276 (a=2), A335669 (a=3), A335671 (a=5).

Programs

  • Maple
    M:= <<4|1>,<1|0>>:
    f:= proc(n) uses LinearAlgebra:-Modular;
    local A;
    A:= Mod(n,M,integer[8]);
    A:= MatrixPower(n,A,n);
    2*A[1,1] - 4*A[1,2] mod n;
    end proc:
    select(t -> f(t) = 4 and not isprime(t), [seq(i,i=3..10^5,2)]); # Robert Israel, Jun 19 2020
  • Mathematica
    Select[Range[3, 25000, 2], CompositeQ[#] && Divisible[LucasL[3#] - 4, #] &] (* Amiram Eldar, Jun 18 2020 *)

Extensions

More terms from Jinyuan Wang, Jun 17 2020

A228842 Binomial transform of A014448.

Original entry on oeis.org

2, 6, 28, 144, 752, 3936, 20608, 107904, 564992, 2958336, 15490048, 81106944, 424681472, 2223661056, 11643240448, 60964798464, 319215828992, 1671435780096, 8751751364608, 45824765067264, 239941584945152, 1256350449401856, 6578336356630528, 34444616342175744
Offset: 0

Views

Author

R. J. Mathar, Nov 10 2013

Keywords

Comments

The binomial transform of this sequence is 2, 8, 42, 248,... = 2*A108404(n).

References

  • C. Smith, A Treatise on Algebra, Macmillan, London, 5th ed., 1950, p. 360, Example 44.

Crossrefs

When divided by 2^n this becomes(essentially) A005248.

Programs

  • Mathematica
    CoefficientList[Series[2*(1 - 3 x)/(1 - 6 x + 4 x^2), {x, 0, 23}], x] (* Michael De Vlieger, Aug 26 2021 *)
    LinearRecurrence[{6,-4},{2,6},30] (* Harvey P. Dale, Jun 30 2024 *)
  • PARI
    Vec(2*(1 - 3*x) / (1 - 6*x + 4*x^2) + O(x^30)) \\ Colin Barker, Sep 21 2017

Formula

G.f.: 2*( 1-3*x ) / ( 1-6*x+4*x^2 ).
a(n) = 2*A098648(n).
From Colin Barker, Sep 21 2017: (Start)
a(n) = (3-sqrt(5))^n + (3+sqrt(5))^n.
a(n) = 6*a(n-1) - 4*a(n-2) for n>1.
(End)

A174506 Continued fraction expansion for exp( Sum_{n>=1} 1/(n*A014448(n)) ), where A014448(n) = (2+sqrt(5))^n + (2-sqrt(5))^n.

Original entry on oeis.org

1, 3, 17, 1, 75, 321, 1, 1363, 5777, 1, 24475, 103681, 1, 439203, 1860497, 1, 7881195, 33385281, 1, 141422323, 599074577, 1, 2537720635, 10749957121, 1, 45537549123, 192900153617, 1, 817138163595, 3461452808001, 1
Offset: 0

Views

Author

Paul D. Hanna, Mar 21 2010

Keywords

Examples

			Let L = Sum_{n>=1} 1/(n*A014448(n)) or, more explicitly,
L = 1/4 + 1/(2*18) + 1/(3*76) + 1/(4*322) + 1/(5*1364) +...
so that L = 0.2831229765066671850017990708479258794794782639219...
then exp(L) = 1.3272683746094012523448609429829013914921330866098...
equals the continued fraction given by this sequence:
exp(L) = [1;3,17,1,75,321,1,1363,5777,1,24475,103681,1,...]; i.e.,
exp(L) = 1 + 1/(3 + 1/(17 + 1/(1 + 1/(75 + 1/(321 + 1/(1 +...)))))).
Compare these partial quotients to A014448(n), n=1,2,3,...:
[4,18,76,322,1364,5778,24476,103682,439204,1860498,7881196,33385282,...].
		

Crossrefs

Programs

  • PARI
    {a(n)=local(L=sum(m=1,2*n+1000,1./(m*round((2+sqrt(5))^m+(2-sqrt(5))^m))));contfrac(exp(L))[n]}

Formula

a(3n-3) = 1, a(3n-2) = A014448(2n-1) - 1, a(3n-1) = A014448(2n) - 1, for n>=1 [conjecture].
a(n) = 19*a(n-3)-19*a(n-6)+a(n-9). G.f.: -(x^2 -x +1)*(x^6 -4*x^5 -4*x^4 -2*x^3 +20*x^2 +4*x +1) / ((x -1)*(x^2 -3*x +1)*(x^2 +x +1)*(x^4 +3*x^3 +8*x^2 +3*x +1)). [Colin Barker, Jan 20 2013]
From Peter Bala, Jan 25 2013: (Start)
The above conjectures are correct. The real number exp( Sum {n>=1} 1/(n*A014448(n)) ) is equal to the infinite product F(x) := product {n >= 0} (1 + x^(4*n+3))/(1 - x^(4*n+1)) evaluated at x = sqrt(5) - 2. Ramanujan has given a continued fraction expansion for the product F(x). Using this we can find the simple continued fraction expansion of the numbers F(1/2*(sqrt(N^2 + 4) - N)), N a positive integer. The present case is when N = 4. See the Bala link for details.
The theory also provides the simple continued fraction expansion of the numbers F({sqrt(5) - 2}^(2*k+1)), k = 1, 2, 3, ...: if [1; c(1), c(2), 1, c(3), c(4), 1, ...] denotes the present sequence then the simple continued fraction expansion of F({sqrt(5) - 2}^(2*k+1)) is given by [1; c(2*k+1), c(2*(2*k+1)), 1, c(3*(2*k+1)), c(4*(2*k+1)), 1, ...].
(End)

A306672 Partial sums of the even Lucas numbers (A014448).

Original entry on oeis.org

2, 6, 24, 100, 422, 1786, 7564, 32040, 135722, 574926, 2435424, 10316620, 43701902, 185124226, 784198804, 3321919440, 14071876562, 59609425686, 252509579304, 1069647742900, 4531100550902, 19194049946506, 81307300336924, 344423251294200, 1459000305513722, 6180424473349086
Offset: 0

Views

Author

Rigoberto Florez, Mar 04 2019

Keywords

Examples

			L(0) + L(3) = 6;
L(0) + L(3) + L(6) = 24;
L(0) + L(3) + L(6) + L(9) = 100.
		

Crossrefs

Programs

  • Maple
    f:= gfun:-rectoproc({a(n + 3) - 5*a(n + 2) + 3*a(n + 1) + a(n), a(0) = 2, a(1) = 6, a(2) = 24},a(n),remember):
    map(f, [$0..60]); # Robert Israel, Mar 05 2019
  • Mathematica
    Table[(Lucas[3n+2]-1)/2+1,{n,0,25}]
    Accumulate[Select[LucasL[Range[0,100]],EvenQ]] (* or *) LinearRecurrence[ {5,-3,-1},{2,6,24},30] (* Harvey P. Dale, Jan 18 2021 *)
  • PARI
    L(n) = fibonacci(n+1)+fibonacci(n-1);
    a(n) = sum(k=0, n, L(3*k)); \\ Michel Marcus, Mar 05 2019
    
  • Perl
    use ntheory ":all"; sub a { vecsum(map{lucasv(1,-1,3*$)}0..$[0]) } # Dana Jacobsen, Mar 05 2019

Formula

a(n) = L(0) + L(3) + L(6) + L(9) + ... + L(3n), L(n) = Lucas numbers A000032.
a(n) = Sum_{i=0..n} L(3i).
a(n) = (L(3*n+2)-1)/2+1.
G.f.: -2*(2*x-1)/((x-1)*(x^2+4*x-1)). - Alois P. Heinz, Mar 04 2019

A335721 Integers m such that A014448(m) == 5 (mod m).

Original entry on oeis.org

1, 213, 85887, 974943, 2463831, 3952791, 217643749, 286354743, 874273639, 14029228621
Offset: 1

Views

Author

Chai Wah Wu, Jun 18 2020

Keywords

Comments

Inspired by A335670.
All terms greater than 1 are odd and composite. - Michel Marcus, Jun 19 2020

Crossrefs

Programs

  • Mathematica
    Select[Range[10^5], Divisible[LucasL[3#] - 5, #] &] (* Amiram Eldar, Jun 19 2020 *)
  • PARI
    f(n) = my(w=quadgen(5)); (1+2*w)^n + (3-2*w)^n; \\ A014448
    isok(m) = (m%2) && (m>1) && !isprime(m) && ((f(m) % m) == 5); \\ Michel Marcus, Jun 19 2020

Extensions

a(7)-a(10) from Giovanni Resta, Jun 19 2020

A335722 Integers m such that A014448(m) == 1 (mod m).

Original entry on oeis.org

1, 3, 77, 235, 517, 8155, 17567, 18235, 22827, 33355, 57053, 59899, 67947, 107067, 107767, 151987, 232379, 238539, 289155, 306859, 331115, 360267, 411803, 427467, 471115, 576987, 611187, 681963, 713767, 742467, 765195, 811947, 871827, 982315, 1043915, 1174859, 1211115
Offset: 1

Views

Author

Chai Wah Wu, Jun 18 2020

Keywords

Comments

Inspired by A335670.
All terms > 3 are odd and composite. - Michel Marcus, Jun 19 2020

Crossrefs

Programs

  • Mathematica
    Select[Range[10^4], Divisible[LucasL[3#] - 1, #] &] (* Amiram Eldar, Jun 19 2020 *)

A005248 Bisection of Lucas numbers: a(n) = L(2*n) = A000032(2*n).

Original entry on oeis.org

2, 3, 7, 18, 47, 123, 322, 843, 2207, 5778, 15127, 39603, 103682, 271443, 710647, 1860498, 4870847, 12752043, 33385282, 87403803, 228826127, 599074578, 1568397607, 4106118243, 10749957122, 28143753123, 73681302247, 192900153618, 505019158607, 1322157322203
Offset: 0

Views

Author

Keywords

Comments

Drop initial 2; then iterates of A050411 do not diverge for these starting values. - David W. Wilson
All nonnegative integer solutions of Pell equation a(n)^2 - 5*b(n)^2 = +4 together with b(n)=A001906(n), n>=0. - Wolfdieter Lang, Aug 31 2004
a(n+1) = B^(n)AB(1), n>=0, with compositions of Wythoff's complementary A(n):=A000201(n) and B(n)=A001950(n) sequences. See the W. Lang link under A135817 for the Wythoff representation of numbers (with A as 1 and B as 0 and the argument 1 omitted). E.g., 3=`10`, 7=`010`, 18=`0010`, 47=`00010`, ..., in Wythoff code. a(0) = 2 = B(1) in Wythoff code.
Output of Tesler's formula (as well as that of Lu and Wu) for the number of perfect matchings of an m X n Möbius band where m and n are both even specializes to this sequence for m=2. - Sarah-Marie Belcastro, Jul 04 2009
Numbers having two 1's in their base-phi representation. - Robert G. Wilson v, Sep 13 2010
Pisano period lengths: 1, 3, 4, 3, 2, 12, 8, 6, 12, 6, 5, 12, 14, 24, 4, 12, 18, 12, 9, 6, ... - R. J. Mathar, Aug 10 2012
From Wolfdieter Lang, Feb 18 2013: (Start)
a(n) is also one half of the total number of round trips, each of length 2*n, on the graph P_4 (o-o-o-o) (the simple path with 4 points (vertices) and 3 lines (or edges)). See the array and triangle A198632 for the general case of the graph P_N (there N is n and the length is l=2*k).
O.g.f. for w(4,l) (with zeros for odd l): y*(d/dy)S(4,y)/S(4,y) with y=1/x and Chebyshev S-polynomials (coefficients A049310). See also A198632 for a rewritten form. One half of this o.g.f. for x -> sqrt(x) produces the g.f. (2-3x)/(1-3x+x^2) given below. (End)
Solutions (x, y) = (a(n), a(n+1)) satisfying x^2 + y^2 = 3xy - 5. - Michel Lagneau, Feb 01 2014
Except for the first term, positive values of x (or y) satisfying x^2 - 7xy + y^2 + 45 = 0. - Colin Barker, Feb 16 2014
Except for the first term, positive values of x (or y) satisfying x^2 - 18xy + y^2 + 320 = 0. - Colin Barker, Feb 16 2014
a(n) are the numbers such that a(n)^2-2 are Lucas numbers. - Michel Lagneau, Jul 22 2014
All sequences of this form, b(n+1) = 3*b(n) - b(n-1), regardless of initial values, which includes this sequence, yield this sequence as follows: a(n) = (b(j+n) + b(j-n))/b(j), for any j, except where b(j) = 0. Also note formula below relating this a(n) to all sequences of the form G(n+1) = G(n) + G(n-1). - Richard R. Forberg, Nov 18 2014
A non-simple continued fraction expansion for F(2n*(k+1))/F(2nk) k>=1 is a(n) + (-1)/(a(n) + (-1)/(a(n) + ... + (-1)/a(n))) where a(n) appears exactly k times (F(n) denotes the n-th Fibonacci number). E.g., F(16)/F(12) equals 7 + (-1)/(7 + (-1)/7). Furthermore, these a(n) are exactly the positive integers k such that the non-simple infinite continued fraction k + (-1)/(k + (-1)/(k + (-1)/(k + ...))) belongs to Q(sqrt(5)). Compare to Benoit Cloitre and Thomas Baruchel's comments at A002878. - Greg Dresden, Aug 13 2019
For n >= 1, a(n) is the number of cyclic up-down words of length 2*n over an alphabet of size 3. - Sela Fried, Apr 08 2025

Examples

			G.f. = 2 + 3*x + 7*x^2 + 18*x^3 + 47*x^4 + 123*x^5 + 322*x^6 + 843*x^7 + ... - _Michael Somos_, Aug 11 2009
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Richard P. Stanley, Enumerative combinatorics, Vol. 2. Volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999.

Crossrefs

Cf. A000032, A002878 (odd-indexed Lucas numbers), A001906 (Chebyshev S(n-1, 3)), a(n) = sqrt(4+5*A001906(n)^2), A228842.
a(n) = A005592(n)+1 = A004146(n)+2 = A065034(n)-1.
First differences of A002878. Pairwise sums of A001519. First row of array A103997.
Cf. A153415, A201157. Also Lucas(k*n): A000032 (k = 1), A014448 (k = 3), A056854 (k = 4), A001946 (k = 5), A087215 (k = 6), A087281 (k = 7), A087265 (k = 8), A087287 (k = 9), A065705 (k = 10), A089772 (k = 11), A089775 (k = 12).

Programs

  • Haskell
    a005248 n = a005248_list !! n
    a005248_list = zipWith (+) (tail a001519_list) a001519_list
    -- Reinhard Zumkeller, Jan 11 2012
  • Magma
    [Lucas(2*n) : n in [0..100]]; // Vincenzo Librandi, Apr 14 2011
    
  • Maple
    a:= n-> (<<2|3>>. <<3|1>, <-1|0>>^n)[1$2]: seq(a(n), n=0..30); # Alois P. Heinz, Jul 31 2008
    with(combinat): seq(5*fibonacci(n)^2+2*(-1)^n, n= 0..26);
  • Mathematica
    a[0] = 2; a[1] = 3; a[n_] := 3a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 27}] (* Robert G. Wilson v, Jan 30 2004 *)
    Fibonacci[1 + 2n] + 1/2 (-Fibonacci[2n] + LucasL[2n]) (* Tesler. Sarah-Marie Belcastro, Jul 04 2009 *)
    LinearRecurrence[{3, -1}, {2, 3}, 50] (* Sture Sjöstedt, Nov 27 2011 *)
    LucasL[Range[0,60,2]] (* Harvey P. Dale, Sep 30 2014 *)
  • PARI
    {a(n) = fibonacci(2*n + 1) + fibonacci(2*n - 1)}; /* Michael Somos, Jun 23 2002 */
    
  • PARI
    {a(n) = 2 * subst( poltchebi(n), x, 3/2)}; /* Michael Somos, Jun 28 2003 */
    
  • Sage
    [lucas_number2(n,3,1) for n in range(37)] # Zerinvary Lajos, Jun 25 2008
    

Formula

a(n) = Fibonacci(2*n-1) + Fibonacci(2*n+1).
G.f.: (2-3*x)/(1-3*x+x^2). - Simon Plouffe in his 1992 dissertation.
a(n) = S(n, 3) - S(n-2, 3) = 2*T(n, 3/2) with S(n-1, 3) = A001906(n) and S(-2, x) = -1. U(n, x)=S(n, 2*x) and T(n, x) are Chebyshev's U- and T-polynomials.
a(n) = a(k)*a(n - k) - a(n - 2k) for all k, i.e., a(n) = 2*a(n) - a(n) = 3*a(n - 1) - a(n - 2) = 7*a(n - 2) - a(n - 4) = 18*a(n - 3) - a(n - 6) = 47*a(n - 4) - a(n - 8) etc., a(2n) = a(n)^2 - 2. - Henry Bottomley, May 08 2001
a(n) = A060924(n-1, 0) = 3*A001906(n) - 2*A001906(n-1), n >= 1. - Wolfdieter Lang, Apr 26 2001
a(n) ~ phi^(2*n) where phi=(1+sqrt(5))/2. - Joe Keane (jgk(AT)jgk.org), May 15 2002
a(0)=2, a(1)=3, a(n) = 3*a(n-1) - a(n-2) = a(-n). - Michael Somos, Jun 28 2003
a(n) = phi^(2*n) + phi^(-2*n) where phi=(sqrt(5)+1)/2, the golden ratio. E.g., a(4)=47 because phi^(8) + phi^(-8) = 47. - Dennis P. Walsh, Jul 24 2003
With interpolated zeros, trace(A^n)/4, where A is the adjacency matrix of path graph P_4. Binomial transform is then A049680. - Paul Barry, Apr 24 2004
a(n) = (floor((3+sqrt(5))^n) + 1)/2^n. - Lekraj Beedassy, Oct 22 2004
a(n) = ((3-sqrt(5))^n + (3+sqrt(5))^n)/2^n (Note: substituting the number 1 for 3 in the last equation gives A000204, substituting 5 for 3 gives A020876). - Creighton Dement, Apr 19 2005
a(n) = (1/(n+1/2))*Sum_{k=0..n} B(2k)*L(2n+1-2k)*binomial(2n+1, 2k) where B(2k) is the (2k)-th Bernoulli number. - Benoit Cloitre, Nov 02 2005
a(n) = term (1,1) in the 1 X 2 matrix [2,3] . [3,1; -1,0]^n. - Alois P. Heinz, Jul 31 2008
a(n) = 2*cosh(2*n*psi), where psi=log((1+sqrt(5))/2). - Al Hakanson, Mar 21 2009
From Sarah-Marie Belcastro, Jul 04 2009: (Start)
a(n) - (a(n) - F(2n))/2 - F(2n+1) = 0. (Tesler)
Product_{r=1..n} (1 + 4*(sin((4r-1)*Pi/(4n)))^2). (Lu/Wu) (End)
a(n) = Fibonacci(2n+6) mod Fibonacci(2n+2), n > 1. - Gary Detlefs, Nov 22 2010
a(n) = 5*Fibonacci(n)^2 + 2*(-1)^n. - Gary Detlefs, Nov 22 2010
a(n) = A033888(n)/A001906(n), n > 0. - Gary Detlefs, Dec 26 2010
a(n) = 2^(2*n) * Sum_{k=1..2} (cos(k*Pi/5))^(2*n). - L. Edson Jeffery, Jan 21 2012
From Peter Bala, Jan 04 2013: (Start)
Let F(x) = Product_{n>=0} (1 + x^(4*n+1))/(1 + x^(4*n+3)). Let alpha = 1/2*(3 - sqrt(5)). This sequence gives the simple continued fraction expansion of 1 + F(alpha) = 2.31829 56058 81914 31334 ... = 2 + 1/(3 + 1/(7 + 1/(18 + ...))).
Also F(-alpha) = 0.64985 97768 07374 32950 has the continued fraction representation 1 - 1/(3 - 1/(7 - 1/(18 - ...))) and the simple continued fraction expansion 1/(1 + 1/((3-2) + 1/(1 + 1/((7-2) + 1/(1 + 1/((18-2) + 1/(1 + ...))))))).
F(alpha)*F(-alpha) has the simple continued fraction expansion 1/(1 + 1/((3^2-4) + 1/(1 + 1/((7^2-4) + 1/(1 + 1/((18^2-4) + 1/(1 + ...))))))).
Added Oct 13 2019: 1/2 + 1/2*F(alpha)/F(-alpha) = 1.5142923542... has the simple continued fraction expansion 1 + 1/((3 - 2) + 1/(1 + 1/((18 - 2) + 1/(1 + 1/(123 - 2) + 1/(1 + ...))))). (End)
G.f.: (W(0)+6)/(5*x), where W(k) = 5*x*k + x - 6 + 6*x*(5*k-9)/W(k+1) (continued fraction). - Sergei N. Gladkovskii, Aug 19 2013
Sum_{n >= 1} 1/( a(n) - 5/a(n) ) = 1. Compare with A001906, A002878 and A023039. - Peter Bala, Nov 29 2013
0 = a(n) * a(n+2) - a(n+1)^2 - 5 for all n in Z. - Michael Somos, Aug 24 2014
a(n) = (G(j+2n) + G(j-2n))/G(j), for n >= 0 and any j, positive or negative, except where G(j) = 0, and for any sequence of the form G(n+1) = G(n) + G(n-1) with any initial values for G(0), G(1), including non-integer values. G(n) includes Lucas, Fibonacci. Compare with A081067 for odd number offsets from j. - Richard R. Forberg, Nov 16 2014
a(n) = [x^n] ( (1 + 3*x + sqrt(1 + 6*x + 5*x^2))/2 )^n for n >= 1. - Peter Bala, Jun 23 2015
From J. M. Bergot, Oct 28 2015: (Start)
For n>0, a(n) = F(n-1) * L(n) + F(2*n+1) - (-1)^n with F(k) = A000045(k).
For n>1, a(n) = F(n+1) * L(n) + F(2*n-1) - (-1)^n.
For n>2, a(n) = 5*F(2*n-3) + 2*L(n-3) * L(n) + 8*(-1)^n. (End)
For n>1, a(n) = L(n-2)*L(n+2) -7*(-1)^n. - J. M. Bergot, Feb 10 2016
a(n) = 6*F(n-1)*L(n-1) - F(2*n-6) with F(n)=A000045(n) and L(n)=A000032(n). - J. M. Bergot, Apr 21 2017
a(n) = F(2*n) + 2*F(n-1)*L(n) with F(n)=A000045(n) and L(n)=A000032(n). - J. M. Bergot, May 01 2017
E.g.f.: exp(4*x/(1+sqrt(5))^2) + exp((1/4)*(1+sqrt(5))^2*x). - Stefano Spezia, Aug 13 2019
From Peter Bala, Oct 14 2019: (Start)
a(n) = F(2*n+2) - F(2*n-2) = A001906(n+1) - A001906(n-1).
a(n) = trace(M^n), where M is the 2 X 2 matrix [0, 1; 1, 1]^2 = [1, 1; 1, 2].
Consequently the Gauss congruences hold: a(n*p^k) = a(n*p^(k-1)) ( mod p^k ) for all prime p and positive integers n and k. See Zarelua and also Stanley (Ch. 5, Ex. 5.2(a) and its solution).
Sum_{n >= 1} (-1)^(n+1)/( a(n) + 1/a(n) ) = 1/5.
Sum_{n >= 1} (-1)^(n+1)/( a(n) + 3/(a(n) + 2/(a(n))) ) = 1/6.
Sum_{n >= 1} (-1)^(n+1)/( a(n) + 9/(a(n) + 4/(a(n) + 1/(a(n)))) ) = 1/9.
x*exp(Sum_{n >= 1} a(n)*x^/n) = x + 3*x^2 + 8*x^3 + 21*x^4 + ... is the o.g.f. for A001906. (End)
a(n) = n + 2 + Sum_{k=1..n-1} k*a(n-k). - Yu Xiao, May 30 2020
Sum_{n>=1} 1/a(n) = A153415. - Amiram Eldar, Nov 11 2020
Sum_{n>=0} 1/(a(n) + 3) = (2*sqrt(5) + 1)/10 (André-Jeannin, 1991). - Amiram Eldar, Jan 23 2022
a(n) = 2*cosh(2*n*arccsch(2)) = 2*cosh(2*n*asinh(1/2)). - Peter Luschny, May 25 2022
a(n) = (5/2)*(Sum_{k=-n..n} binomial(2*n, n+5*k)) - (1/2)*4^n. - Greg Dresden, Jan 05 2023
a(n) = Sum_{k>=0} Lucas(2*n*k)/(Lucas(2*n)^(k+1)). - Diego Rattaggi, Jan 12 2025

Extensions

Additional comments from Michael Somos, Jun 23 2001

A015448 a(0) = 1, a(1) = 1, and a(n) = 4*a(n-1) + a(n-2) for n >= 2.

Original entry on oeis.org

1, 1, 5, 21, 89, 377, 1597, 6765, 28657, 121393, 514229, 2178309, 9227465, 39088169, 165580141, 701408733, 2971215073, 12586269025, 53316291173, 225851433717, 956722026041, 4052739537881, 17167680177565, 72723460248141, 308061521170129, 1304969544928657, 5527939700884757
Offset: 0

Views

Author

Keywords

Comments

If one deletes the leading 0 in A084326, takes the inverse binomial transform, and adds a(0)=1 in front, one obtains this sequence here. - Al Hakanson (hawkuu(AT)gmail.com), May 02 2009
For n >= 1, row sums of triangle
m |k=0 1 2 3 4 5 6 7
====+=============================================
0 | 1
1 | 1 4
2 | 1 4 16
3 | 1 8 16 64
4 | 1 8 48 64 256
5 | 1 12 48 256 256 1024
6 | 1 12 96 256 1280 1024 4096
7 | 1 16 96 640 1280 6144 4096 16384
which is triangle for numbers 4^k*C(m,k) with duplicated diagonals. - Vladimir Shevelev, Apr 12 2012
a(n) = a(n;-2) = 3^n*Sum_{k=0..n} binomial(n,k)*F(k+1)*(-2/3)^k, where a(n;d), n=0,1,...,d, denotes the delta-Fibonacci numbers defined in comments to A000045 (see also the papers of Witula et al.). We note that (see A033887) F(3n+1) = 3^n*a(n,2/3) = Sum_{k=0..n} binomial(n,k)*F(k-1)*(-2/3)^k, which implies F(3n+1) + 3^(-n)*a(n) = Sum_{k=0..n} binomial(n,k)*L(k)*(-2/3)^k, where L(k) denotes the k-th Lucas number. - Roman Witula, Jul 12 2012
a(n+1) is (for n >= 0) the number of length-n strings of 5 letters {0,1,2,3,4} with no two adjacent nonzero letters identical. The general case (strings of L letters) is the sequence with g.f. (1+x)/(1-(L-1)*x-x^2). - Joerg Arndt, Oct 11 2012
Starting with offset 1 the sequence is the INVERT transform of (1, 4, 4*3, 4*3^2, 4*3^3, ...); i.e., of A003946: (1, 4, 12, 36, 108, ...). - Gary W. Adamson, Aug 06 2016
a(n+1) equals the number of quinary sequences of length n such that no two consecutive terms differ by 3. - David Nacin, May 31 2017

Crossrefs

Cf. A001076, A147722 (INVERT transform), A109499 (INVERTi transform), A154626 (Binomial transform), A086344 (inverse binomial transform), A003946, A049310.

Programs

Formula

a(n) = Fibonacci(3n-1) = ( (1+sqrt(5))*(2-sqrt(5))^n - (1-sqrt(5))*(2+sqrt(5))^n )/ (2*sqrt(5)).
O.g.f.: (1-3*x)/(1-4*x-x^2). - Len Smiley, Dec 09 2001
a(n) = Sum_{k=0..n} 3^k*A055830(n,k). - Philippe Deléham, Oct 18 2006
a(n) = upper left term in the 2 X 2 matrix [1,2; 2,3]^n. - Gary W. Adamson, Mar 02 2008
[a(n), A001076(n)] = [1,4; 1,3]^n * [1,0]. - Gary W. Adamson, Mar 21 2008
a(n) = A167808(3*n-1) for n > 0. - Reinhard Zumkeller, Nov 12 2009
a(n) = Fibonacci(3n+1) mod Fibonacci(3n), n > 0.
a(n) = (A000032(3*n)-Fibonacci(3*n))/2 = (A014448(n)-A014445(n))/2.
For n >= 2, a(n) = F_n(4) + F_(n+1)(4), where F_n(x) is a Fibonacci polynomial (cf. A049310): F_n(x) = Sum_{i=0..floor((n-1)/2)} binomial(n-i-1,i)*x^(n-2*i-1). - Vladimir Shevelev, Apr 13 2012
a(n) = A001076(n+1) - 3*A001076(n). - R. J. Mathar, Jul 12 2012
From Gary Detlefs and Wolfdieter Lang, Aug 20 2012: (Start)
a(n) = (5*F(n)^3 + 5*F(n-1)^3 + 3*(-1)^n*F(n-2))/2,
a(n) = (F(n+1)^3 + 2*F(n)^3 - F(n-2)^3)/2, n >= 0, with F(-1) = 1 and F(-2) = -1. Second line from first one with 3*(-1)^n* F(n-2) = F(n-1)^3 - 4*F(n-2)^3 - F(n-3)^3 (in Koshy's book, p. 89, 32. (with a - sign) and 33. For the Koshy reference see A000045) and the F^3 recurrence (see row n=4 of A055870, or Koshy p. 87, 1.). First line from the preceding R. J. Mathar formula with F(3*n) = 5*F(n)^3 + 3*(-1)^n*F(n) (Koshy p. 89, 46.) and the above mentioned formula, Koshy's 32. and 33., with n -> n+2 in order to eliminate F(n+1)^3. (End)
For n > 0, a(n) = L(n-1)*L(n)*F(n) + F(n+1)*(-1)^n with L(n)=A000032(n). - J. M. Bergot, Dec 10 2015
For n > 1, a(n)^2 is the denominator of continued fraction [4,4,...,4, 6, 4,4,...4], which has n-1 4's before, and n-1 4's after, the middle 6. - Greg Dresden, Sep 18 2019
From Gary Detlefs and Wolfdieter Lang, Mar 06 2023: (Start)
a(n) = A001076(n) + A001076(n-1), with A001076(-1) = 1. See the R. J. Mathar formula above.
a(n+1) = i^n*(S(n-1,-4*i) - i*S(n-2,-4*i)), for n >= 0, with i = sqrt(-1), and the Chebyshev S-polynomials (see A049310) with S(n, -1) = 0. From the simplified Fibonacci trisection formula for {F(3*n+2)}_{n>=0}. (End)
a(n) = Sum_{k=0..n} A046854(n-1,k)*4^k. - R. J. Mathar, Feb 10 2024
E.g.f.: exp(2*x)*(5*cosh(sqrt(5)*x) - sqrt(5)*sinh(sqrt(5)*x))/5. - Stefano Spezia, Jun 03 2024

A049660 a(n) = Fibonacci(6*n)/8.

Original entry on oeis.org

0, 1, 18, 323, 5796, 104005, 1866294, 33489287, 600940872, 10783446409, 193501094490, 3472236254411, 62306751484908, 1118049290473933, 20062580477045886, 360008399296352015, 6460088606857290384, 115921586524134874897, 2080128468827570457762
Offset: 0

Views

Author

Keywords

Comments

For n >= 2, a(n) equals the permanent of the (n-1) X (n-1) tridiagonal matrix with 18's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011
For n >= 2, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,17}. - Milan Janjic, Jan 25 2015
10*a(n)^2 = Tri(4)*S(n-1, 18)^2 is the triangular number Tri((T(n, 9) - 1)/2), with Tri, S and T given in A000217, A049310 and A053120. This is instance k = 4 of the k-family of identities given in a comment on A001109. - Wolfdieter Lang, Feb 01 2016
Possible solutions for y in Pell equation x^2 - 80*y^2 = 1. The values for x are given in A023039. - Herbert Kociemba, Jun 05 2022

Examples

			a(3) = F(6 * 3) / 8 = F(18) / 8 = 2584 / 8 = 323. - _Indranil Ghosh_, Feb 06 2017
		

Crossrefs

Column m=6 of array A028412.
Partial sums of A007805.

Programs

Formula

G.f.: x/(1 - 18*x + x^2).
a(n) = A134492(n)/8.
a(n) ~ (1/40)*sqrt(5)*(sqrt(5) + 2)^(2*n). - Joe Keane (jgk(AT)jgk.org), May 15 2002
For all terms k of the sequence, 80*k^2 + 1 is a square. Limit_{n->oo} a(n)/a(n-1) = 8*phi + 5 = 9 + 4*sqrt(5). - Gregory V. Richardson, Oct 14 2002
a(n) = S(n-1, 18) with S(n, x) := U(n, x/2), Chebyshev's polynomials of the second kind. S(-1, x) := 0. See A049310.
a(n) = (((9 + 4*sqrt(5))^n - (9 - 4*sqrt(5))^n))/(8*sqrt(5)).
a(n) = sqrt((A023039(n)^2 - 1)/80) (cf. Richardson comment).
a(n) = 18*a(n-1) - a(n-2). - Gregory V. Richardson, Oct 14 2002
a(n) = A001076(2n)/4.
a(n) = 17*(a(n-1) + a(n-2)) - a(n-3) = 19*(a(n-1) - a(n-2)) + a(n-3). - Mohamed Bouhamida, May 26 2007
a(n+1) = Sum_{k=0..n} A101950(n,k)*17^k. - Philippe Deléham, Feb 10 2012
Product_{n>=1} (1 + 1/a(n)) = (1/2)*(2 + sqrt(5)). - Peter Bala, Dec 23 2012
Product_{n>=2} (1 - 1/a(n)) = (2/9)*(2 + sqrt(5)). - Peter Bala, Dec 23 2012
a(n) = (1/32)*(F(6*n + 3) - F(6*n - 3)).
Sum_{n>=1} 1/(4*a(n) + 1/(4*a(n))) = 1/4. Compare with A001906 and A049670. - Peter Bala, Nov 29 2013
From Peter Bala, Apr 02 2015: (Start)
Sum_{n >= 1} a(n)*x^(2*n) = -G(x)*G(-x), where G(x) = Sum_{n >= 1} A001076(n)*x^n.
1 + 4*Sum_{n >= 1} a(n)*x^(2*n) = (1 + F(x))*(1 + F(-x)) = (1 + 2*x*G(x))*(1 - 2*x*G(-x)), where F(x) = Sum_{n >= 1} Fibonacci(3*n + 3)*x^n.
1 + 7*Sum_{n >= 1} a(n)*x^(2*n) = (1 + G(x))*(1 + G(-x)) = (1 + 7*G(x))*(1 + 7*G(-x)).
1 + 12*Sum_{n >= 1} a(n)*x^(2*n) = (1 + 2*G(x))*(1 + 2*G(-x)) = (1 + 6*G(x))*(1 + 6*G(-x)) = (1 + A(x))*(1 + A(-x)), where A(x) = Sum_{n >= 1} Fibonacci(3*n)*x^n is the o.g.f for A014445.
1 + 15*Sum_{n >= 1} a(n)*x^(2*n) = (1 + 5*G(x))*(1 + 5*G(-x)) = (1 + 3*G(x))*(1 + 3*G(-x)) = H(x)*H(-x), where H(x) = Sum_{n >= 0} A155179(n)*x^n.
1 + 16*Sum_{n >= 1} a(n)*x^(2*n) = (1 + 4*G(x))*(1 + 4*G(-x)) = (1 + 2* Sum_{n >= 1} Fibonacci(3*n - 1)*x^n)*(1 + 2* Sum_{n >= 1} Fibonacci(3*n - 1)*(-x)^n) = (1 + 2* Sum_{n >= 1} Fibonacci(3*n + 1)*x^n)*(1 + 2* Sum_{n >= 1} Fibonacci(3*n + 1)*(-x)^n).
1 + 20*Sum_{n >= 1} a(n)*x^(2*n) = (1 + Sum_{n >= 1} Lucas(3*n)*x^n)*(1 + Sum_{n >= 1} Lucas(3*n)*(-x)^n).
1 - 5*Sum_{n >= 1} a(n)*x^(2*n) = (1 + Sum_{n >= 1} A001077(n+1)*x^n)*(1 + Sum_{n >= 1} A001077(n+1)*(-x)^n).
1 - 9*Sum_{n >= 1} a(n)*x^(2*n) = (1 - G(x))*(1 - G(-x)) = (1 + 9*G(x))*(1 + 9*G(-x)).
1 - 16*Sum_{n >= 1} a(n)*x^(2*n) = (1 + 2*Sum_{n >= 1} A099843(n)*x^n)*(1 + 2*Sum_{n >= 1} A099843(n)*(-x)^n).
1 - 20*Sum_{n >= 1} a(n)*x^(2*n) = (1 - 2*G(x))*(1 - 2*G(-x)) = (1 + 10*G(x))*(1 + 10*G(-x)).
(End)

Extensions

Chebyshev and other comments from Wolfdieter Lang, Nov 08 2002

A001077 Numerators of continued fraction convergents to sqrt(5).

Original entry on oeis.org

1, 2, 9, 38, 161, 682, 2889, 12238, 51841, 219602, 930249, 3940598, 16692641, 70711162, 299537289, 1268860318, 5374978561, 22768774562, 96450076809, 408569081798, 1730726404001, 7331474697802, 31056625195209
Offset: 0

Views

Author

Keywords

Comments

a(2*n+1) with b(2*n+1) := A001076(2*n+1), n >= 0, give all (positive integer) solutions to Pell equation a^2 - 5*b^2 = -1.
a(2*n) with b(2*n) := A001076(2*n), n >= 1, give all (positive integer) solutions to Pell equation a^2 - 5*b^2 = +1 (see Emerson reference).
Bisection: a(2*n) = T(n,9) = A023039(n), n >= 0 and a(2*n+1) = 2*S(2*n, 2*sqrt(5)) = A075796(n+1), n >= 0, with T(n,x), resp. S(n,x), Chebyshev's polynomials of the first, resp. second kind. See A053120, resp. A049310.
From Greg Dresden, May 21 2023: (Start)
For n >= 2, 8*a(n) is the number of ways to tile this T-shaped figure of length n-1 with four colors of squares and one color of domino; shown here is the figure of length 5 (corresponding to n=6), and it has 8*a(6) = 23112 different tilings.
_
|| _
|||_|||
|_|
(End)

Examples

			1  2  9  38  161  (A001077)
-, -, -, --, ---, ...
0  1  4  17   72  (A001076)
1 + 2*x + 9*x^2 + 38*x^3 + 161*x^4 + 682*x^5 + 2889*x^6 + 12238*x^7 + ... - _Michael Somos_, Aug 11 2009
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • V. Thébault, Les Récréations Mathématiques, Gauthier-Villars, Paris, 1952, p. 282.

Crossrefs

Programs

  • Magma
    I:=[1, 2]; [n le 2 select I[n] else 4*Self(n-1) + Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 19 2017
  • Maple
    A001077:=(-1+2*z)/(-1+4*z+z**2); # conjectured by Simon Plouffe in his 1992 dissertation
    with(combinat): a:=n->fibonacci(n+1, 4)-2*fibonacci(n, 4): seq(a(n), n=0..30); # Zerinvary Lajos, Apr 04 2008
  • Mathematica
    LinearRecurrence[{4, 1}, {1, 2}, 30]
    Join[{1},Numerator[Convergents[Sqrt[5],30]]] (* Harvey P. Dale, Mar 23 2016 *)
    CoefficientList[Series[(1-2*x)/(1-4*x-x^2), {x, 0, 30}], x] (* G. C. Greubel, Dec 19 2017 *)
    LucasL[3*Range[0,30]]/2 (* Rigoberto Florez, Apr 03 2019 *)
    a[ n_] := LucasL[n, 4]/2; (* Michael Somos, Nov 02 2021 *)
  • PARI
    {a(n) = fibonacci(3*n) / 2 + fibonacci(3*n - 1)}; /* Michael Somos, Aug 11 2009 */
    
  • PARI
    a(n)=if(n<2,n+1,my(t=4);for(i=1,n-2,t=4+1/t);numerator(2+1/t)) \\ Charles R Greathouse IV, Dec 05 2011
    
  • PARI
    x='x+O('x^30); Vec((1-2*x)/(1-4*x-x^2)) \\ G. C. Greubel, Dec 19 2017
    
  • Sage
    [lucas_number2(n,4,-1)/2 for n in range(0, 30)] # Zerinvary Lajos, May 14 2009
    

Formula

G.f.: (1-2*x)/(1-4*x-x^2).
a(n) = 4*a(n-1) + a(n-2), a(0)=1, a(1)=2.
a(n) = ((2 + sqrt(5))^n + (2 - sqrt(5))^n)/2.
a(n) = A014448(n)/2.
Limit_{n->infinity} a(n)/a(n-1) = phi^3 = 2 + sqrt(5). - Gregory V. Richardson, Oct 13 2002
a(n) = ((-i)^n)*T(n, 2*i), with T(n, x) Chebyshev's polynomials of the first kind A053120 and i^2 = -1.
Binomial transform of A084057. - Paul Barry, May 10 2003
E.g.f.: exp(2x)cosh(sqrt(5)x). - Paul Barry, May 10 2003
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2k)*5^k*2^(n-2k). - Paul Barry, Nov 15 2003
a(n) = 4*a(n-1) + a(n-2) when n > 2; a(1) = 1, a(2) = 2. - Alex Vinokur (alexvn(AT)barak-online.net), Oct 25 2004
a(n) = A001076(n+1) - 2*A001076(n) = A097924(n) - A015448(n+1); a(n+1) = A097924(n) + 2*A001076(n) = A097924(n) + 2(A048876(n) - A048875(n)). - Creighton Dement, Mar 19 2005
a(n) = F(3*n)/2 + F(3*n-1) where F() = Fibonacci numbers A000045. - Gerald McGarvey, Apr 28 2007
a(n) = A000032(3*n)/2.
For n >= 1: a(n) = (1/2)*Fibonacci(6*n)/Fibonacci(3*n) and a(n) = integer part of (2 + sqrt(5))^n. - Artur Jasinski, Nov 28 2011
a(n) = Sum_{k=0..n} A201730(n,k)*4^k. - Philippe Deléham, Dec 06 2011
a(n) = A001076(n) + A015448(n). - R. J. Mathar, Jul 06 2012
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x*(5*k-4)/(x*(5*k+1) - 2/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 27 2013
a(n) is the (1,1)-entry of the matrix W^n with W=[2, sqrt(5); sqrt(5), 2]. - Carmine Suriano, Mar 21 2014
From Rigoberto Florez, Apr 03 2019: (Start)
a(n) = A099919(n) + A049651(n) if n > 0.
a(n) = 1 + Sum_{k=0..n-1} L(3*k + 1) if n >= 0, L(n) = n-th Lucas number (A000032). (End)
From Christopher Hohl, Aug 22 2021: (Start)
For n >= 2, a(2n-1) = A079962(6n-9) + A079962(6n-3).
For n >= 1, a(2n) = sqrt(20*A079962(6n-3)^2 + 1). (End)
a(n) = Sum_{k=0..n-2} A168561(n-2,k)*4^k + 2 * Sum_{k=0..n-1} A168561(n-1,k)*4^k, n>0. - R. J. Mathar, Feb 14 2024
a(n) = 4^n*Sum_{k=0..n} A374439(n, k)*(-1/4)^k. - Peter Luschny, Jul 26 2024
From Peter Bala, Jul 08 2025: (Start)
The following series telescope:
Sum_{n >= 1} 1/(a(n) + 5*(-1)^(n+1)/a(n)) = 3/8, since 1/(a(n) + 5*(-1)^(n+1)/a(n)) = b(n) - b(n+1), where b(n) = (1/4) * (a(n) + a(n-1)) / (a(n)*a(n-1)).
Sum_{n >= 1} (-1)^(n+1)/(a(n) + 5*(-1)^(n+1)/a(n)) = 1/8, since 1/(a(n) + 5*(-1)^(n+1)/a(n)) = c(n) + c(n+1), where c(n) = (1/4) * (a(n) - a(n-1)) / (a(n)*a(n-1)). (End)

Extensions

Chebyshev comments from Wolfdieter Lang, Jan 10 2003
Showing 1-10 of 43 results. Next