A084849
a(n) = 1 + n + 2*n^2.
Original entry on oeis.org
1, 4, 11, 22, 37, 56, 79, 106, 137, 172, 211, 254, 301, 352, 407, 466, 529, 596, 667, 742, 821, 904, 991, 1082, 1177, 1276, 1379, 1486, 1597, 1712, 1831, 1954, 2081, 2212, 2347, 2486, 2629, 2776, 2927, 3082, 3241, 3404, 3571, 3742, 3917, 4096, 4279, 4466
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- W. Burrows and C. Tuffley, Maximising common fixtures in a round robin tournament with two divisions, arXiv:1502.06664 [math.CO], 2015.
- Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
- Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
- Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph.D. Thesis, Waterford Institute of Technology, 2011.
- Eric Weisstein's World of Mathematics, Cocktail Party Graph.
- Eric Weisstein's World of Mathematics, Irredundant Set.
- Wikipedia, Alexander polynomial and Seifert surface. [See _Peter Bala_'s comment.]
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Cf.
A000027,
A000217,
A001844,
A004767 (first differences),
A014105,
A058331,
A060884,
A100036,
A100037,
A100038,
A100039,
A100040,
A100041,
A131901,
A134082,
A174723,
A177342.
-
[1+n+2*n^2 : n in [0..100]]; // Wesley Ivan Hurt, Apr 15 2016
-
A084849:=n->1+n+2*n^2: seq(A084849(n), n=0..100); # Wesley Ivan Hurt, Apr 15 2016
-
s = 1; lst = {s}; Do[s += n + 2; AppendTo[lst, s], {n, 1, 200, 4}]; lst (* Zerinvary Lajos, Jul 11 2009 *)
f[n_]:=(n*(2*n+1)+1);Table[f[n],{n,5!}] (* Vladimir Joseph Stephan Orlovsky, Feb 07 2010 *)
Table[1 + n + 2 n^2, {n, 0, 20}] (* Eric W. Weisstein, Aug 09 2017 *)
LinearRecurrence[{3, -3, 1}, {4, 11, 22}, {0, 20}] (* Eric W. Weisstein, Aug 09 2017 *)
CoefficientList[Series[(-1 - x - 2 x^2)/(-1 + x)^3, {x, 0, 20}], x] (* Eric W. Weisstein, Aug 09 2017 *)
-
a(n)=1+n+2*n^2 \\ Charles R Greathouse IV, Sep 24 2015
A006261
a(n) = Sum_{k=0..5} binomial(n,k).
Original entry on oeis.org
1, 2, 4, 8, 16, 32, 63, 120, 219, 382, 638, 1024, 1586, 2380, 3473, 4944, 6885, 9402, 12616, 16664, 21700, 27896, 35443, 44552, 55455, 68406, 83682, 101584, 122438, 146596, 174437, 206368, 242825, 284274, 331212, 384168, 443704, 510416, 584935, 667928, 760099, 862190
Offset: 0
a(7) = 120 because the first six terms in the 7th row of Pascal's triangle 1 + 7 + 21 + 35 + 35 + 21 = 120. - _Geoffrey Critzer_, Jan 19 2009
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 72, Problem 2.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- S. C. Chan, Letter to N. J. A. Sloane, Oct. 1975
- M. L. Cornelius, Variations on a geometric progression, Mathematics in School, 4 (No. 3, May 1975), p. 32.
- M. L. Cornelius, Variations on a geometric progression, Mathematics in School, 4 (No. 3, May 1975), p. 32. (Annotated scanned copy)
- R. K. Guy, Letter to N. J. A. Sloane
- Ângela Mestre and José Agapito, Square Matrices Generated by Sequences of Riordan Arrays, J. Int. Seq., Vol. 22 (2019), Article 19.8.4.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Reinhard Zumkeller, Enumerations of Divisors
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Cf.
A005408,
A000124,
A016813,
A086514,
A000125,
A058331,
A002522,
A161701,
A161702,
A161703,
A000127,
A161704,
A161706,
A161707,
A161708,
A161710,
A080856,
A161711,
A161712,
A161713,
A161715,
A007318,
A008859,
A008860,
A008861,
A008862,
A008863,
A219531.
-
a006261 = sum . take 6 . a007318_row -- Reinhard Zumkeller, Nov 24 2012
-
[(n^5 - 5*n^4 + 25*n^3 + 5*n^2 + 94*n + 120)/120: n in [0..40]]; // Vincenzo Librandi, Jul 17 2011
-
A006261:=(z**2-z+1)*(3*z**2-3*z+1)/(z-1)**6; # Simon Plouffe in his 1992 dissertation
-
CoefficientList[
Series[(1 + x + x^2/2 + x^3/6 + x^4/24 + x^5/120) Exp[x], {x, 0,
52}], x]*Table[n!, {n, 0, 52}]
-
a(n)=sum(k=0,5,binomial(n,k)) \\ Charles R Greathouse IV, Apr 08 2016
-
A006261_list, m = [], [1, -3, 4, -2, 1, 1]
for _ in range(10**2):
A006261_list.append(m[-1])
for i in range(5):
m[i+1] += m[i] # Chai Wah Wu, Jan 24 2016
-
[binomial(n,1)+binomial(n,3)+binomial(n,5) for n in range(1, 38)] # Zerinvary Lajos, May 17 2009
A054556
a(n) = 4*n^2 - 9*n + 6.
Original entry on oeis.org
1, 4, 15, 34, 61, 96, 139, 190, 249, 316, 391, 474, 565, 664, 771, 886, 1009, 1140, 1279, 1426, 1581, 1744, 1915, 2094, 2281, 2476, 2679, 2890, 3109, 3336, 3571, 3814, 4065, 4324, 4591, 4866, 5149, 5440, 5739, 6046, 6361, 6684, 7015, 7354, 7701, 8056, 8419, 8790
Offset: 1
Cf.
A266883: m*(4*m+1)+1 for m = 0,-1,1,-2,2,-3,3,...
-
[4*n^2-9*n+6 : n in [1..50]]; // Vincenzo Librandi, Mar 10 2018
-
a:=n->4*n^2-9*n+6: seq(a(n),n=1..50); # Muniru A Asiru, Mar 09 2018
-
a[n_] := 4*n^2 - 9*n + 6; Array[a, 40] (* Vladimir Joseph Stephan Orlovsky, Sep 01 2008 *)
LinearRecurrence[{3,-3,1},{1,4,15},50] (* Harvey P. Dale, Sep 06 2015 *)
CoefficientList[Series[-(6x^2 + x + 1)/(x - 1)^3, {x, 0, 49}], x] (* Robert G. Wilson v, Mar 12 2018 *)
-
a(n)=4*n^2-9*n+6 \\ Charles R Greathouse IV, Sep 24 2015
A053698
a(n) = n^3 + n^2 + n + 1.
Original entry on oeis.org
1, 4, 15, 40, 85, 156, 259, 400, 585, 820, 1111, 1464, 1885, 2380, 2955, 3616, 4369, 5220, 6175, 7240, 8421, 9724, 11155, 12720, 14425, 16276, 18279, 20440, 22765, 25260, 27931, 30784, 33825, 37060, 40495, 44136, 47989, 52060, 56355, 60880
Offset: 0
a(2) = 15 because 2^3 + 2^2 + 2 + 1 = 8 + 4 + 2 + 1 = 15.
a(3) = 40 because 3^3 + 3^2 + 3 + 1 = 27 + 9 + 3 + 1 = 40.
a(4) = 85 because 4^3 + 4^2 + 4 + 1 = 64 + 16 + 4 + 1 = 85.
From _Bruno Berselli_, Jan 02 2017: (Start)
The terms of the sequence are provided by the row sums of the following triangle (see the seventh formula in the previous section):
. 1;
. 3, 1;
. 9, 5, 1;
. 19, 13, 7, 1;
. 33, 25, 17, 9, 1;
. 51, 41, 31, 21, 11, 1;
. 73, 61, 49, 37, 25, 13, 1;
. 99, 85, 71, 57, 43, 29, 15, 1;
. 129, 113, 97, 81, 65, 49, 33, 17, 1;
. 163, 145, 127, 109, 91, 73, 55, 37, 19, 1;
. 201, 181, 161, 141, 121, 101, 81, 61, 41, 21, 1;
...
Columns from the first to the fifth, respectively: A058331, A001844, A056220 (after -1), A059993, A161532. Also, eighth column is A161549.
(End)
Cf.
A237627 (subset of semiprimes).
-
[n^3+n^2+n+1: n in [0..50]]; // Vincenzo Librandi, May 01 2011
-
A053698:=n->n^3 + n^2 + n + 1; seq(A053698(n), n=0..50); # Wesley Ivan Hurt, Apr 22 2014
-
Table[n^3 + n^2 + n + 1, {n, 0, 39}] (* Alonso del Arte, Apr 22 2014 *)
FromDigits["1111", Range[0, 50]] (* Paolo Xausa, May 11 2024 *)
-
Vec((1 + 5*x^2) / (1 - x)^4 + O(x^50)) \\ Colin Barker, Jan 02 2017
-
def a(n): return (n**3+n**2+n+1) # Torlach Rush, May 08 2024
A161700
a(n) is the sum of the elements on the antidiagonal of the difference table of the divisors of n.
Original entry on oeis.org
1, 3, 5, 7, 9, 13, 13, 15, 19, 17, 21, 28, 25, 21, 41, 31, 33, 59, 37, 21, 53, 29, 45, 39, 61, 33, 65, 49, 57, 171, 61, 63, 77, 41, 117, 61, 73, 45, 89, -57, 81, 309, 85, 105, 167, 53, 93, -80, 127, 61, 113, 133, 105, 321, 173, 183, 125, 65, 117, -1039, 121, 69, 155, 127, 201, 333, 133, 189, 149, -69, 141, 117, 145, 81, 317, 217, 269
Offset: 1
n=12: A000005(12)=6;
EDP(12,x) = (x^5 - 5*x^4 + 5*x^3 + 5*x^2 + 114*x + 120)/120 = A161701(x) is the interpolating polynomial for {(0,1),(1,2),(2,3),(3,4),(4,6),(5,12)},
{EDP(12,x): 0<=x<6} = {1, 2, 3, 4, 6, 12} = divisors of 12,
a(12) = EDP(12,6) = 28.
From _Peter Luschny_, May 18 2016: (Start)
a(40) = -57 because the sum of the elements on the antidiagonal of DTD(40) is -57.
The DTD(40) is:
[ 1 2 4 5 8 10 20 40]
[ 1 2 1 3 2 10 20 0]
[ 1 -1 2 -1 8 10 0 0]
[ -2 3 -3 9 2 0 0 0]
[ 5 -6 12 -7 0 0 0 0]
[ -11 18 -19 0 0 0 0 0]
[ 29 -37 0 0 0 0 0 0]
[ -66 0 0 0 0 0 0 0]
(End)
Cf.
A000012,
A000027,
A005408,
A000124,
A016813,
A086514,
A016921,
A000125,
A058331,
A002522,
A017281,
A161701,
A017533,
A161702,
A161703,
A000127,
A158057,
A161704,
A161705,
A161706,
A161707,
A161708,
A161709,
A161710,
A080856,
A161711,
A161712,
A161713,
A161714,
A161715,
A128470,
A006261.
-
f:= proc(n)
local D, nD;
D:= sort(convert(numtheory:-divisors(n),list));
nD:= nops(D);
CurveFitting:-PolynomialInterpolation([$0..nD-1],D, nD)
end proc:
map(f, [$1..100]); # Robert Israel, May 18 2016
-
a[n_] := (d = Divisors[n]; t = Table[Differences[d, k], {k, 0, lg = Length[d]}]; Sum[t[[lg - k + 1, k]], {k, 1, lg}]);
Array[a, 77] (* Jean-François Alcover, Jan 25 2018 *)
-
def A161700(n):
D = divisors(n)
T = matrix(ZZ, len(D))
for (m, d) in enumerate(D):
T[0, m] = d
for k in range(m-1, -1, -1) :
T[m-k, k] = T[m-k-1, k+1] - T[m-k-1, k]
return sum(T[k,len(D)-k-1] for k in range(len(D)))
print([A161700(n) for n in range(1,78)]) # Peter Luschny, May 18 2016
A056106
Second spoke of a hexagonal spiral.
Original entry on oeis.org
1, 3, 11, 25, 45, 71, 103, 141, 185, 235, 291, 353, 421, 495, 575, 661, 753, 851, 955, 1065, 1181, 1303, 1431, 1565, 1705, 1851, 2003, 2161, 2325, 2495, 2671, 2853, 3041, 3235, 3435, 3641, 3853, 4071, 4295, 4525, 4761, 5003, 5251, 5505, 5765, 6031, 6303
Offset: 0
-
a056106 n = n * (3 * n - 1) + 1 -- Reinhard Zumkeller, Dec 13 2014
-
I:=[1,3]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2)+6: n in [1..50]]; // Vincenzo Librandi, Nov 14 2011
-
Table[3*n^2 - n + 1, {n,0,50}] (* G. C. Greubel, Jul 19 2017 *)
-
a(n) = 3*n^2-n+1;
A080856
a(n) = 8*n^2 - 4*n + 1.
Original entry on oeis.org
1, 5, 25, 61, 113, 181, 265, 365, 481, 613, 761, 925, 1105, 1301, 1513, 1741, 1985, 2245, 2521, 2813, 3121, 3445, 3785, 4141, 4513, 4901, 5305, 5725, 6161, 6613, 7081, 7565, 8065, 8581, 9113, 9661, 10225, 10805, 11401, 12013, 12641, 13285, 13945, 14621
Offset: 0
Cf.
A005408,
A000124,
A016813,
A049061,
A080853,
A086514,
A000125,
A058331,
A002522,
A161701,
A161702,
A161703,
A000127,
A161704,
A161706,
A161707,
A161708,
A161710,
A161711,
A161712,
A161713,
A161715,
A006261.
A060820 is another version (but the present sequence is the main entry).
-
A080856:=n->8*n^2 - 4*n + 1: seq(A080856(n), n=0..100); # Wesley Ivan Hurt, Jul 16 2017
-
LinearRecurrence[{3, -3, 1}, {1, 5, 25}, 80] (* Vladimir Joseph Stephan Orlovsky, Feb 17 2012 *)
-
a(n)=8*n^2-4*n+1 \\ Charles R Greathouse IV, Sep 24 2015
Definition replaced with the closed form by
Bruno Berselli, Jan 16 2013
A132592
X-values of solutions to the equation X*(X + 1) - 8*Y^2 = 0.
Original entry on oeis.org
0, 8, 288, 9800, 332928, 11309768, 384199200, 13051463048, 443365544448, 15061377048200, 511643454094368, 17380816062160328, 590436102659356800, 20057446674355970888, 681362750825443653408, 23146276081390728245000, 786292024016459316676608, 26710782540478226038759688
Offset: 0
Cf.
A001541,
A058331,
A001079,
A037270,
A055792,
A071253,
A108741,
A132592,
A146311,
A146312,
A146313,
A173115,
A173116,
A173121.
-
I:=[0,8,288]; [n le 3 select I[n] else 35*Self(n-1)-35*Self(n-2)+ Self(n-3): n in [1..30]]; // Vincenzo Librandi, Dec 24 2018
-
Table[Round[N[Sinh[2 n ArcCosh[Sqrt[2]]]^2, 100]], {n, 0, 20}] (* Artur Jasinski, Feb 10 2010 *)
LinearRecurrence[{35, -35, 1}, {0, 8, 288}, 30] (* Vincenzo Librandi, Dec 24 2018 *)
-
A132592 = [0, 8]
for n in range(2, 18): A132592.append(34 * A132592[-1] - A132592[-2] + 16)
print(A132592) # Karl-Heinz Hofmann, Sep 20 2022
A120062
Number of triangles with integer sides a <= b <= c having integer inradius n.
Original entry on oeis.org
1, 5, 13, 18, 15, 45, 24, 45, 51, 52, 26, 139, 31, 80, 110, 89, 33, 184, 34, 145, 185, 103, 42, 312, 65, 96, 140, 225, 36, 379, 46, 169, 211, 116, 173, 498, 38, 123, 210, 328, 44, 560, 60, 280, 382, 134, 64, 592, 116, 228, 230, 271, 47, 452, 229, 510, 276, 134, 54
Offset: 1
a(1)=1: {3,4,5} is the only triangle with integer sides and inradius 1.
a(2)=5: {5,12,13}, {6,8,10}, {6,25,29}, {7,15,20}, {9,10,17} are the only triangles with integer sides and inradius 2.
a(4)=A120252(1)+A120252(2)+A120252(4)=1+4+13 because 1, 2 and 4 are the factors of 4. The 1 primitive triangle with inradius n=1 is (3,4,5). The 4 primitive triangles with n=2 are (5,12,13), (9,10,17), (7,15,20), (6,25,29). The 13 primitive triangles with n=4 are (13,14,15), (15,15,24), (11,25,30), (15,26,37), (10,35,39), (9,40,41), (33,34,65), (25,51,74), (9,75,78), (11,90,97), (21,85,104), (19,153,170), (18,289,305). (Primitive means GCD(a, b, c, n)=1.)
Cf.
A078644 [Pythagorean triangles with inradius n],
A057721 [n^4+3*n^2+1].
Let S(n) be the set of triangles with integer sides a<=b<=c and inradius n. Then:
A120062(n) gives number of triangles in S(n).
A120261(n) gives number of triangles in S(n) with gcd(a, b, c) = 1.
A120252(n) gives number of triangles in S(n) with gcd(a, b, c, n) = 1.
A005408(n) = 2n+1 gives shortest short side a of triangles in S(n).
A120064(n) gives shortest middle side b of triangles in S(n).
A120063(n) gives shortest long side c of triangles in S(n).
A120570(n) gives shortest perimeter of triangles in S(n).
A120572(n) gives smallest area of triangles in S(n).
A058331(n) = 2n^2+1 gives longest short side a of triangles in S(n).
A082044(n) = n^4+2n^2+1 gives longest middle side b of triangles in S(n).
A057721(n) = n^4+3n^2+1 gives longest long side c of triangles in S(n).
A120571(n) = 2n^4+6n^2+4 gives longest perimeter of triangles in S(n).
A120573(n) = gives largest area of triangles in S(n).
Cf.
A120252 [primitive triangles with integer inradius],
A120063 [minimum of longest sides],
A057721 [maximum of longest sides],
A120064 [minimum of middle sides],
A082044 [maximum of middle sides],
A005408 [minimum of shortest sides],
A058331 [maximum of shortest sides],
A007237 [number of triangles with integer sides and area = n times perimeter].
A086514
Difference between the arithmetic mean of the neighbors of the terms and the term itself follows the pattern 0,1,2,3,4,5,...
Original entry on oeis.org
1, 2, 3, 6, 13, 26, 47, 78, 121, 178, 251, 342, 453, 586, 743, 926, 1137, 1378, 1651, 1958, 2301, 2682, 3103, 3566, 4073, 4626, 5227, 5878, 6581, 7338, 8151, 9022, 9953, 10946, 12003, 13126, 14317, 15578, 16911, 18318, 19801, 21362, 23003, 24726
Offset: 1
2 = (1+3)/2 -0. 3 = (2+6)/2 - 1, 6 = (3+13)/2 - 2, etc.
Cf.
A005408,
A000124,
A016813,
A000125,
A058331,
A002522,
A161701,
A161702,
A161703,
A000127,
A161704,
A161706,
A161707,
A161708,
A161710,
A080856,
A161711,
A161712,
A161713,
A161715,
A006261,
A177342,
A014106,
A000290.
Comments