cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 95 results. Next

A084849 a(n) = 1 + n + 2*n^2.

Original entry on oeis.org

1, 4, 11, 22, 37, 56, 79, 106, 137, 172, 211, 254, 301, 352, 407, 466, 529, 596, 667, 742, 821, 904, 991, 1082, 1177, 1276, 1379, 1486, 1597, 1712, 1831, 1954, 2081, 2212, 2347, 2486, 2629, 2776, 2927, 3082, 3241, 3404, 3571, 3742, 3917, 4096, 4279, 4466
Offset: 0

Views

Author

Paul Barry, Jun 09 2003

Keywords

Comments

Equals (1, 2, 3, ...) convolved with (1, 2, 4, 4, 4, ...). a(3) = 22 = (1, 2, 3, 4) dot (4, 4, 2, 1) = (4 + 8 + 6 + 4). - Gary W. Adamson, May 01 2009
a(n) is also the number of ways to place 2 nonattacking bishops on a 2 X (n+1) board. - Vaclav Kotesovec, Jan 29 2010
Partial sums are A174723. - Wesley Ivan Hurt, Apr 16 2016
Also the number of irredundant sets in the n-cocktail party graph. - Eric W. Weisstein, Aug 09 2017

Crossrefs

Programs

Formula

a(n) = A058331(n) + A000027(n).
G.f.: (1 + x + 2*x^2)/(1 - x)^3.
a(n) = A014105(n) + 1; A100035(a(n)) = 1. - Reinhard Zumkeller, Oct 31 2004
a(n) = ceiling((2*n + 1)^2/2) - n = A001844(n) - n. - Paul Barry, Jul 16 2006
From Gary W. Adamson, Oct 07 2007: (Start)
Row sums of triangle A131901.
(a(n): n >= 0) is the binomial transform of (1, 3, 4, 0, 0, 0, ...). (End)
Equals A134082 * [1,2,3,...]. -
a(n) = (1 + A000217(2*n-1) + A000217(2*n+1))/2. - Enrique Pérez Herrero, Apr 02 2010
a(n) = (A177342(n+1) - A177342(n))/2, with n > 0. - Bruno Berselli, May 19 2010
a(n) - 3*a(n-1) + 3*a(n-2) - a(n-3) = 0, with n > 2. - Bruno Berselli, May 24 2010
a(n) = 4*n + a(n-1) - 1 (with a(0) = 1). - Vincenzo Librandi, Aug 08 2010
With an offset of 1, the polynomial a(t-1) = 2*t^2 - 3*t + 2 is the Alexander polynomial (with negative powers cleared) of the 3-twist knot. The associated Seifert matrix S is [[-1,-1], [0,-2]]. a(n-1) = det(transpose(S) - n*S). Cf. A060884. - Peter Bala, Mar 14 2012
E.g.f.: (1 + 3*x + 2*x^2)*exp(x). - Ilya Gutkovskiy, Apr 16 2016

A006261 a(n) = Sum_{k=0..5} binomial(n,k).

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 63, 120, 219, 382, 638, 1024, 1586, 2380, 3473, 4944, 6885, 9402, 12616, 16664, 21700, 27896, 35443, 44552, 55455, 68406, 83682, 101584, 122438, 146596, 174437, 206368, 242825, 284274, 331212, 384168, 443704, 510416, 584935, 667928, 760099, 862190
Offset: 0

Views

Author

N. J. A. Sloane, based on a suggestion from S. C. Chan, Jun 10 1975

Keywords

Comments

a(n) is the sum of the first six terms of the n-th row in Pascal's triangle. - Geoffrey Critzer, Jan 19 2009
Also the interpolating polynomial for the divisors of 32: {a(k): 0 <= k < 6} = {1,2,4,8,16,32}. - Reinhard Zumkeller, Jun 17 2009
a(n) is the maximal number of regions in 5-space formed by n-1 4-dimensional hypercubes. - Carl Schildkraut, May 26 2015
a(n) is the number of binary words of length n matching the regular expression 1*0*1*0*1*0*. A000124, A000125, A000127 count binary words of the form 0*1*0*, 1*0*1*0*, and 0*1*0*1*0*, respectively. - Manfred Scheucher, Jun 22 2023

Examples

			a(7) = 120 because the first six terms in the 7th row of Pascal's triangle 1 + 7 + 21 + 35 + 35 + 21 = 120. - _Geoffrey Critzer_, Jan 19 2009
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 72, Problem 2.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a006261 = sum . take 6 . a007318_row  -- Reinhard Zumkeller, Nov 24 2012
    
  • Magma
    [(n^5 - 5*n^4 + 25*n^3 + 5*n^2 + 94*n + 120)/120: n in [0..40]]; // Vincenzo Librandi, Jul 17 2011
    
  • Maple
    A006261:=(z**2-z+1)*(3*z**2-3*z+1)/(z-1)**6; # Simon Plouffe in his 1992 dissertation
  • Mathematica
    CoefficientList[
      Series[(1 + x + x^2/2 + x^3/6 + x^4/24 + x^5/120) Exp[x], {x, 0,
        52}], x]*Table[n!, {n, 0, 52}]
  • PARI
    a(n)=sum(k=0,5,binomial(n,k)) \\ Charles R Greathouse IV, Apr 08 2016
  • Python
    A006261_list, m = [], [1, -3, 4, -2, 1, 1]
    for _ in range(10**2):
        A006261_list.append(m[-1])
        for i in range(5):
            m[i+1] += m[i] # Chai Wah Wu, Jan 24 2016
    
  • Sage
    [binomial(n,1)+binomial(n,3)+binomial(n,5) for n in range(1, 38)] # Zerinvary Lajos, May 17 2009
    

Formula

a(n) = A057703(n) + 1.
a(n) = binomial(n+1, 5) + binomial(n+1, 3) + binomial(n+1, 1). - Len Smiley, Oct 20 2001
G.f.: (1 - 4*x + 7*x^2 - 6*x^3 + 3*x^4)/(1-x)^6. - Geoffrey Critzer, Jan 19 2009
E.g.f.: (1 + x + x^2/2 + x^3/6 + x^4/24 + x^5/120)*exp(x).
a(n) = (n^5 - 5*n^4 + 25*n^3 + 5*n^2 + 94*n + 120)/120. - Reinhard Zumkeller, Jun 17 2009
a(n) = a(n-1) + A000127(n-1). - Christian Schroeder, Jan 04 2016

A054556 a(n) = 4*n^2 - 9*n + 6.

Original entry on oeis.org

1, 4, 15, 34, 61, 96, 139, 190, 249, 316, 391, 474, 565, 664, 771, 886, 1009, 1140, 1279, 1426, 1581, 1744, 1915, 2094, 2281, 2476, 2679, 2890, 3109, 3336, 3571, 3814, 4065, 4324, 4591, 4866, 5149, 5440, 5739, 6046, 6361, 6684, 7015, 7354, 7701, 8056, 8419, 8790
Offset: 1

Views

Author

Keywords

Comments

Move in 1-4 direction in a spiral organized like A068225 etc.
Equals binomial transform of [1, 3, 8, 0, 0, 0, ...]. - Gary W. Adamson, Apr 30 2008
Ulam's spiral (N spoke). - Robert G. Wilson v, Oct 31 2011
Also, numbers of the form m*(4*m+1)+1 for nonpositive m. - Bruno Berselli, Jan 06 2016

Crossrefs

Cf. A266883: m*(4*m+1)+1 for m = 0,-1,1,-2,2,-3,3,...
Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.

Programs

Formula

a(n)^2 = Sum_{i = 0..2*(4*n-5)} (4*n^2-13*n+9+i)^2*(-1)^i = ((n-1)*(4*n-5)+1)^2. - Bruno Berselli, Apr 29 2010
From Harvey P. Dale, Aug 21 2011: (Start)
a(0)=1, a(1)=4, a(2)=15; for n > 2, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: -x*(6*x^2+x+1)/(x-1)^3. (End)
From Franck Maminirina Ramaharo, Mar 09 2018: (Start)
a(n) = binomial(2*n - 2, 2) + 2*(n - 1)^2 + 1.
a(n) = A000384(n-1) + A058331(n-1).
a(n) = A130883(n-1) + A001105(n-1). (End)
E.g.f.: exp(x)*(6 - 5*x + 4*x^2) - 6. - Stefano Spezia, Apr 24 2024

Extensions

Edited by Frank Ellermann, Feb 24 2002
Incorrect formula deleted by N. J. A. Sloane, Aug 02 2009

A053698 a(n) = n^3 + n^2 + n + 1.

Original entry on oeis.org

1, 4, 15, 40, 85, 156, 259, 400, 585, 820, 1111, 1464, 1885, 2380, 2955, 3616, 4369, 5220, 6175, 7240, 8421, 9724, 11155, 12720, 14425, 16276, 18279, 20440, 22765, 25260, 27931, 30784, 33825, 37060, 40495, 44136, 47989, 52060, 56355, 60880
Offset: 0

Views

Author

Henry Bottomley, Mar 23 2000

Keywords

Comments

a(n) = 1111 in base n.
n^3 + n^2 + n + 1 = (n^2 + 1)*(n + 1), therefore a(n) is never prime. - Alonso del Arte, Apr 22 2014

Examples

			a(2) = 15 because 2^3 + 2^2 + 2 + 1 = 8 + 4 + 2 + 1 = 15.
a(3) = 40 because 3^3 + 3^2 + 3 + 1 = 27 + 9 + 3 + 1 = 40.
a(4) = 85 because 4^3 + 4^2 + 4 + 1 = 64 + 16 + 4 + 1 = 85.
From _Bruno Berselli_, Jan 02 2017: (Start)
The terms of the sequence are provided by the row sums of the following triangle (see the seventh formula in the previous section):
.   1;
.   3,   1;
.   9,   5,   1;
.  19,  13,   7,   1;
.  33,  25,  17,   9,   1;
.  51,  41,  31,  21,  11,   1;
.  73,  61,  49,  37,  25,  13,  1;
.  99,  85,  71,  57,  43,  29, 15,  1;
. 129, 113,  97,  81,  65,  49, 33, 17,  1;
. 163, 145, 127, 109,  91,  73, 55, 37, 19,  1;
. 201, 181, 161, 141, 121, 101, 81, 61, 41, 21, 1;
...
Columns from the first to the fifth, respectively: A058331, A001844, A056220 (after -1), A059993, A161532. Also, eighth column is A161549.
(End)
		

Crossrefs

Cf. A237627 (subset of semiprimes).
Cf. A056106 (first differences).

Programs

Formula

For n >= 2, a(n) = (n^4-1)/(n-1) = A024002(n)/A024000(n) = A002522(n)*(n+1) = A002061(n+1) + A000578(n).
G.f.: (1+5*x^2) / (1-x)^4. - Colin Barker, Jan 06 2012
a(n) = -A062158(-n). - Bruno Berselli, Jan 26 2016
a(n) = Sum_{i=0..n} 2*n*(n-i)+1. - Bruno Berselli, Jan 02 2017
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 3. - Colin Barker, Jan 02 2017
a(n) = A104878(n+3,n) = A055129(4,n) for n > 0. - Mathew Englander, Jan 06 2021
E.g.f.: exp(x)*(x^3+4*x^2+3*x+1). - Nikolaos Pantelidis, Feb 06 2023

A161700 a(n) is the sum of the elements on the antidiagonal of the difference table of the divisors of n.

Original entry on oeis.org

1, 3, 5, 7, 9, 13, 13, 15, 19, 17, 21, 28, 25, 21, 41, 31, 33, 59, 37, 21, 53, 29, 45, 39, 61, 33, 65, 49, 57, 171, 61, 63, 77, 41, 117, 61, 73, 45, 89, -57, 81, 309, 85, 105, 167, 53, 93, -80, 127, 61, 113, 133, 105, 321, 173, 183, 125, 65, 117, -1039, 121, 69, 155, 127, 201, 333, 133, 189, 149, -69, 141, 117, 145, 81, 317, 217, 269
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 17 2009, Jun 20 2009

Keywords

Comments

a(p^k) = p^(k+1) - (p-1)^(k+1) if p is prime. - Robert Israel, May 18 2016

Examples

			n=12: A000005(12)=6;
EDP(12,x) = (x^5 - 5*x^4 + 5*x^3 + 5*x^2 + 114*x + 120)/120 = A161701(x) is the interpolating polynomial for {(0,1),(1,2),(2,3),(3,4),(4,6),(5,12)},
{EDP(12,x): 0<=x<6} = {1, 2, 3, 4, 6, 12} = divisors of 12,
a(12) = EDP(12,6) = 28.
From _Peter Luschny_, May 18 2016: (Start)
a(40) = -57 because the sum of the elements on the antidiagonal of DTD(40) is -57.
The DTD(40) is:
[   1    2    4   5  8  10  20  40]
[   1    2    1   3  2  10  20   0]
[   1   -1    2  -1  8  10   0   0]
[  -2    3   -3   9  2   0   0   0]
[   5   -6   12  -7  0   0   0   0]
[ -11   18  -19   0  0   0   0   0]
[  29  -37    0   0  0   0   0   0]
[ -66    0    0   0  0   0   0   0]
(End)
		

Crossrefs

Programs

  • Maple
    f:= proc(n)
    local D, nD;
    D:= sort(convert(numtheory:-divisors(n),list));
    nD:= nops(D);
    CurveFitting:-PolynomialInterpolation([$0..nD-1],D, nD)
    end proc:
    map(f, [$1..100]); # Robert Israel, May 18 2016
  • Mathematica
    a[n_] := (d = Divisors[n]; t = Table[Differences[d, k], {k, 0, lg = Length[d]}]; Sum[t[[lg - k + 1, k]], {k, 1, lg}]);
    Array[a, 77] (* Jean-François Alcover, Jan 25 2018 *)
  • Sage
    def A161700(n):
        D = divisors(n)
        T = matrix(ZZ, len(D))
        for (m, d) in enumerate(D):
            T[0, m] = d
            for k in range(m-1, -1, -1) :
                T[m-k, k] = T[m-k-1, k+1] - T[m-k-1, k]
        return sum(T[k,len(D)-k-1] for k in range(len(D)))
    print([A161700(n) for n in range(1,78)]) # Peter Luschny, May 18 2016

Formula

a(n) = EDP(n,tau(n)) with tau = A000005 and EDP(n,x) = interpolating polynomial for the divisors of n.
EDP(n,A000005(n) - 1) = n;
EDP(n,1) = A020639(n);
EDP(n,0) = 1;
EDP(n,k) = A027750(A006218(n-1)+k+1), 0<=k < A000005(n).

Extensions

New name from Peter Luschny, May 18 2016

A056106 Second spoke of a hexagonal spiral.

Original entry on oeis.org

1, 3, 11, 25, 45, 71, 103, 141, 185, 235, 291, 353, 421, 495, 575, 661, 753, 851, 955, 1065, 1181, 1303, 1431, 1565, 1705, 1851, 2003, 2161, 2325, 2495, 2671, 2853, 3041, 3235, 3435, 3641, 3853, 4071, 4295, 4525, 4761, 5003, 5251, 5505, 5765, 6031, 6303
Offset: 0

Views

Author

Henry Bottomley, Jun 09 2000

Keywords

Comments

First differences of A027444. - J. M. Bergot, Jun 04 2012
Numbers of the form ((h^2+h+1)^2+(-h^2+h+1)^2+(h^2+h-1)^2)/(h^2-h+1) for h=n-1. - Bruno Berselli, Mar 13 2013
For n > 0: 2*a(n) = A058331(n) + A001105(n) + A001844(n-1) = A251599(3*n-2) + A251599(3*n-1) + A251599(3*n). - Reinhard Zumkeller, Dec 13 2014
For all n >= 6, a(n+1) expressed in base n is "353". - Mathew Englander, Jan 06 2021

Crossrefs

First differences of A053698, A027444, and A188947.
Cf. A113524 (semiprime terms), A002061.
Other spirals: A054552.

Programs

  • Haskell
    a056106 n = n * (3 * n - 1) + 1  -- Reinhard Zumkeller, Dec 13 2014
  • Magma
    I:=[1,3]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2)+6: n in [1..50]]; // Vincenzo Librandi, Nov 14 2011
    
  • Mathematica
    Table[3*n^2 - n + 1, {n,0,50}] (* G. C. Greubel, Jul 19 2017 *)
  • PARI
    a(n) = 3*n^2-n+1;
    

Formula

a(n) = 3*n^2 - n + 1.
a(n) = a(n-1) + 6*n - 4 = 2*a(n-1) - a(n-2) + 6.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
E.g.f.: (1+2*x+3*x^2)*exp(x). - Paul Barry, Mar 13 2003
a(n) = A096777(3*n) for n>0. - Reinhard Zumkeller, Dec 29 2007
G.f.: (1+5*x^2)/(1-3*x+3*x^2-x^3). - Colin Barker, Jan 04 2012
a(n) = n*A002061(n+1) - (n-1)*A002061(n). - Bruno Berselli, Jan 15 2013
a(-n) = A056108(n). - Bruno Berselli, Mar 13 2013

A080856 a(n) = 8*n^2 - 4*n + 1.

Original entry on oeis.org

1, 5, 25, 61, 113, 181, 265, 365, 481, 613, 761, 925, 1105, 1301, 1513, 1741, 1985, 2245, 2521, 2813, 3121, 3445, 3785, 4141, 4513, 4901, 5305, 5725, 6161, 6613, 7081, 7565, 8065, 8581, 9113, 9661, 10225, 10805, 11401, 12013, 12641, 13285, 13945, 14621
Offset: 0

Views

Author

Paul Barry, Feb 23 2003

Keywords

Comments

The old definition of this sequence was "Generalized polygonal numbers".
Row T(4,n) of A080853.
{a(k): 0 <= k < 3} = divisors of 25. - Reinhard Zumkeller, Jun 17 2009
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=4, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=3, a(n-1)= coeff(charpoly(A,x),x^(n-2)). - Milan Janjic, Jan 27 2010
Also sequence found by reading the segment (1, 5) together with the line from 5, in the direction 5, 25,..., in the square spiral whose vertices are the generalized hexagonal numbers A000217. - Omar E. Pol, Nov 05 2012
For n > 0: A049061(a(n)) = 0, when the triangle of "signed Eulerian numbers" in A049061 is seen as flattened sequence. - Reinhard Zumkeller, Jan 31 2013

Crossrefs

A060820 is another version (but the present sequence is the main entry).
A row of the array in A386478.

Programs

Formula

G.f.: (1+2*x+13*x^2)/(1-x)^3.
a(n) = A060820(n), n>0. - R. J. Mathar, Sep 18 2008
a(n) = C(n,0) + 4*C(n,1) + 16*C(n,2). - Reinhard Zumkeller, Jun 17 2009
a(n) = 16*n+a(n-1)-12 with n>0, a(0)=1. - Vincenzo Librandi, Aug 08 2010
E.g.f.: (8*x^2 + 4*x + 1)*exp(x). - G. C. Greubel, Jun 16 2017

Extensions

Definition replaced with the closed form by Bruno Berselli, Jan 16 2013

A132592 X-values of solutions to the equation X*(X + 1) - 8*Y^2 = 0.

Original entry on oeis.org

0, 8, 288, 9800, 332928, 11309768, 384199200, 13051463048, 443365544448, 15061377048200, 511643454094368, 17380816062160328, 590436102659356800, 20057446674355970888, 681362750825443653408, 23146276081390728245000, 786292024016459316676608, 26710782540478226038759688
Offset: 0

Views

Author

Mohamed Bouhamida, Nov 14 2007

Keywords

Comments

Equivalently, numbers k such that both k/2 and k+1 are squares. - Karl-Heinz Hofmann, Sep 20 2022
Equivalently, numbers k such that the k-dimensional volume and total (k-1)-dimensional volume are equal, with side length being a positive integer, for all regular polyhedra constructible in k dimensions. - Matt Moir, Jul 09 2024

Crossrefs

Programs

Formula

a(0)=0, a(1)=8 and a(n) = 34*a(n-1) - a(n-2) + 16.
a(n) = (A056771(n) - 1)/2. - Max Alekseyev, Nov 13 2009
a(n) = sinh(2*n*arccosh(sqrt(2))^2) (n=0,1,2,3,...). - Artur Jasinski, Feb 10 2010
G.f.: -8*x*(x+1)/((x-1)*(x^2-34*x+1)). - Colin Barker, Oct 24 2012
a(n) = A055792(n+1)-1 = A001541(n)^2 - 1. - Antti Karttunen, Oct 03 2016

Extensions

More terms from Max Alekseyev, Nov 13 2009

A120062 Number of triangles with integer sides a <= b <= c having integer inradius n.

Original entry on oeis.org

1, 5, 13, 18, 15, 45, 24, 45, 51, 52, 26, 139, 31, 80, 110, 89, 33, 184, 34, 145, 185, 103, 42, 312, 65, 96, 140, 225, 36, 379, 46, 169, 211, 116, 173, 498, 38, 123, 210, 328, 44, 560, 60, 280, 382, 134, 64, 592, 116, 228, 230, 271, 47, 452, 229, 510, 276, 134, 54
Offset: 1

Views

Author

Hugo Pfoertner, Jun 11 2006

Keywords

Comments

It is conjectured that the longest possible side c of a triangle with integer sides and inradius n is given by A057721(n) = n^4 + 3*n^2 + 1.
For n >= 1, a(n) >= 1 because triangle (a, b, c) = (n^2 + 2, n^4 + 2*n^2 + 1, n^4 + 3*n^2 + 1) has inradius n. - David W. Wilson, Jun 17 2006
Previous name was "Number of triangles with integer sides a<=bA362669); so, now effectively, a(10) = 52. - Bernard Schott, Apr 24 2023

Examples

			a(1)=1: {3,4,5} is the only triangle with integer sides and inradius 1.
a(2)=5: {5,12,13}, {6,8,10}, {6,25,29}, {7,15,20}, {9,10,17} are the only triangles with integer sides and inradius 2.
a(4)=A120252(1)+A120252(2)+A120252(4)=1+4+13 because 1, 2 and 4 are the factors of 4. The 1 primitive triangle with inradius n=1 is (3,4,5). The 4 primitive triangles with n=2 are (5,12,13), (9,10,17), (7,15,20), (6,25,29). The 13 primitive triangles with n=4 are (13,14,15), (15,15,24), (11,25,30), (15,26,37), (10,35,39), (9,40,41), (33,34,65), (25,51,74), (9,75,78), (11,90,97), (21,85,104), (19,153,170), (18,289,305). (Primitive means GCD(a, b, c, n)=1.)
		

Crossrefs

Cf. A078644 [Pythagorean triangles with inradius n], A057721 [n^4+3*n^2+1].
Let S(n) be the set of triangles with integer sides a<=b<=c and inradius n. Then:
A120062(n) gives number of triangles in S(n).
A120261(n) gives number of triangles in S(n) with gcd(a, b, c) = 1.
A120252(n) gives number of triangles in S(n) with gcd(a, b, c, n) = 1.
A005408(n) = 2n+1 gives shortest short side a of triangles in S(n).
A120064(n) gives shortest middle side b of triangles in S(n).
A120063(n) gives shortest long side c of triangles in S(n).
A120570(n) gives shortest perimeter of triangles in S(n).
A120572(n) gives smallest area of triangles in S(n).
A058331(n) = 2n^2+1 gives longest short side a of triangles in S(n).
A082044(n) = n^4+2n^2+1 gives longest middle side b of triangles in S(n).
A057721(n) = n^4+3n^2+1 gives longest long side c of triangles in S(n).
A120571(n) = 2n^4+6n^2+4 gives longest perimeter of triangles in S(n).
A120573(n) = gives largest area of triangles in S(n).
Cf. A120252 [primitive triangles with integer inradius], A120063 [minimum of longest sides], A057721 [maximum of longest sides], A120064 [minimum of middle sides], A082044 [maximum of middle sides], A005408 [minimum of shortest sides], A058331 [maximum of shortest sides], A007237 [number of triangles with integer sides and area = n times perimeter].

Programs

  • Mathematica
    (* See link above. *)

Formula

The even-numbered terms are given by a(2*n)=A007237(n).
a(n) = Sum_{k|n} A120252(k).

Extensions

More terms from Graeme McRae and Hugo Pfoertner, Jun 12 2006
Name corrected by Bernard Schott, Apr 24 2023

A086514 Difference between the arithmetic mean of the neighbors of the terms and the term itself follows the pattern 0,1,2,3,4,5,...

Original entry on oeis.org

1, 2, 3, 6, 13, 26, 47, 78, 121, 178, 251, 342, 453, 586, 743, 926, 1137, 1378, 1651, 1958, 2301, 2682, 3103, 3566, 4073, 4626, 5227, 5878, 6581, 7338, 8151, 9022, 9953, 10946, 12003, 13126, 14317, 15578, 16911, 18318, 19801, 21362, 23003, 24726
Offset: 1

Views

Author

Amarnath Murthy, Jul 29 2003

Keywords

Comments

{a(k): 1 <= k <= 4} = divisors of 6. - Reinhard Zumkeller, Jun 17 2009

Examples

			2 = (1+3)/2 -0. 3 = (2+6)/2 - 1, 6 = (3+13)/2 - 2, etc.
		

Crossrefs

Programs

Formula

a(n)+ n-2 = {a(n-1) +a(n+1)}/2
a(n) = (n^3-6*n^2+14*n-6)/3.
Contribution from Bruno Berselli, May 31 2010: (Start)
G.f.: (1-2*x+x^2+2*x^3)/(1-x)^4.
a(n)-4*a(n-1)+6*a(n-2)-4*a(n-3)+a(n-4) = 0 with n>4. For n=9, 121-4*78+6*47-4*26+13 = 0.
a(n) = ( A177342(n)-A000290(n-1)-3*A014106(n-2) )/4 with n>1. For n=11, a(11) = (1671-100-3*189)/4 = 251. (End)

Extensions

More terms from David Wasserman, Mar 10 2005
Previous Showing 11-20 of 95 results. Next