cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 207 results. Next

A254640 Third partial sums of sixth powers (A001014).

Original entry on oeis.org

1, 67, 927, 6677, 32942, 126378, 404634, 1129854, 2833479, 6515509, 13947505, 28115451, 53846156, 98669156, 173975076, 296541132, 490504893, 789878583, 1241708083, 1909993393, 2880500634, 4266609710, 6216356510, 8920844010, 12624212835, 17635378761
Offset: 1

Views

Author

Luciano Ancora, Feb 04 2015

Keywords

Comments

This is one of a sequence of arrays that are the convolutions of the zero-padded sequences binomial(2n-1+k,k) with the Eulerian polynomials E(n,x) of A008292, represented by E(n,x) (1-x)^(-2n), which generate increasing partial sums of powers of integers:
n= 2) (1 + 4*x + x^2)/(1-x)^4 is the o.g.f. of A000578, the convolution of (1,4,1) with A000292, giving the powers of m^3.
n= 3) (1 + 11*x + 11*x^2 + x^3)/(1-x)^6 is the o.g.f. of A000538, convolution of (1,11,11,1) with A000389, giving the partial sums of m^4.
n= 4) (1 + 26*x + 66*x^2 + 26*x^3 + x^4)/(1-x)^8, the o.g.f. of A101092, convolution of (1,26,66,26,1) with A000580, the second partial sums of m^5
n= 5) (1 + 57*x + 302*x^2 + 302*x^3 + 57*x^4 + x^5)/(1-x)^10, the o.g.f. of A254460, convolution of (1,57,302,302,57,1) with A000582, giving the third partial sums of m^6. - Tom Copeland, Dec 07 2015

Crossrefs

Programs

  • GAP
    List([1..30], n-> Binomial(n+3,4)*(2*n+3)*(5*n^4 +30*n^3 +35*n^2 -30*n +2)/210); # G. C. Greubel, Aug 28 2019
    
  • Magma
    [n*(1+n)*(2+n)*(3+n)*(3+2*n)*(2-30*n+35*n^2+30*n^3+ 5*n^4)/5040: n in [1..30]]; // Vincenzo Librandi, Feb 05 2015
    
  • Maple
    seq(binomial(n+3,4)*(2*n+3)*(5*n^4 +30*n^3 +35*n^2 -30*n +2)/210, n=1..30); # G. C. Greubel, Aug 28 2019
  • Mathematica
    Table[n(1+n)(2+n)(3+n)(3+2n)(2 -30n +35n^2 +30n^3 +5n^4)/5040, {n, 30}] (* or *) CoefficientList[Series[(x+1)(x^4 +56x^3 +246x^2 +56x +1)/(x - 1)^10, {x, 0, 30}], x] (* Vincenzo Librandi, Feb 05 2015 *)
  • PARI
    vector(30, n, n*(1+n)*(2+n)*(3+n)*(3+2*n)*(2-30*n+35*n^2+30*n^3+5*n^4)/5040) \\ Colin Barker, Feb 04 2015
    
  • Python
    def A254640(n): return n*(n*(n*(n*(n*(n*(n*(n*(10*n + 135) + 720) + 1890) + 2394) + 945) - 640) - 450) + 36)//5040 # Chai Wah Wu, Dec 07 2021
  • Sage
    [binomial(n+3,4)*(2*n+3)*(5*n^4 +30*n^3 +35*n^2 -30*n +2)/210 for n in (1..30)] # G. C. Greubel, Aug 28 2019
    

Formula

a(n) = n*(1+n)*(2+n)*(3+n)*(3+2*n)*(2 -30*n +35*n^2 +30*n^3 +5*n^4)/5040.
G.f.: x*(1+x)*(1 +56*x +246*x^2 +56*x^3 +x^4)/(1-x)^10. - Colin Barker, Feb 04 2015

A101093 Second partial sums of sixth powers (A001014).

Original entry on oeis.org

1, 66, 860, 5750, 26265, 93436, 278256, 725220, 1703625, 3682030, 7431996, 14167946, 25730705, 44823000, 75305920, 122566056, 193963761, 299373690, 451829500, 668285310, 970507241, 1386109076, 1949746800, 2704487500
Offset: 1

Views

Author

Cecilia Rossiter (cecilia(AT)noticingnumbers.net), Dec 15 2004

Keywords

Crossrefs

Cf. A000540.

Programs

  • GAP
    List([2..30], n-> n^2*(3*n^6 -14*n^4 +21*n^2 -10)/168); # G. C. Greubel, Aug 28 2019
  • Magma
    [n*(1+n)^2*(2+n)*(-1+n*(2+n))*(-2+3*n*(2+n))/168: n in [1..40]]; // Vincenzo Librandi, Mar 24 2014
    
  • Maple
    f:=n->(3*n^8-14*n^6+21*n^4-10*n^2)/168;
    [seq(f(n),n=0..50)];  # N. J. A. Sloane, Mar 23 2014
  • Mathematica
    CoefficientList[Series[(x+1)(x^4+56x^3+246x^2+56x+1)/(1-x)^9, {x,0,40}], x] (* Vincenzo Librandi, Mar 24 2014 *)
    Nest[Accumulate,Range[30]^6,2] (* or *) LinearRecurrence[{9,-36,84,-126, 126,-84,36,-9,1},{1,66,860,5750,26265,93436,278256,725220,1703625},30] (* Harvey P. Dale, Jun 05 2019 *)
  • PARI
    vector(30, n, m=n+1; m^2*(3*m^6 -14*m^4 +21*m^2 -10)/168) \\ G. C. Greubel, Aug 28 2019
    
  • Sage
    [n^2*(3*n^6 -14*n^4 +21*n^2 -10)/168 for n in (2..30)] # G. C. Greubel, Aug 28 2019
    

Formula

a(n) = n*(1 + n)^2*(2 + n)*(-1 + n*(2 + n))*(-2 + 3*n*(2 + n))/168.
G.f.: x*(1+x)*(1 + 56*x + 246*x^2 + 56*x^3 + x^4)/(1-x)^9. - Colin Barker, Dec 18 2012
a(n) = Sum_{i=1..n} i*(n+1-i)^6, by the definition. - Bruno Berselli, Jan 31 2014
a(n) = 2*a(n-1) - a(n-2) + n^6. - Luciano Ancora, Jan 08 2015

Extensions

Edited by Ralf Stephan, Dec 16 2004

A254645 Fourth partial sums of sixth powers (A001014).

Original entry on oeis.org

1, 68, 995, 7672, 40614, 166992, 571626, 1701480, 4534959, 11050468, 24997973, 53113424, 106959580, 205628736, 379603812, 676144944, 1166649837, 1956528420, 3198236503, 5108229896, 7988730530, 12255340240
Offset: 1

Views

Author

Luciano Ancora, Feb 05 2015

Keywords

Examples

			First differences:   1, 63, 665, 3367, 11529,  31031, ...  (A022522)
--------------------------------------------------------------------------
The sixth powers:    1, 64, 729, 4096, 15625,  46656, ...  (A001014)
--------------------------------------------------------------------------
First partial sums:  1, 65, 794, 4890, 20515,  67171, ...  (A000540)
Second partial sums: 1, 66, 860, 5750, 26265,  93436, ...  (A101093)
Third partial sums:  1, 67, 927, 6677, 32942, 126378, ...  (A101099)
Fourth partial sums: 1, 68, 995, 7672, 40614, 166992, ...  (this sequence)
		

Crossrefs

Cf. A254644 (fourth partial sums of fifth powers), A254646 (fourth partial sums of seventh powers).

Programs

  • GAP
    List([1..30], n-> Binomial(n+4,5)*(n+2)*((n^2+4*n-1)^2-2)/42); # G. C. Greubel, Aug 28 2019
  • Magma
    [Binomial(n+4,5)*(n+2)*((n^2+4*n-1)^2-2)/42: n in [1..30]]; // G. C. Greubel, Aug 28 2019
    
  • Maple
    seq(binomial(n+4,5)*(n+2)*((n^2+4*n-1)^2-2)/42, n=1..30); # G. C. Greubel, Aug 28 2019
  • Mathematica
    Table[n (1 + n) (2 + n)^2 (3 + n) (4 + n) (- 1 - 8 n + 14 n^2 + 8 n^3 + n^4)/5040, {n, 22}] (* or *)
    Accumulate[Accumulate[Accumulate[Accumulate[Range[22]^6]]]] (* or *)
    CoefficientList[Series[(- 1 - 57 x - 302 x^2 - 302 x^3 - 57 x^4 - x^5)/(- 1 + x)^11, {x, 0, 21}], x]
    Nest[Accumulate,Range[30]^6,4] (* or *) LinearRecurrence[{11,-55,165,-330,462,-462,330,-165,55,-11,1},{1,68,995,7672,40614,166992,571626,1701480,4534959,11050468,24997973},30] (* Harvey P. Dale, Dec 27 2015 *)
  • PARI
    vector(30, n, binomial(n+4,5)*(n+2)*((n^2+4*n-1)^2-2)/42) \\ G. C. Greubel, Aug 28 2019
    
  • Sage
    [binomial(n+4,5)*(n+2)*((n^2+4*n-1)^2-2)/42 for n in (1..30)] # G. C. Greubel, Aug 28 2019
    

Formula

G.f.: x*(1 + 57*x + 302*x^2 + 302*x^3 + 57*x^4 + x^5)/(1 - x)^11.
a(n) = n*(1 + n)*(2 + n)^2*(3 + n)*(4 + n)*(- 1 - 8*n + 14*n^2 + 8*n^3 + n^4)/5040.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + n^6.

A254683 Fifth partial sums of sixth powers (A001014).

Original entry on oeis.org

1, 69, 1064, 8736, 49350, 216342, 787968, 2489448, 7024407, 18074875, 43072848, 96186272, 203145852, 408774588, 788378400, 1464523344, 2631173181, 4587701601, 7785938104, 12894168000, 20882898530, 33138238770
Offset: 1

Views

Author

Luciano Ancora, Feb 12 2015

Keywords

Examples

			First differences:   1, 63,  665, 3367, 11529, ...  (A022522)
--------------------------------------------------------------------------
The sixth powers:    1, 64,  729, 4096, 15625, ...  (A001014)
--------------------------------------------------------------------------
First partial sums:  1, 65,  794, 4890, 20515, ...  (A000540)
Second partial sums: 1, 66,  860, 5750, 26265, ...  (A101093)
Third partial sums:  1, 67,  927, 6677, 32942, ...  (A254640)
Fourth partial sums: 1, 68,  995, 7672, 40614, ...  (A254645)
Fifth partial sums:  1, 69, 1064, 8736, 49350, ...  (this sequence)
		

Crossrefs

Programs

  • Mathematica
    Table[n (1 + n) (2 + n) (3 + n) (4 + n) (5 + n) (5 + 2*n) (- 3 + 5*n + n^2) (4 + 15 n + 3 n^2)/332640, {n,22}] (* or *)
    CoefficientList[Series[(1 + 57 x + 302 x^2 + 302 x^3 + 57 x^4 + x^5)/(- 1 + x)^12, {x,0,21}], x]

Formula

G.f.: (x + 57*x^2 + 302*x^3 + 302*x^4 + 57*x^5 + x^6)/(- 1 + x)^12.
a(n) = n*(1 + n)*(2 + n)*(3 + n)*(4 + n)*(5 + n)*(5 + 2*n)*(- 3 + 5*n + n^2)*(4 + 15*n + 3*n^2)/332640.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) + n^6.

A254472 Sixth partial sums of sixth powers (A001014).

Original entry on oeis.org

1, 70, 1134, 9870, 59220, 275562, 1063530, 3552978, 10577385, 28652260, 71725108, 167911380, 371057232, 779831820, 1568210220, 3032733564, 5663906745, 10251608346, 18037546450, 30931714450, 51814612980, 84952851750, 136562787270, 215565263550, 334584493425
Offset: 1

Views

Author

Luciano Ancora, Feb 15 2015

Keywords

Examples

			First differences:   1, 63,  665, 3367, 11529, ... (A022522)
--------------------------------------------------------------------------
The sixth powers:    1, 64,  729, 4096, 15625, ... (A001014)
--------------------------------------------------------------------------
First partial sums:  1, 65,  794, 4890, 20515, ... (A000540)
Second partial sums: 1, 66,  860, 5750, 26265, ... (A101093)
Third partial sums:  1, 67,  927, 6677, 32942, ... (A254640)
Fourth partial sums: 1, 68,  995, 7672, 40614, ... (A254645)
Fifth partial sums:  1, 69, 1064, 8736, 49350, ... (A254683)
Sixth partial sums:  1, 70, 1134, 9870, 59220, ... (this sequence)
		

Crossrefs

Programs

  • Magma
    [n*(1+n)*(2+n)*(3+n)^2*(4+n)*(5+n)*(6+n)*(-3+5*n+n^2)* (3+7*n+n^2)/665280: n in [1..30]]; // Vincenzo Librandi, Feb 15 2015
    
  • Mathematica
    Table[n (1 + n) (2 + n) (3 + n)^2 (4 + n) (5 + n) (6 + n) (- 3 + 5 n + n^2) (3 + 7 n + n^2)/665280, {n, 22}] (* or *) CoefficientList[Series[(- 1 - 57 x - 302 x^2 - 302 x^3 - 57 x^4 - x^5)/(- 1 + x)^13, {x, 0, 28}], x]
    Nest[Accumulate,Range[30]^6,6] (* Harvey P. Dale, Oct 02 2015 *)
  • PARI
    vector(50,n,n*(1 + n)*(2 + n)*(3 + n)^2*(4 + n)*(5 + n)*(6 + n)*(-3 + 5*n + n^2)*(3 + 7*n + n^2)/665280) \\ Derek Orr, Feb 19 2015

Formula

G.f.: (-x - 57*x^2 - 302*x^3 - 302*x^4 - 57*x^5 - x^6)/(- 1 + x)^13.
a(n) = n*(1 + n)*(2 + n)*(3 + n)^2*(4 + n)*(5 + n)*(6 + n)*(-3 + 5*n + n^2)*(3 + 7*n + n^2)/665280.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) + n^6.
Sum_{n>=1} 1/a(n) = 25622179/76545 - 3080*Pi^2/81 + 149600*Pi*tan(sqrt(37)*Pi/2)/(243*sqrt(37)). - Amiram Eldar, Jan 27 2022

A254872 Seventh partial sums of sixth powers (A001014).

Original entry on oeis.org

1, 71, 1205, 11075, 70295, 345857, 1409387, 4962365, 15539750, 44192010, 115917118, 283828498, 654885730, 1434717550, 3002927770, 6035661334, 11699568079, 21951176425, 39988722875, 70920437325, 122735050305
Offset: 1

Views

Author

Luciano Ancora, Feb 17 2015

Keywords

Examples

			First differences:    1, 63,  665,  3367, 11529, ... (A022522)
--------------------------------------------------------------------
The sixth powers:     1, 64,  729,  4096, 15625, ... (A001014)
--------------------------------------------------------------------
First partial sums:   1, 65,  794,  4890, 20515, ... (A000540)
Second partial sums:  1, 66,  860,  5750, 26265, ... (A101093)
Third partial sums:   1, 67,  927,  6677, 32942, ... (A254640)
Fourth partial sums:  1, 68,  995,  7672, 40614, ... (A254645)
Fifth partial sums:   1, 69, 1064,  8736, 49350, ... (A254683)
Sixth partial sums:   1, 70, 1134,  9870, 59220, ... (A254472)
Seventh partial sums: 1, 71, 1205, 11075, 70295, ... (this sequence)
		

Crossrefs

Programs

  • Mathematica
    Table[(n (1 + n) (2 + n) (3 + n) (4 + n) (5 + n) (6 + n) (7 + n) (7 + 2 n) (- 49 + 147 n^2 + 42 n^3 + 3 n^4))/51891840, {n, 21}] (* or *)
    CoefficientList[Series[(1 + 57 x + 302 x^2 + 302 x^3 + 57 x^4 + x^5)/(- 1 + x)^14, {x, 0, 20}], x]

Formula

G.f.: (x + 57*x^2 + 302*x^3 + 302*x^4 + 57*x^5 + x^6)/(- 1 + x)^14.
a(n) = (n*(1 + n)*(2 + n)*(3 + n)*(4 + n)*(5 + n)*(6 + n)*(7 + n)*(7 + 2*n)*(- 49 + 147*n^2 + 42*n^3 + 3*n^4))/51891840.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) + n^6.

A279639 Exponential transform of the sixth powers A001014.

Original entry on oeis.org

1, 1, 65, 922, 19685, 572036, 16379797, 542459296, 20028938953, 787480005520, 33447797179721, 1522102664036384, 73362723948758125, 3738119667151161280, 200625910519541044189, 11290451562860730241216, 664399657108812332697233, 40781390340823661046136064
Offset: 0

Views

Author

Alois P. Heinz, Dec 16 2016

Keywords

Crossrefs

Column k=6 of A279636.
Cf. A001014.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
          add(binomial(n-1, j-1)*j^6*a(n-j), j=1..n))
        end:
    seq(a(n), n=0..25);

Formula

E.g.f.: exp(exp(x)*(x^6+15*x^5+65*x^4+90*x^3+31*x^2+x)).

A268335 Exponentially odd numbers.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 8, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 24, 26, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 46, 47, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97
Offset: 1

Views

Author

Vladimir Shevelev, Feb 01 2016

Keywords

Comments

The sequence is formed by 1 and the numbers whose prime power factorization contains only odd exponents.
The density of the sequence is the constant given by A065463.
Except for the first term the same as A002035. - R. J. Mathar, Feb 07 2016
Also numbers k all of whose divisors are bi-unitary divisors (i.e., A286324(k) = A000005(k)). - Amiram Eldar, Dec 19 2018
The term "exponentially odd integers" was apparently coined by Cohen (1960). These numbers were also called "unitarily 2-free", or "2-skew", by Cohen (1961). - Amiram Eldar, Jan 22 2024

Crossrefs

Programs

  • Mathematica
    Select[Range@ 100, AllTrue[Last /@ FactorInteger@ #, OddQ] &] (* Version 10, or *)
    Select[Range@ 100, Times @@ Boole[OddQ /@ Last /@ FactorInteger@ #] == 1 &] (* Michael De Vlieger, Feb 02 2016 *)
  • PARI
    isok(n)=my(f = factor(n)); for (k=1, #f~, if (!(f[k,2] % 2), return (0))); 1; \\ Michel Marcus, Feb 02 2016
    
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A268335_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:all(e&1 for e in factorint(n).values()),count(max(startvalue,1)))
    A268335_list = list(islice(A268335_gen(),20)) # Chai Wah Wu, Jun 22 2023

Formula

Sum_{a(n)<=x} 1 = C*x + O(sqrt(x)*log x*e^(c*sqrt(log x)/(log(log x))), where c = 4*sqrt(2.4/log 2) = 7.44308... and C = Product_{prime p} (1 - 1/p*(p + 1)) = 0.7044422009991... (A065463).
Sum_{n>=1} 1/a(n)^s = zeta(2*s) * Product_{p prime} (1 + 1/p^s - 1/p^(2*s)), s>1. - Amiram Eldar, Sep 26 2023

A013954 a(n) = sigma_6(n), the sum of the 6th powers of the divisors of n.

Original entry on oeis.org

1, 65, 730, 4161, 15626, 47450, 117650, 266305, 532171, 1015690, 1771562, 3037530, 4826810, 7647250, 11406980, 17043521, 24137570, 34591115, 47045882, 65019786, 85884500, 115151530, 148035890, 194402650, 244156251, 313742650, 387952660, 489541650, 594823322, 741453700
Offset: 1

Views

Author

Keywords

Comments

If the canonical factorization of n into prime powers is the product of p^e(p) then sigma_k(n) = Product_p ((p^((e(p)+1)*k))-1)/(p^k-1).
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001
Inverse Mobius transform of A001014. - R. J. Mathar, Oct 13 2011

Crossrefs

Programs

Formula

G.f.: Sum_{k>=1} k^6*x^k/(1-x^k). - Benoit Cloitre, Apr 21 2003
L.g.f.: -log(Product_{k>=1} (1 - x^k)^(k^5)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 06 2017
From Amiram Eldar, Oct 29 2023: (Start)
Multiplicative with a(p^e) = (p^(6*e+6)-1)/(p^6-1).
Dirichlet g.f.: zeta(s)*zeta(s-6).
Sum_{k=1..n} a(k) = zeta(7) * n^7 / 7 + O(n^8). (End)

A001110 Square triangular numbers: numbers that are both triangular and square.

Original entry on oeis.org

0, 1, 36, 1225, 41616, 1413721, 48024900, 1631432881, 55420693056, 1882672131025, 63955431761796, 2172602007770041, 73804512832419600, 2507180834294496361, 85170343853180456676, 2893284510173841030625, 98286503002057414584576, 3338847817559778254844961, 113422539294030403250144100
Offset: 0

Views

Author

Keywords

Comments

Satisfies a recurrence of S_r type for r=36: 0, 1, 36 and a(n-1)*a(n+1)=(a(n)-1)^2. First observed by Colin Dickson in alt.math.recreational, Mar 07 2004. - Rainer Rosenthal, Mar 14 2004
For every n, a(n) is the first of three triangular numbers in geometric progression. The third number in the progression is a(n+1). The middle triangular number is sqrt(a(n)*a(n+1)). Chen and Fang prove that four distinct triangular numbers are never in geometric progression. - T. D. Noe, Apr 30 2007
The sum of any two terms is never equal to a Fermat number. - Arkadiusz Wesolowski, Feb 14 2012
Conjecture: No a(2^k), where k is a nonnegative integer, can be expressed as a sum of a positive square number and a positive triangular number. - Ivan N. Ianakiev, Sep 19 2012
For n=2k+1, A010888(a(n))=1 and for n=2k, k > 0, A010888(a(n))=9. - Ivan N. Ianakiev, Oct 12 2013
For n > 0, these are the triangular numbers which are the sum of two consecutive triangular numbers, for instance 36 = 15 + 21 and 1225 = 595 + 630. - Michel Marcus, Feb 18 2014
The sequence is the case P1 = 36, P2 = 68, Q = 1 of the 3-parameter family of 4th order linear divisibility sequences found by Williams and Guy. - Peter Bala, Apr 03 2014
For n=2k, k > 0, a(n) is divisible by 12 and is therefore abundant. I conjecture that for n=2k+1 a(n) is deficient [true for k up to 43 incl.]. - Ivan N. Ianakiev, Sep 30 2014
The conjecture is true for all k > 0 because: For n=2k+1, k > 0, a(n) is odd. If a(n) is a prime number, it is deficient; otherwise a(n) has one or two distinct prime factors and is therefore deficient again. So for n=2k+1, k > 0, a(n) is deficient. - Muniru A Asiru, Apr 13 2016
Numbers k for which A139275(k) is a perfect square. - Bruno Berselli, Jan 16 2018

Examples

			a(2) = ((17 + 12*sqrt(2))^2 + (17 - 12*sqrt(2))^2 - 2)/32 = (289 + 24*sqrt(2) + 288 + 289 - 24*sqrt(2) + 288 - 2)/32 = (578 + 576 - 2)/32 = 1152/32 = 36 and 6^2 = 36 = 8*9/2 => a(2) is both the 6th square and the 8th triangular number.
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 193.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 38, 204.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923; see Vol. 2, p. 10.
  • Martin Gardner, Time Travel and other Mathematical Bewilderments, Freeman & Co., 1988, pp. 16-17.
  • Miodrag S. Petković, Famous Puzzles of Great Mathematicians, Amer. Math. Soc. (AMS), 2009, p. 64.
  • J. H. Silverman, A Friendly Introduction to Number Theory, Prentice Hall, 2001, p. 196.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 257-259.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 93.

Crossrefs

Other S_r type sequences are S_4=A000290, S_5=A004146, S_7=A054493, S_8=A001108, S_9=A049684, S_20=A049683, S_36=this sequence, S_49=A049682, S_144=A004191^2.
Cf. A001014; intersection of A000217 and A000290; A010052(a(n))*A010054(a(n)) = 1.
Cf. A005214, A054686, A232847 and also A233267 (reveals an interesting divisibility pattern for this sequence).
Cf. A240129 (triangular numbers that are squares of triangular numbers), A100047.
See A229131, A182334, A299921 for near-misses.

Programs

  • Haskell
    a001110 n = a001110_list !! n
    a001110_list = 0 : 1 : (map (+ 2) $
       zipWith (-) (map (* 34) (tail a001110_list)) a001110_list)
    -- Reinhard Zumkeller, Oct 12 2011
    
  • Magma
    [n le 2 select n-1 else Floor((6*Sqrt(Self(n-1)) - Sqrt(Self(n-2)))^2): n in [1..20]]; // Vincenzo Librandi, Jul 22 2015
  • Maple
    a:=17+12*sqrt(2); b:=17-12*sqrt(2); A001110:=n -> expand((a^n + b^n - 2)/32); seq(A001110(n), n=0..20); # Jaap Spies, Dec 12 2004
    A001110:=-(1+z)/((z-1)*(z**2-34*z+1)); # Simon Plouffe in his 1992 dissertation
  • Mathematica
    f[n_]:=n*(n+1)/2; lst={}; Do[If[IntegerQ[Sqrt[f[n]]],AppendTo[lst,f[n]]],{n,0,10!}]; lst (* Vladimir Joseph Stephan Orlovsky, Feb 12 2010 *)
    Table[(1/8) Round[N[Sinh[2 n ArcSinh[1]]^2, 100]], {n, 0, 20}] (* Artur Jasinski, Feb 10 2010 *)
    Transpose[NestList[Flatten[{Rest[#],34Last[#]-First[#]+2}]&, {0,1},20]][[1]]  (* Harvey P. Dale, Mar 25 2011 *)
    LinearRecurrence[{35, -35, 1}, {0, 1, 36}, 20] (* T. D. Noe, Mar 25 2011 *)
    LinearRecurrence[{6,-1},{0,1},20]^2 (* Harvey P. Dale, Oct 22 2012 *)
    (* Square = Triangular = Triangular = A001110 *)
    ChebyshevU[#-1,3]^2==Binomial[ChebyshevT[#/2,3]^2,2]==Binomial[(1+ChebyshevT[#,3])/2,2]=={1,36,1225,41616,1413721}[[#]]&@Range[5]
    True (* Bill Gosper, Jul 20 2015 *)
    L=0;r={};Do[AppendTo[r,L];L=1+17*L+6*Sqrt[L+8*L^2],{i,1,19}];r (* Kebbaj Mohamed Reda, Aug 02 2023 *)
  • PARI
    a=vector(100);a[1]=1;a[2]=36;for(n=3,#a,a[n]=34*a[n-1]-a[n-2]+2);a \\ Charles R Greathouse IV, Jul 25 2011
    
  • Scheme
    ;; With memoizing definec-macro from Antti Karttunen's IntSeq-library.
    (definec (A001110 n) (if (< n 2) n (+ 2 (- (* 34 (A001110 (- n 1))) (A001110 (- n 2))))))
    ;; Antti Karttunen, Dec 06 2013
    
  • Scheme
    ;; For testing whether n is in this sequence:
    (define (inA001110? n) (and (zero? (A068527 n)) (inA001109? (floor->exact (sqrt n)))))
    (define (inA001109? n) (= (* 8 n n) (floor->exact (* (sqrt 8) n (ceiling->exact (* (sqrt 8) n))))))
    ;; Antti Karttunen, Dec 06 2013
    

Formula

a(0) = 0, a(1) = 1; for n >= 2, a(n) = 34 * a(n-1) - a(n-2) + 2.
G.f.: x*(1 + x) / (( 1 - x )*( 1 - 34*x + x^2 )).
a(n-1) * a(n+1) = (a(n)-1)^2. - Colin Dickson, posting to alt.math.recreational, Mar 07 2004
If L is a square-triangular number, then the next one is 1 + 17*L + 6*sqrt(L + 8*L^2). - Lekraj Beedassy, Jun 27 2001
a(n) - a(n-1) = A046176(n). - Sophie Kuo (ejiqj_6(AT)yahoo.com.tw), May 27 2006
a(n) = A001109(n)^2 = A001108(n)*(A001108(n)+1)/2 = (A000129(n)*A001333(n))^2 = (A000129(n)*(A000129(n) + A000129(n-1)))^2. - Henry Bottomley, Apr 19 2000
a(n) = (((17+12*sqrt(2))^n) + ((17-12*sqrt(2))^n)-2)/32. - Bruce Corrigan (scentman(AT)myfamily.com), Oct 26 2002
Limit_{n->oo} a(n+1)/a(n) = 17 + 12*sqrt(2). See UWC problem link and solution. - Jaap Spies, Dec 12 2004
From Antonio Alberto Olivares, Nov 07 2003: (Start)
a(n) = 35*(a(n-1) - a(n-2)) + a(n-3);
a(n) = -1/16 + ((-24 + 17*sqrt(2))/2^(11/2))*(17 - 12*sqrt(2))^(n-1) + ((24 + 17*sqrt(2))/2^(11/2))*(17 + 12*sqrt(2))^(n-1). (End)
a(n+1) = (17*A029547(n) - A091761(n) - 1)/16. - R. J. Mathar, Nov 16 2007
a(n) = A001333^2 * A000129^2 = A000129(2*n)^2/4 = binomial(A001108,2). - Bill Gosper, Jul 28 2008
Closed form (as square = triangular): ( (sqrt(2)+1)^(2*n)/(4*sqrt(2)) - (1-sqrt(2))^(2*n)/(4*sqrt(2)) )^2 = (1/2) * ( ( (sqrt(2)+1)^n / 2 - (sqrt(2)-1)^n / 2 )^2 + 1 )*( (sqrt(2)+1)^n / 2 - (sqrt(2)-1)^n / 2 )^2. - Bill Gosper, Jul 25 2008
a(n) = (1/8)*(sinh(2*n*arcsinh(1)))^2. - Artur Jasinski, Feb 10 2010
a(n) = floor((17 + 12*sqrt(2))*a(n-1)) + 3 = floor(3*sqrt(2)/4 + (17 + 12*sqrt(2))*a(n-1) + 1). - Manuel Valdivia, Aug 15 2011
a(n) = (A011900(n) + A001652(n))^2; see the link about the generalized proof of square triangular numbers. - Kenneth J Ramsey, Oct 10 2011
a(2*n+1) = A002315(n)^2*(A002315(n)^2 + 1)/2. - Ivan N. Ianakiev, Oct 10 2012
a(2*n+1) = ((sqrt(t^2 + (t+1)^2))*(2*t+1))^2, where t = (A002315(n) - 1)/2. - Ivan N. Ianakiev, Nov 01 2012
a(2*n) = A001333(2*n)^2 * (A001333(2*n)^2 - 1)/2, and a(2*n+1) = A001333(2*n+1)^2 * (A001333(2*n+1)^2 + 1)/2. The latter is equivalent to the comment above from Ivan using A002315, which is a bisection of A001333. Using A001333 shows symmetry and helps show that a(n) are both "squares of triangular" and "triangular of squares". - Richard R. Forberg, Aug 30 2013
a(n) = (A001542(n)/2)^2.
From Peter Bala, Apr 03 2014: (Start)
a(n) = (T(n,17) - 1)/16, where T(n,x) denotes the Chebyshev polynomial of the first kind.
a(n) = U(n-1,3)^2, for n >= 1, where U(n,x) denotes the Chebyshev polynomial of the second kind.
a(n) = the bottom left entry of the 2 X 2 matrix T(n, M), where M is the 2 X 2 matrix [0, -17; 1, 18].
See the remarks in A100047 for the general connection between Chebyshev polynomials of the first kind and 4th-order linear divisibility sequences. (End)
a(n) = A096979(2*n-1) for n > 0. - Ivan N. Ianakiev, Jun 21 2014
a(n) = (6*sqrt(a(n-1)) - sqrt(a(n-2)))^2. - Arkadiusz Wesolowski, Apr 06 2015
From Daniel Poveda Parrilla, Jul 16 2016 and Sep 21 2016: (Start)
a(n) = A000290(A002965(2*n)*A002965(2*n + 1)) (after Hugh Darwen).
a(n) = A000217(2*(A000129(n))^2 - (A000129(n) mod 2)).
a(n) = A000129(n)^4 + Sum_{k=0..(A000129(n)^2 - (A000129(n) mod 2))} 2*k. This formula can be proved graphically by taking the corresponding triangle of a square triangular number and cutting both acute angles, one level at a time (sum of consecutive even numbers), resulting in a square of squares (4th powers).
a(n) = A002965(2*n)^4 + Sum_{k=A002965(2*n)^2..A002965(2*n)*A002965(2*n + 1) - 1} 2*k + 1. This formula takes an equivalent sum of consecutives, but odd numbers. (End)
E.g.f.: (exp((17-12*sqrt(2))*x) + exp((17+12*sqrt(2))*x) - 2*exp(x))/32. - Ilya Gutkovskiy, Jul 16 2016
Showing 1-10 of 207 results. Next