A254640 Third partial sums of sixth powers (A001014).
1, 67, 927, 6677, 32942, 126378, 404634, 1129854, 2833479, 6515509, 13947505, 28115451, 53846156, 98669156, 173975076, 296541132, 490504893, 789878583, 1241708083, 1909993393, 2880500634, 4266609710, 6216356510, 8920844010, 12624212835, 17635378761
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Luciano Ancora, Partial sums of m-th powers with Faulhaber polynomials
- Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
Programs
-
GAP
List([1..30], n-> Binomial(n+3,4)*(2*n+3)*(5*n^4 +30*n^3 +35*n^2 -30*n +2)/210); # G. C. Greubel, Aug 28 2019
-
Magma
[n*(1+n)*(2+n)*(3+n)*(3+2*n)*(2-30*n+35*n^2+30*n^3+ 5*n^4)/5040: n in [1..30]]; // Vincenzo Librandi, Feb 05 2015
-
Maple
seq(binomial(n+3,4)*(2*n+3)*(5*n^4 +30*n^3 +35*n^2 -30*n +2)/210, n=1..30); # G. C. Greubel, Aug 28 2019
-
Mathematica
Table[n(1+n)(2+n)(3+n)(3+2n)(2 -30n +35n^2 +30n^3 +5n^4)/5040, {n, 30}] (* or *) CoefficientList[Series[(x+1)(x^4 +56x^3 +246x^2 +56x +1)/(x - 1)^10, {x, 0, 30}], x] (* Vincenzo Librandi, Feb 05 2015 *)
-
PARI
vector(30, n, n*(1+n)*(2+n)*(3+n)*(3+2*n)*(2-30*n+35*n^2+30*n^3+5*n^4)/5040) \\ Colin Barker, Feb 04 2015
-
Python
def A254640(n): return n*(n*(n*(n*(n*(n*(n*(n*(10*n + 135) + 720) + 1890) + 2394) + 945) - 640) - 450) + 36)//5040 # Chai Wah Wu, Dec 07 2021
-
Sage
[binomial(n+3,4)*(2*n+3)*(5*n^4 +30*n^3 +35*n^2 -30*n +2)/210 for n in (1..30)] # G. C. Greubel, Aug 28 2019
Formula
a(n) = n*(1+n)*(2+n)*(3+n)*(3+2*n)*(2 -30*n +35*n^2 +30*n^3 +5*n^4)/5040.
G.f.: x*(1+x)*(1 +56*x +246*x^2 +56*x^3 +x^4)/(1-x)^10. - Colin Barker, Feb 04 2015
Comments