cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 92 results. Next

A055276 First differences of 11^n (A001020).

Original entry on oeis.org

1, 10, 110, 1210, 13310, 146410, 1610510, 17715610, 194871710, 2143588810, 23579476910, 259374246010, 2853116706110, 31384283767210, 345227121439310, 3797498335832410, 41772481694156510, 459497298635721610, 5054470284992937710, 55599173134922314810, 611590904484145462910
Offset: 0

Views

Author

Barry E. Williams, May 29 2000

Keywords

Comments

a(n) is the number of compositions of n when there are 10 types of each natural number. - Milan Janjic, Aug 13 2010
Apart from the first term, number of monic squarefree polynomials over F_11 of degree n. - Charles R Greathouse IV, Feb 07 2012

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Cf. A001020.

Programs

Formula

a(n) = 11*a(n-1) + ((-1)^n)*C(1,1-n).
a(n) = 10*11^(n-1); a(0)=1.
G.f.: (1-x)/(1-11*x).
E.g.f.: (10*exp(11*x) + 1)/11. - Elmo R. Oliveira, Mar 18 2025

Extensions

More terms from Elmo R. Oliveira, Mar 25 2025

A000007 The characteristic function of {0}: a(n) = 0^n.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Keywords

Comments

Changing the offset to 1 gives the arithmetical function a(1) = 1, a(n) = 0 for n > 1, the identity function for Dirichlet multiplication (see Apostol). - N. J. A. Sloane
Changing the offset to 1 makes this the decimal expansion of 1. - N. J. A. Sloane, Nov 13 2014
Hankel transform (see A001906 for definition) of A000007 (powers of 0), A000012 (powers of 1), A000079 (powers of 2), A000244 (powers of 3), A000302 (powers of 4), A000351 (powers of 5), A000400 (powers of 6), A000420 (powers of 7), A001018 (powers of 8), A001019 (powers of 9), A011557 (powers of 10), A001020 (powers of 11), etc. - Philippe Deléham, Jul 07 2005
This is the identity sequence with respect to convolution. - David W. Wilson, Oct 30 2006
a(A000004(n)) = 1; a(A000027(n)) = 0. - Reinhard Zumkeller, Oct 12 2008
The alternating sum of the n-th row of Pascal's triangle gives the characteristic function of 0, a(n) = 0^n. - Daniel Forgues, May 25 2010
The number of maximal self-avoiding walks from the NW to SW corners of a 1 X n grid. - Sean A. Irvine, Nov 19 2010
Historically there has been some disagreement as to whether 0^0 = 1. Graphing x^0 seems to support that conclusion, but graphing 0^x instead suggests that 0^0 = 0. Euler and Knuth have argued in favor of 0^0 = 1. For some calculators, 0^0 triggers an error, while in Mathematica, 0^0 is Indeterminate. - Alonso del Arte, Nov 15 2011
Another consequence of changing the offset to 1 is that then this sequence can be described as the sum of Moebius mu(d) for the divisors d of n. - Alonso del Arte, Nov 28 2011
With the convention 0^0 = 1, 0^n = 0 for n > 0, the sequence a(n) = 0^|n-k|, which equals 1 when n = k and is 0 for n >= 0, has g.f. x^k. A000007 is the case k = 0. - George F. Johnson, Mar 08 2013
A fixed point of the run length transform. - Chai Wah Wu, Oct 21 2016

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 30.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

Crossrefs

Characteristic function of {g}: this sequence (g = 0), A063524 (g = 1), A185012 (g = 2), A185013 (g = 3), A185014 (g = 4), A185015 (g = 5), A185016 (g = 6), A185017 (g = 7). - Jason Kimberley, Oct 14 2011
Characteristic function of multiples of g: this sequence (g = 0), A000012 (g = 1), A059841 (g = 2), A079978 (g = 3), A121262 (g = 4), A079998 (g = 5), A079979 (g = 6), A082784 (g = 7). - Jason Kimberley, Oct 14 2011

Programs

  • Haskell
    a000007 = (0 ^)
    a000007_list = 1 : repeat 0
    -- Reinhard Zumkeller, May 07 2012, Mar 27 2012
    
  • Magma
    [1] cat [0:n in [1..100]]; // Sergei Haller, Dec 21 2006
    
  • Maple
    A000007 := proc(n) if n = 0 then 1 else 0 fi end: seq(A000007(n), n=0..20);
    spec := [A, {A=Z} ]: seq(combstruct[count](spec, size=n+1), n=0..20);
  • Mathematica
    Table[If[n == 0, 1, 0], {n, 0, 99}]
    Table[Boole[n == 0], {n, 0, 99}] (* Michael Somos, Aug 25 2012 *)
    Join[{1},LinearRecurrence[{1},{0},102]] (* Ray Chandler, Jul 30 2015 *)
    PadRight[{1},120,0] (* Harvey P. Dale, Jul 18 2024 *)
  • PARI
    {a(n) = !n};
    
  • Python
    def A000007(n): return int(n==0) # Chai Wah Wu, Feb 04 2022

Formula

Multiplicative with a(p^e) = 0. - David W. Wilson, Sep 01 2001
a(n) = floor(1/(n + 1)). - Franz Vrabec, Aug 24 2005
As a function of Bernoulli numbers (cf. A027641: (1, -1/2, 1/6, 0, -1/30, ...)), triangle A074909 (the beheaded Pascal's triangle) * B_n as a vector = [1, 0, 0, 0, 0, ...]. - Gary W. Adamson, Mar 05 2012
a(n) = Sum_{k = 0..n} exp(2*Pi*i*k/(n+1)) is the sum of the (n+1)th roots of unity. - Franz Vrabec, Nov 09 2012
a(n) = (1-(-1)^(2^n))/2. - Luce ETIENNE, May 05 2015
a(n) = 1 - A057427(n). - Alois P. Heinz, Jan 20 2016
From Ilya Gutkovskiy, Sep 02 2016: (Start)
Binomial transform of A033999.
Inverse binomial transform of A000012. (End)

A008472 Sum of the distinct primes dividing n.

Original entry on oeis.org

0, 2, 3, 2, 5, 5, 7, 2, 3, 7, 11, 5, 13, 9, 8, 2, 17, 5, 19, 7, 10, 13, 23, 5, 5, 15, 3, 9, 29, 10, 31, 2, 14, 19, 12, 5, 37, 21, 16, 7, 41, 12, 43, 13, 8, 25, 47, 5, 7, 7, 20, 15, 53, 5, 16, 9, 22, 31, 59, 10, 61, 33, 10, 2, 18, 16, 67, 19, 26, 14, 71, 5, 73
Offset: 1

Views

Author

Keywords

Comments

Sometimes called sopf(n).
Sum of primes dividing n (without repetition) (compare A001414).
Equals A051731 * A061397 = inverse Mobius transform of [0, 2, 3, 0, 5, 0, 7, ...]. - Gary W. Adamson, Feb 14 2008
Equals row sums of triangle A143535. - Gary W. Adamson, Aug 23 2008
a(n) = n if and only if n is prime. - Daniel Forgues, Mar 24 2009
a(n) = n is a new record if and only if n is prime. - Zak Seidov, Jun 27 2009
a(A001043(n)) = A191583(n);
For n > 0: a(A000079(n)) = 2, a(A000244(n)) = 3, a(A000351(n)) = 5, a(A000420(n)) = 7;
a(A006899(n)) <= 3; a(A003586(n)) = 5; a(A033846(n)) = 7; a(A033849(n)) = 8; a(A033847(n)) = 9; a(A033850(n)) = 10; a(A143207(n)) = 10. - Reinhard Zumkeller, Jun 28 2011
For n > 1: a(n) = Sum(A027748(n,k): 1 <= k <= A001221(n)). - Reinhard Zumkeller, Aug 27 2011
If n is the product of twin primes (A037074), a(n) = 2*sqrt(n+1) = sqrt(4n+4). - Wesley Ivan Hurt, Sep 07 2013
From Wilf A. Wilson, Jul 21 2017: (Start)
a(n) + 2, n > 2, is the number of maximal subsemigroups of the monoid of orientation-preserving or -reversing mappings on a set with n elements.
a(n) + 3, n > 2, is the number of maximal subsemigroups of the monoid of orientation-preserving or -reversing partial mappings on a set with n elements.
(End)
The smallest m such that a(m) = n, or 0 if no such number m exists is A064502(n). The only integers that are not in the sequence are 1, 4 and 6. - Bernard Schott, Feb 07 2022

Examples

			a(18) = 5 because 18 = 2 * 3^2 and 2 + 3 = 5.
a(19) = 19 because 19 is prime.
a(20) = 7 because 20 = 2^2 * 5 and 2 + 5 = 7.
		

Crossrefs

First difference of A024924.
Sum of the k-th powers of the primes dividing n for k=0..10 : A001221 (k=0), this sequence (k=1), A005063 (k=2), A005064 (k=3), A005065 (k=4), A351193 (k=5), A351194 (k=6), A351195 (k=7), this sequence (k=8), A351197 (k=9), A351198 (k=10).
Cf. A010051.

Programs

  • Haskell
    a008472 = sum . a027748_row  -- Reinhard Zumkeller, Mar 29 2012
    
  • Magma
    [n eq 1 select 0 else &+[p[1]: p in Factorization(n)]: n in [1..100]]; // Vincenzo Librandi, Jun 24 2017
    
  • Maple
    A008472 := n -> add(d, d = select(isprime, numtheory[divisors](n))):
    seq(A008472(i), i = 1..40); # Peter Luschny, Jan 31 2012
    A008472 := proc(n)
            add( d, d= numtheory[factorset](n)) ;
    end proc: # R. J. Mathar, Jul 08 2012
  • Mathematica
    Prepend[Array[Plus @@ First[Transpose[FactorInteger[#]]] &, 100, 2], 0]
    Join[{0}, Rest[Total[Transpose[FactorInteger[#]][[1]]]&/@Range[100]]] (* Harvey P. Dale, Jun 18 2012 *)
    (* Requires version 7.0+ *) Table[DivisorSum[n, # &, PrimeQ[#] &], {n, 75}] (* Alonso del Arte, Dec 13 2014 *)
    Table[Sum[p, {p, Select[Divisors[n], PrimeQ]}], {n, 1, 100}] (* Vaclav Kotesovec, May 20 2020 *)
  • PARI
    sopf(n) = local(fac=factor(n)); sum(i=1,matsize(fac)[1],fac[i,1])
    
  • PARI
    vector(100,n,vecsum(factor(n)[,1]~)) \\ Derek Orr, May 13 2015
    
  • PARI
    A008472(n)=vecsum(factor(n)[,1]) \\ M. F. Hasler, Jul 18 2015
    
  • Python
    from sympy import primefactors
    def A008472(n): return sum(primefactors(n)) # Chai Wah Wu, Feb 03 2022
  • Sage
    def A008472(n):
        return add(d for d in divisors(n) if is_prime(d))
    print([A008472(i) for i in (1..40)]) # Peter Luschny, Jan 31 2012
    
  • Sage
    [sum(prime_factors(n)) for n in range(1,74)] # Giuseppe Coppoletta, Jan 19 2015
    

Formula

Let n = Product_j prime(j)^k(j) where k(j) >= 1, then a(n) = Sum_j prime(j).
Additive with a(p^e) = p.
G.f.: Sum_{k >= 1} prime(k)*x^prime(k)/(1-x^prime(k)). - Franklin T. Adams-Watters, Sep 01 2009
L.g.f.: -log(Product_{k>=1} (1 - x^prime(k))) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 06 2017
Dirichlet g.f.: primezeta(s-1)*zeta(s). - Benedict W. J. Irwin, Jul 11 2018
a(n) = Sum_{p|n, p prime} p. - Wesley Ivan Hurt, Feb 04 2022
From Bernard Schott, Feb 07 2022: (Start)
For n > 0: a(A001020(n)) = 11, a(A001022(n)) = 13, a(A001026(n)) = 17, a(A001029(n)) = 19, a(A009967(n)) = 23, a(A009973(n)) = 29, a(A009975(n)) = 31, a(A009981(n)) = 37, a(A009985(n)) = 41, a(A009987(n)) = 43, a(A009991(n)) = 47.
For p odd prime, a(2*p) = p+2 <==> a(A100484(n)) = A052147(n) for n > 1. (End)
a(n) = Sum_{d|n} d * c(d), where c = A010051. - Wesley Ivan Hurt, Jun 22 2024

A016123 a(n) = (11^(n+1) - 1)/10.

Original entry on oeis.org

1, 12, 133, 1464, 16105, 177156, 1948717, 21435888, 235794769, 2593742460, 28531167061, 313842837672, 3452271214393, 37974983358324, 417724816941565, 4594972986357216, 50544702849929377, 555991731349223148
Offset: 0

Views

Author

Keywords

Comments

11^a(n) is highest power of 11 dividing (11^(n+1))!.
Partial sums of powers of 11 (A001020).
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=11, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)=det(A). - Milan Janjic, Feb 21 2010
Let A be the Hessenberg matrix of the order n, defined by: A[1,j]=1, A[i,i]:=12, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=2, a(n-1)=(-1)^n*charpoly(A,1). - Milan Janjic, Feb 21 2010

Crossrefs

For analogs with primes 2, 3, 5, 7, 13 and 17 see: A000225, A003462, A003463, A023000, A091030 and A091045, respectively.

Programs

Formula

a(n) = Sum_{k=0..n} 11^k = (11^(n+1) - 1)/10.
G.f.: (1/(1-11*x) - 1/(1-x))/(10*x) = 1/((1-11*x)*(1-x)).
a(0)=1, a(n) = 11*a(n-1) + 1. - Vincenzo Librandi, Feb 05 2011
a(0)=0, a(1)=1, a(n) = 12*a(n-1) - 11*a(n-2). - Harvey P. Dale, Apr 05 2012
E.g.f.: exp(x)*(11*exp(10*x) - 1)/10. - Stefano Spezia, Mar 11 2023

Extensions

Title edited by Daniel Forgues, Jul 08 2011

A016125 Expansion of 1/((1-x)*(1-12*x)).

Original entry on oeis.org

1, 13, 157, 1885, 22621, 271453, 3257437, 39089245, 469070941, 5628851293, 67546215517, 810554586205, 9726655034461, 116719860413533, 1400638324962397, 16807659899548765, 201691918794585181
Offset: 0

Views

Author

Keywords

Comments

Let A be the Hessenberg matrix of the order n, defined by: A[1,j]=1, A[i,i]:=12, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)=det(A). - Milan Janjic, Feb 21 2010
Let A be the Hessenberg matrix of the order n, defined by: A[1,j]=1, A[i,i]:=13, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=2, a(n-2)=(-1)^n*charpoly(A,1). - Milan Janjic, Feb 21 2010
Numbers that are repunits in duodecimal representation. - Reinhard Zumkeller, Dec 12 2012
a(n) is the total number of holes in a certain box fractal (start with 12 boxes, 1 hole) after n iterations. See illustration in links. - Kival Ngaokrajang, Jan 28 2015

Examples

			For n=5, a(5) = 1*6 + 11*15 + 121*20 + 1331*15 + 14641*6 + 161051*1 = 271453. - _Bruno Berselli_, Nov 11 2015
		

Crossrefs

Programs

Formula

a(n) = (12^(n+1) - 1)/11.
a(n) = 12*a(n-1)+1 for n>0, a(0)=1. - Vincenzo Librandi, Nov 19 2010
a(n) = Sum_{i=0...n} 11^i*binomial(n+1,n-i). - Bruno Berselli, Nov 11 2015
E.g.f.: exp(x)*(12*exp(11*x) - 1)/11. - Stefano Spezia, Mar 11 2023

A087207 A binary representation of the primes that divide a number, shown in decimal.

Original entry on oeis.org

0, 1, 2, 1, 4, 3, 8, 1, 2, 5, 16, 3, 32, 9, 6, 1, 64, 3, 128, 5, 10, 17, 256, 3, 4, 33, 2, 9, 512, 7, 1024, 1, 18, 65, 12, 3, 2048, 129, 34, 5, 4096, 11, 8192, 17, 6, 257, 16384, 3, 8, 5, 66, 33, 32768, 3, 20, 9, 130, 513, 65536, 7, 131072, 1025, 10, 1, 36, 19, 262144, 65, 258
Offset: 1

Views

Author

Mitch Cervinka (puritan(AT)planetkc.com), Oct 26 2003

Keywords

Comments

The binary representation of a(n) shows which prime numbers divide n, but not the multiplicities. a(2)=1, a(3)=10, a(4)=1, a(5)=100, a(6)=11, a(10)=101, a(30)=111, etc.
For n > 1, a(n) gives the (one-based) index of the column where n is located in array A285321. A008479 gives the other index. - Antti Karttunen, Apr 17 2017
From Antti Karttunen, Jun 18 & 20 2017: (Start)
A268335 gives all n such that a(n) = A248663(n); the squarefree numbers (A005117) are all the n such that a(n) = A285330(n) = A048675(n).
For all n > 1 for which the value of A285331(n) is well-defined, we have A285331(a(n)) <= floor(A285331(n)/2), because then n is included in the binary tree A285332 and a(n) is one of its ancestors (in that tree), and thus must be at least one step nearer to its root than n itself.
Conjecture: Starting at any n and iterating the map n -> a(n), we will always reach 0 (see A288569). This conjecture is equivalent to the conjecture that at any n that is neither a prime nor a power of two, we will eventually hit a prime number (which then becomes a power of two in the next iteration). If this conjecture is false then sequence A285332 cannot be a permutation of natural numbers. On the other hand, if the conjecture is true, then A285332 must be a permutation of natural numbers, because all primes and powers of 2 occur in definite positions in that tree. This conjecture also implies the conjectures made in A019565 and A285320 that essentially claim that there are neither finite nor infinite cycles in A019565.
If there are any 2-cycles in this sequence, then both terms of the cycle should be present in A286611 and the larger one should be present in A286612.
(End)
Binary rank of the distinct prime indices of n, where the binary rank of an integer partition y is given by Sum_i 2^(y_i-1). For all prime indices (with multiplicity) we have A048675. - Gus Wiseman, May 25 2024

Examples

			a(38) = 129 because 38 = 2*19 = prime(1)*prime(8) and 129 = 2^0 + 2^7 (in binary 10000001).
a(140) = 13, binary 1101 because 140 is divisible by the first, third and fourth primes and 2^(1-1) + 2^(3-1) + 2^(4-1) = 13.
		

Crossrefs

For partial sums see A288566.
Sequences with related definitions: A007947, A008472, A027748, A048675, A248663, A276379 (same sequence shown in base 2), A288569, A289271, A297404.
Cf. A286608 (numbers n for which a(n) < n), A286609 (n for which a(n) > n), and also A286611, A286612.
A003986, A003961, A059896 are used to express relationship between terms of this sequence.
Related to A267116 via A225546.
Positions of particular values are: A000079\{1} (1), A000244\{1} (2), A033845 (3), A000351\{1} (4), A033846 (5), A033849 (6), A143207 (7), A000420\{1} (8), A033847 (9), A033850 (10), A033851 (12), A147576 (14), A147571 (15), A001020\{1} (16), A033848 (17).
A048675 gives binary rank of prime indices.
A061395 gives greatest prime index, least A055396.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.
Binary indices (listed A048793):
- length A000120, complement A023416
- min A001511, opposite A000012
- sum A029931, product A096111
- max A029837 or A070939, opposite A070940
- complement A368494, sum A359400
- opposite complement A371571, sum A359359
- opposite A371572, sum A230877

Programs

  • Haskell
    a087207 = sum . map ((2 ^) . (subtract 1) . a049084) . a027748_row
    -- Reinhard Zumkeller, Jul 16 2013
    
  • Mathematica
    a[n_] := Total[ 2^(PrimePi /@ FactorInteger[n][[All, 1]] - 1)]; a[1] = 0; Table[a[n], {n, 1, 69}] (* Jean-François Alcover, Dec 12 2011 *)
  • PARI
    a(n) = {if (n==1, 0, my(f=factor(n), v = []); forprime(p=2, vecmax(f[,1]), v = concat(v, vecsearch(f[,1], p)!=0);); fromdigits(Vecrev(v), 2));} \\ Michel Marcus, Jun 05 2017
    
  • PARI
    A087207(n)=vecsum(apply(p->1<M. F. Hasler, Jun 23 2017
    
  • Python
    from sympy import factorint, primepi
    def a(n):
        return sum(2**primepi(i - 1) for i in factorint(n))
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jun 06 2017
    
  • Scheme
    (definec (A087207 n) (if (= 1 n) 0 (+ (A000079 (+ -1 (A055396 n))) (A087207 (A028234 n))))) ;; This uses memoization-macro definec
    (define (A087207 n) (A048675 (A007947 n))) ;; Needs code from A007947 and A048675. - Antti Karttunen, Jun 19 2017

Formula

Additive with a(p^e) = 2^(i-1) where p is the i-th prime. - Vladeta Jovovic, Oct 29 2003
a(n) gives the m such that A019565(m) = A007947(n). - Naohiro Nomoto, Oct 30 2003
A000120(a(n)) = A001221(n); a(n) = Sum(2^(A049084(p)-1): p prime-factor of n). - Reinhard Zumkeller, Nov 30 2003
G.f.: Sum_{k>=1} 2^(k-1)*x^prime(k)/(1-x^prime(k)). - Franklin T. Adams-Watters, Sep 01 2009
From Antti Karttunen, Apr 17 2017, Jun 19 2017 & Dec 06 2018: (Start)
a(n) = A048675(A007947(n)).
a(1) = 0; for n > 1, a(n) = 2^(A055396(n)-1) + a(A028234(n)).
A000035(a(n)) = 1 - A000035(n). [a(n) and n are of opposite parity.]
A248663(n) <= a(n) <= A048675(n). [XOR-, OR- and +-variants.]
a(A293214(n)) = A218403(n).
a(A293442(n)) = A267116(n).
A069010(a(n)) = A287170(n).
A007088(a(n)) = A276379(n).
A038374(a(n)) = A300820(n) for n >= 1.
(End)
From Peter Munn, Jan 08 2020: (Start)
a(A059896(n,k)) = a(n) OR a(k) = A003986(a(n), a(k)).
a(A003961(n)) = 2*a(n).
a(n^2) = a(n).
a(n) = A267116(A225546(n)).
a(A225546(n)) = A267116(n).
(End)

Extensions

More terms from Don Reble, Ray Chandler and Naohiro Nomoto, Oct 28 2003
Name clarified by Antti Karttunen, Jun 18 2017

A109395 Denominator of phi(n)/n = Product_{p|n} (1 - 1/p); phi(n)=A000010(n), the Euler totient function.

Original entry on oeis.org

1, 2, 3, 2, 5, 3, 7, 2, 3, 5, 11, 3, 13, 7, 15, 2, 17, 3, 19, 5, 7, 11, 23, 3, 5, 13, 3, 7, 29, 15, 31, 2, 33, 17, 35, 3, 37, 19, 13, 5, 41, 7, 43, 11, 15, 23, 47, 3, 7, 5, 51, 13, 53, 3, 11, 7, 19, 29, 59, 15, 61, 31, 7, 2, 65, 33, 67, 17, 69, 35, 71, 3, 73, 37, 15, 19, 77, 13, 79, 5, 3
Offset: 1

Views

Author

Franz Vrabec, Aug 26 2005

Keywords

Comments

a(n)=2 iff n=2^k (k>0); otherwise a(n) is odd. If p is prime, a(p)=p; the converse is false, e.g.: a(15)=15. It is remarkable that this sequence often coincides with A006530, the largest prime P dividing n. Theorem: a(n)=P if and only if for every prime p < P in n there is some prime q in n with p|(q-1). - Franz Vrabec, Aug 30 2005

Examples

			a(10) = 10/gcd(10,phi(10)) = 10/gcd(10,4) = 10/2 = 5.
		

Crossrefs

Cf. A076512 for the numerator.
Phi(m)/m = k: A000079 \ {1} (k=1/2), A033845 (k=1/3), A000244 \ {1} (k=2/3), A033846 (k=2/5), A000351 \ {1} (k=4/5), A033847 (k=3/7), A033850 (k=4/7), A000420 \ {1} (k=6/7), A033848 (k=5/11), A001020 \ {1} (k=10/11), A288162 (k=6/13), A001022 \ {1} (12/13), A143207 (k=4/15), A033849 (k=8/15), A033851 (k=24/35).

Programs

Formula

a(n) = n/gcd(n, phi(n)) = n/A009195(n).
From Antti Karttunen, Feb 09 2019: (Start)
a(n) = denominator of A173557(n)/A007947(n).
a(2^n) = 2 for all n >= 1.
(End)
From Amiram Eldar, Jul 31 2020: (Start)
Asymptotic mean of phi(n)/n: lim_{m->oo} (1/m) * Sum_{n=1..m} A076512(n)/a(n) = 6/Pi^2 (A059956).
Asymptotic mean of n/phi(n): lim_{m->oo} (1/m) * Sum_{n=1..m} a(n)/A076512(n) = zeta(2)*zeta(3)/zeta(6) (A082695). (End)

A159280 Numerator of Hermite(n, 1/11).

Original entry on oeis.org

1, 2, -238, -1444, 169900, 1737592, -202103816, -2927191216, 336509481872, 6340061157920, -720237529201376, -16783423060569152, 1883705456612924608, 52506471481118666624, -5821124423542023483520, -189534174225114089489152, 20751613309007317066199296
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Crossrefs

The denominators are A001020.

Programs

  • Magma
    [Numerator((&+[(-1)^k*Factorial(n)*(2/22)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jun 08 2018
  • Mathematica
    Numerator[Table[HermiteH[n,1/11],{n,0,50}]] (* Vladimir Joseph Stephan Orlovsky, Apr 12 2011 *)
  • PARI
    a(n)=polhermite(n,1/11)*11^n \\ Charles R Greathouse IV, Jun 20 2012
    
  • PARI
    a(n)=numerator(polhermite(n,1/11)) \\ G. C. Greubel, Jun 08 2018
    
  • Python
    from sympy import hermite
    def a(n): return hermite(n, 1/11)*11**n # Indranil Ghosh, May 26 2017
    

Formula

From G. C. Greubel, Jun 08 2018: (Start)
a(n) = 11^n * Hermite(n,1/11).
E.g.f.: exp(2*x-121*x^2).
a(n) = Sum_{k=0..floor(n/2)} (-1)^k*n!*(2/11)^(n-2k)/(k!*(n-2k)!). (End)

A003992 Square array read by upwards antidiagonals: T(n,k) = n^k for n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 4, 1, 0, 1, 4, 9, 8, 1, 0, 1, 5, 16, 27, 16, 1, 0, 1, 6, 25, 64, 81, 32, 1, 0, 1, 7, 36, 125, 256, 243, 64, 1, 0, 1, 8, 49, 216, 625, 1024, 729, 128, 1, 0, 1, 9, 64, 343, 1296, 3125, 4096, 2187, 256, 1, 0, 1, 10, 81, 512, 2401, 7776, 15625, 16384, 6561, 512, 1, 0
Offset: 0

Views

Author

Keywords

Comments

If the array is transposed, T(n,k) is the number of oriented rows of n colors using up to k different colors. The formula would be T(n,k) = [n==0] + [n>0]*k^n. The generating function for column k would be 1/(1-k*x). For T(3,2)=8, the rows are AAA, AAB, ABA, ABB, BAA, BAB, BBA, and BBB. - Robert A. Russell, Nov 08 2018
T(n,k) is the number of multichains of length n from {} to [k] in the Boolean lattice B_k. - Geoffrey Critzer, Apr 03 2020

Examples

			Rows begin:
[1, 0,  0,   0,    0,     0,      0,      0, ...],
[1, 1,  1,   1,    1,     1,      1,      1, ...],
[1, 2,  4,   8,   16,    32,     64,    128, ...],
[1, 3,  9,  27,   81,   243,    729,   2187, ...],
[1, 4, 16,  64,  256,  1024,   4096,  16384, ...],
[1, 5, 25, 125,  625,  3125,  15625,  78125, ...],
[1, 6, 36, 216, 1296,  7776,  46656, 279936, ...],
[1, 7, 49, 343, 2401, 16807, 117649, 823543, ...], ...
		

Crossrefs

Main diagonal is A000312. Other diagonals include A000169, A007778, A000272, A008788. Antidiagonal sums are in A026898.
Cf. A099555.
Transpose is A004248. See A051128, A095884, A009999 for other versions.
Cf. A277504 (unoriented), A293500 (chiral).

Programs

  • Magma
    [[(n-k)^k: k in [0..n]]: n in [0..10]]; // G. C. Greubel, Nov 08 2018
  • Mathematica
    Table[If[k == 0, 1, (n - k)^k], {n, 0, 11}, {k, 0, n}]//Flatten
  • PARI
    T(n,k) = (n-k)^k \\ Charles R Greathouse IV, Feb 07 2017
    

Formula

E.g.f.: Sum T(n,k)*x^n*y^k/k! = 1/(1-x*exp(y)). - Paul D. Hanna, Oct 22 2004
E.g.f.: Sum T(n,k)*x^n/n!*y^k/k! = e^(x*e^y). - Franklin T. Adams-Watters, Jun 23 2006

Extensions

More terms from David W. Wilson
Edited by Paul D. Hanna, Oct 22 2004

A195946 Powers of 11 which have no zero in their decimal expansion.

Original entry on oeis.org

1, 11, 121, 1331, 14641, 1771561, 19487171, 214358881, 2357947691, 3138428376721, 34522712143931, 379749833583241, 4177248169415651, 45949729863572161, 5559917313492231481, 4978518112499354698647829163838661251242411
Offset: 1

Views

Author

M. F. Hasler, Sep 25 2011

Keywords

Comments

Probably finite. Is 4978518112499354698647829163838661251242411 the largest term?

Crossrefs

For the zeroless numbers (powers x^n), see A195942, A195943, A238938, A238939, A238940, A195948, A238936, A195908, A195945.
For the corresponding exponents, see A007377, A008839, A030700, A030701, A030702, A030703, A030704, A030705, A030706, A195944.

Programs

  • Magma
    [11^n: n in [0..3*10^4] | not 0 in Intseq(11^n)]; // Bruno Berselli, Sep 26 2011
  • Mathematica
    Select[11^Range[0,50],DigitCount[#,10,0]==0&] (* Harvey P. Dale, Jan 27 2014 *)
  • PARI
    for( n=0,9999, is_A052382(11^n) && print1(11^n,","))
    

Formula

a(n) = 11^A030706(n).
A195946 = A001020 intersect A052382.

Extensions

Keyword:fini removed by Jianing Song, Jan 28 2023 as finiteness is only conjectured.
Showing 1-10 of 92 results. Next