cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 38 results. Next

A060222 Number of orbits of length n under the full 19-shift (whose periodic points are counted by A001029).

Original entry on oeis.org

19, 171, 2280, 32490, 495216, 7839780, 127695960, 2122929090, 35854187880, 613106378136, 10590023536200, 184442905990860, 3234844881712080, 57071906063500860, 1012075135324821024, 18027588346914850290, 322375697516753069760, 5784852794310472599780, 104127350297911241532840
Offset: 1

Views

Author

Thomas Ward, Mar 21 2001

Keywords

Comments

Number of monic irreducible polynomials of degree n over GF(19). - Andrew Howroyd, Dec 10 2017

Examples

			a(2)=171 since there are 361 points of period 2 in the full 19-shift and 19 fixed points, so there must be (361-19)/2 = 171 orbits of length 2.
		

Crossrefs

Column 19 of A074650.
Cf. A001029.

Programs

  • Magma
    A060222:= func< n | (1/n)*(&+[MoebiusMu(d)*(19)^Floor(n/d): d in Divisors(n)]) >;
    [A060222(n): n in [1..40]]; // G. C. Greubel, Sep 23 2024
    
  • Mathematica
    a[n_]:=(1/n) Sum[MoebiusMu[d] 19^(n/d), {d, Divisors[n]}]; Table[a[n], {n, 20}] (* Vincenzo Librandi, Sep 19 2017 *)
  • PARI
    a001029(n) = 19^n;
    a(n) = (1/n)*sumdiv(n, d, moebius(d)*a001029(n/d)); \\ Michel Marcus, Sep 11 2017
    
  • SageMath
    def A060222(n): return (1/n)*sum(moebius(k)*(19)^(n/k) for k in (1..n) if (k).divides(n))
    [A060222(n) for n in range(1, 41)] # G. C. Greubel, Sep 23 2024

Formula

a(n) = (1/n)* Sum_{d|n} mu(d)*A001029(n/d).
G.f.: Sum_{k>=1} mu(k)*log(1/(1 - 19*x^k))/k. - Ilya Gutkovskiy, May 20 2019

Extensions

More terms from Michel Marcus, Sep 11 2017

A008472 Sum of the distinct primes dividing n.

Original entry on oeis.org

0, 2, 3, 2, 5, 5, 7, 2, 3, 7, 11, 5, 13, 9, 8, 2, 17, 5, 19, 7, 10, 13, 23, 5, 5, 15, 3, 9, 29, 10, 31, 2, 14, 19, 12, 5, 37, 21, 16, 7, 41, 12, 43, 13, 8, 25, 47, 5, 7, 7, 20, 15, 53, 5, 16, 9, 22, 31, 59, 10, 61, 33, 10, 2, 18, 16, 67, 19, 26, 14, 71, 5, 73
Offset: 1

Views

Author

Keywords

Comments

Sometimes called sopf(n).
Sum of primes dividing n (without repetition) (compare A001414).
Equals A051731 * A061397 = inverse Mobius transform of [0, 2, 3, 0, 5, 0, 7, ...]. - Gary W. Adamson, Feb 14 2008
Equals row sums of triangle A143535. - Gary W. Adamson, Aug 23 2008
a(n) = n if and only if n is prime. - Daniel Forgues, Mar 24 2009
a(n) = n is a new record if and only if n is prime. - Zak Seidov, Jun 27 2009
a(A001043(n)) = A191583(n);
For n > 0: a(A000079(n)) = 2, a(A000244(n)) = 3, a(A000351(n)) = 5, a(A000420(n)) = 7;
a(A006899(n)) <= 3; a(A003586(n)) = 5; a(A033846(n)) = 7; a(A033849(n)) = 8; a(A033847(n)) = 9; a(A033850(n)) = 10; a(A143207(n)) = 10. - Reinhard Zumkeller, Jun 28 2011
For n > 1: a(n) = Sum(A027748(n,k): 1 <= k <= A001221(n)). - Reinhard Zumkeller, Aug 27 2011
If n is the product of twin primes (A037074), a(n) = 2*sqrt(n+1) = sqrt(4n+4). - Wesley Ivan Hurt, Sep 07 2013
From Wilf A. Wilson, Jul 21 2017: (Start)
a(n) + 2, n > 2, is the number of maximal subsemigroups of the monoid of orientation-preserving or -reversing mappings on a set with n elements.
a(n) + 3, n > 2, is the number of maximal subsemigroups of the monoid of orientation-preserving or -reversing partial mappings on a set with n elements.
(End)
The smallest m such that a(m) = n, or 0 if no such number m exists is A064502(n). The only integers that are not in the sequence are 1, 4 and 6. - Bernard Schott, Feb 07 2022

Examples

			a(18) = 5 because 18 = 2 * 3^2 and 2 + 3 = 5.
a(19) = 19 because 19 is prime.
a(20) = 7 because 20 = 2^2 * 5 and 2 + 5 = 7.
		

Crossrefs

First difference of A024924.
Sum of the k-th powers of the primes dividing n for k=0..10 : A001221 (k=0), this sequence (k=1), A005063 (k=2), A005064 (k=3), A005065 (k=4), A351193 (k=5), A351194 (k=6), A351195 (k=7), this sequence (k=8), A351197 (k=9), A351198 (k=10).
Cf. A010051.

Programs

  • Haskell
    a008472 = sum . a027748_row  -- Reinhard Zumkeller, Mar 29 2012
    
  • Magma
    [n eq 1 select 0 else &+[p[1]: p in Factorization(n)]: n in [1..100]]; // Vincenzo Librandi, Jun 24 2017
    
  • Maple
    A008472 := n -> add(d, d = select(isprime, numtheory[divisors](n))):
    seq(A008472(i), i = 1..40); # Peter Luschny, Jan 31 2012
    A008472 := proc(n)
            add( d, d= numtheory[factorset](n)) ;
    end proc: # R. J. Mathar, Jul 08 2012
  • Mathematica
    Prepend[Array[Plus @@ First[Transpose[FactorInteger[#]]] &, 100, 2], 0]
    Join[{0}, Rest[Total[Transpose[FactorInteger[#]][[1]]]&/@Range[100]]] (* Harvey P. Dale, Jun 18 2012 *)
    (* Requires version 7.0+ *) Table[DivisorSum[n, # &, PrimeQ[#] &], {n, 75}] (* Alonso del Arte, Dec 13 2014 *)
    Table[Sum[p, {p, Select[Divisors[n], PrimeQ]}], {n, 1, 100}] (* Vaclav Kotesovec, May 20 2020 *)
  • PARI
    sopf(n) = local(fac=factor(n)); sum(i=1,matsize(fac)[1],fac[i,1])
    
  • PARI
    vector(100,n,vecsum(factor(n)[,1]~)) \\ Derek Orr, May 13 2015
    
  • PARI
    A008472(n)=vecsum(factor(n)[,1]) \\ M. F. Hasler, Jul 18 2015
    
  • Python
    from sympy import primefactors
    def A008472(n): return sum(primefactors(n)) # Chai Wah Wu, Feb 03 2022
  • Sage
    def A008472(n):
        return add(d for d in divisors(n) if is_prime(d))
    print([A008472(i) for i in (1..40)]) # Peter Luschny, Jan 31 2012
    
  • Sage
    [sum(prime_factors(n)) for n in range(1,74)] # Giuseppe Coppoletta, Jan 19 2015
    

Formula

Let n = Product_j prime(j)^k(j) where k(j) >= 1, then a(n) = Sum_j prime(j).
Additive with a(p^e) = p.
G.f.: Sum_{k >= 1} prime(k)*x^prime(k)/(1-x^prime(k)). - Franklin T. Adams-Watters, Sep 01 2009
L.g.f.: -log(Product_{k>=1} (1 - x^prime(k))) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 06 2017
Dirichlet g.f.: primezeta(s-1)*zeta(s). - Benedict W. J. Irwin, Jul 11 2018
a(n) = Sum_{p|n, p prime} p. - Wesley Ivan Hurt, Feb 04 2022
From Bernard Schott, Feb 07 2022: (Start)
For n > 0: a(A001020(n)) = 11, a(A001022(n)) = 13, a(A001026(n)) = 17, a(A001029(n)) = 19, a(A009967(n)) = 23, a(A009973(n)) = 29, a(A009975(n)) = 31, a(A009981(n)) = 37, a(A009985(n)) = 41, a(A009987(n)) = 43, a(A009991(n)) = 47.
For p odd prime, a(2*p) = p+2 <==> a(A100484(n)) = A052147(n) for n > 1. (End)
a(n) = Sum_{d|n} d * c(d), where c = A010051. - Wesley Ivan Hurt, Jun 22 2024

A000420 Powers of 7: a(n) = 7^n.

Original entry on oeis.org

1, 7, 49, 343, 2401, 16807, 117649, 823543, 5764801, 40353607, 282475249, 1977326743, 13841287201, 96889010407, 678223072849, 4747561509943, 33232930569601, 232630513987207, 1628413597910449, 11398895185373143, 79792266297612001, 558545864083284007
Offset: 0

Views

Author

Keywords

Comments

Same as Pisot sequences E(1, 7), L(1, 7), P(1, 7), T(1, 7). Essentially same as Pisot sequences E(7, 49), L(7, 49), P(7, 49), T(7, 49). See A008776 for definitions of Pisot sequences.
Sum of coefficients of expansion of (1+x+x^2+x^3+x^4+x^5+x^6)^n.
a(n) is number of compositions of natural numbers into n parts < 7.
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n>=1, a(n) equals the number of 7-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
Numbers n such that sigma(7n) = 7n + sigma(n). - Jahangeer Kholdi, Nov 23 2013
Number of ways to assign truth values to n ternary disjunctions connected by conjunctions such that the proposition is true. For example, a(2) = 49, since for the proposition '(a v b v c) & (d v e v f)' there are 49 assignments that make the proposition true. - Ori Milstein, Dec 31 2022
Equivalently, the number of length-n words over an alphabet with seven letters. - Joerg Arndt, Jan 01 2023

Examples

			a(2)=49 there are 49 compositions of natural numbers into 2 parts < 7.
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000079 (powers of 2), A000244 (powers of 3), A000302 (powers of 4), A000351 (powers of 5), A000400 (powers of 6), A001018 (powers of 8), ..., A001029 (powers of 19), A009964 (powers of 20), ..., A009992 (powers of 48), A087752 (powers of 49).

Programs

Formula

a(n) = 7^n.
a(0) = 1; a(n) = 7*a(n-1).
G.f.: 1/(1-7*x).
E.g.f.: exp(7*x).
4/7 - 5/7^2 + 4/7^3 - 5/7^4 + ... = 23/48. [Jolley, Summation of Series, Dover, 1961]

A001018 Powers of 8: a(n) = 8^n.

Original entry on oeis.org

1, 8, 64, 512, 4096, 32768, 262144, 2097152, 16777216, 134217728, 1073741824, 8589934592, 68719476736, 549755813888, 4398046511104, 35184372088832, 281474976710656, 2251799813685248, 18014398509481984, 144115188075855872, 1152921504606846976, 9223372036854775808, 73786976294838206464, 590295810358705651712, 4722366482869645213696
Offset: 0

Views

Author

Keywords

Comments

Same as Pisot sequences E(1, 8), L(1, 8), P(1, 8), T(1, 8). Essentially same as Pisot sequences E(8, 64), L(8, 64), P(8, 64), T(8, 64). See A008776 for definitions of Pisot sequences.
If X_1, X_2, ..., X_n is a partition of the set {1..2n} into blocks of size 2 then, for n>=1, a(n) is equal to the number of functions f : {1..2n} -> {1,2,3} such that for fixed y_1,y_2,...,y_n in {1,2,3} we have f(X_i)<>{y_i}, (i=1..n). - Milan Janjic, May 24 2007
This is the auto-convolution (convolution square) of A059304. - R. J. Mathar, May 25 2009
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n>=1, a(n) equals the number of 8-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
a(n) is equal to the determinant of a 3 X 3 matrix with rows 2^(n+2), 2^(n+1), 2^n; 2^(n+3), 2^(n+4), 2(n+3); 2^n, 2^(n+1), 2^(n+2) when it is divided by 144. - J. M. Bergot, May 07 2014
a(n) gives the number of small squares in the n-th iteration of the Sierpinski carpet fractal. Equivalently, the number of vertices in the n-Sierpinski carpet graph. - Allan Bickle, Nov 27 2022

Examples

			For n=1, the 1st order Sierpinski carpet graph is an 8-cycle.
		

References

  • K. H. Rosen et al., eds., Handbook of Discrete and Combinatorial Mathematics, CRC Press, 2017; p. 15.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000079 (powers of 2), A000244 (powers of 3), A000302 (powers of 4), A000351 (powers of 5), A000400 (powers of 6), A000420 (powers of 7), A001019 (powers of 9), ..., A001029 (powers of 19), A009964 (powers of 20), ..., A009992 (powers of 48), A087752 (powers of 49), A165800 (powers of 50), A159991 (powers of 60).
Cf. A032766 (floor(3*n/2)).
Cf. A271939 (number of edges in the n-Sierpinski carpet graph).

Programs

Formula

a(n) = 8^n.
a(0) = 1; a(n) = 8*a(n-1) for n > 0.
G.f.: 1/(1-8*x).
E.g.f.: exp(8*x).
Sum_{n>=0} 1/a(n) = 8/7. - Gary W. Adamson, Aug 29 2008
a(n) = A157176(A008588(n)); a(n+1) = A157176(A016969(n)). - Reinhard Zumkeller, Feb 24 2009
From Stefano Spezia, Dec 28 2021: (Start)
a(n) = (-1)^n*(1 + sqrt(-3))^(3*n) (see Nunn, p. 9).
a(n) = (-1)^n*Sum_{k=0..floor(3*n/2)} (-3)^k*binomial(3*n, 2*k) (see Nunn, p. 9). (End)

A218722 a(n) = (19^n-1)/18.

Original entry on oeis.org

0, 1, 20, 381, 7240, 137561, 2613660, 49659541, 943531280, 17927094321, 340614792100, 6471681049901, 122961939948120, 2336276859014281, 44389260321271340, 843395946104155461, 16024522975978953760, 304465936543600121441
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 19 (A001029); q-integers for q=19: diagonal k=1 in triangle A022183.
Partial sums are in A014903. Also, the sequence is related to A014936 by A014936(n) = n*a(n)-sum(a(i), i=0..n-1) for n>0. - Bruno Berselli, Nov 06 2012

Crossrefs

Programs

Formula

a(n) = floor(19^n/18).
G.f.: x/((1-x)*(1-19*x)). - Bruno Berselli, Nov 06 2012
a(n) = 20*a(n-1) - 19*a(n-2). - Vincenzo Librandi, Nov 07 2012
E.g.f.: exp(10*x)*sinh(9*x)/9. - Stefano Spezia, Mar 11 2023

A003992 Square array read by upwards antidiagonals: T(n,k) = n^k for n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 4, 1, 0, 1, 4, 9, 8, 1, 0, 1, 5, 16, 27, 16, 1, 0, 1, 6, 25, 64, 81, 32, 1, 0, 1, 7, 36, 125, 256, 243, 64, 1, 0, 1, 8, 49, 216, 625, 1024, 729, 128, 1, 0, 1, 9, 64, 343, 1296, 3125, 4096, 2187, 256, 1, 0, 1, 10, 81, 512, 2401, 7776, 15625, 16384, 6561, 512, 1, 0
Offset: 0

Views

Author

Keywords

Comments

If the array is transposed, T(n,k) is the number of oriented rows of n colors using up to k different colors. The formula would be T(n,k) = [n==0] + [n>0]*k^n. The generating function for column k would be 1/(1-k*x). For T(3,2)=8, the rows are AAA, AAB, ABA, ABB, BAA, BAB, BBA, and BBB. - Robert A. Russell, Nov 08 2018
T(n,k) is the number of multichains of length n from {} to [k] in the Boolean lattice B_k. - Geoffrey Critzer, Apr 03 2020

Examples

			Rows begin:
[1, 0,  0,   0,    0,     0,      0,      0, ...],
[1, 1,  1,   1,    1,     1,      1,      1, ...],
[1, 2,  4,   8,   16,    32,     64,    128, ...],
[1, 3,  9,  27,   81,   243,    729,   2187, ...],
[1, 4, 16,  64,  256,  1024,   4096,  16384, ...],
[1, 5, 25, 125,  625,  3125,  15625,  78125, ...],
[1, 6, 36, 216, 1296,  7776,  46656, 279936, ...],
[1, 7, 49, 343, 2401, 16807, 117649, 823543, ...], ...
		

Crossrefs

Main diagonal is A000312. Other diagonals include A000169, A007778, A000272, A008788. Antidiagonal sums are in A026898.
Cf. A099555.
Transpose is A004248. See A051128, A095884, A009999 for other versions.
Cf. A277504 (unoriented), A293500 (chiral).

Programs

  • Magma
    [[(n-k)^k: k in [0..n]]: n in [0..10]]; // G. C. Greubel, Nov 08 2018
  • Mathematica
    Table[If[k == 0, 1, (n - k)^k], {n, 0, 11}, {k, 0, n}]//Flatten
  • PARI
    T(n,k) = (n-k)^k \\ Charles R Greathouse IV, Feb 07 2017
    

Formula

E.g.f.: Sum T(n,k)*x^n*y^k/k! = 1/(1-x*exp(y)). - Paul D. Hanna, Oct 22 2004
E.g.f.: Sum T(n,k)*x^n/n!*y^k/k! = e^(x*e^y). - Franklin T. Adams-Watters, Jun 23 2006

Extensions

More terms from David W. Wilson
Edited by Paul D. Hanna, Oct 22 2004

A128360 Numbers k such that k divides 20^k - 1.

Original entry on oeis.org

1, 19, 361, 6859, 130321, 2476099, 47045881, 148305659, 893871739, 2817807521, 4234136149, 10350100679, 16983563041, 53538342899, 80448586831, 196651912901, 322687697779, 815211156289, 1017228515081, 1432001198261, 1528523149789
Offset: 1

Views

Author

Alexander Adamchuk, Mar 02 2007

Keywords

Comments

19 divides a(n) for n > 1. All powers of 19 are terms. a(n) = 19^(n-1) for all to n < 8, while a(8) = A128356(8) = 148305659 = 410819*19^2.
Prime divisors of a(n) in the order of appearance are {19, 410819, 617311, 1508981, ...}. - Alexander Adamchuk, May 16 2010

Crossrefs

Programs

Extensions

a(9)-a(11) from Stefan Steinerberger, May 09 2007
a(12)-a(15) from Alexander Adamchuk, May 16 2010
Edited and a(16)-a(21) added by Max Alekseyev, Oct 02 2010

A153653 Triangle T(n, k, j) = T(n-1, k, j) + T(n-1, k-1, j) + (2*j + 1)*prime(j)*T(n-2, k-1, j) with T(2, k, j) = prime(j) and j = 8, read by rows.

Original entry on oeis.org

2, 19, 19, 2, 718, 2, 2, 6857, 6857, 2, 2, 7505, 245628, 7505, 2, 2, 8153, 2467944, 2467944, 8153, 2, 2, 8801, 4900212, 84273732, 4900212, 8801, 2, 2, 9449, 7542432, 886319856, 886319856, 7542432, 9449, 2, 2, 10097, 10394604, 2476630764, 28993055148, 2476630764, 10394604, 10097, 2
Offset: 1

Views

Author

Roger L. Bagula, Dec 30 2008

Keywords

Examples

			Triangle begins as:
   2;
  19,    19;
   2,   718,        2;
   2,  6857,     6857,          2;
   2,  7505,   245628,       7505,           2;
   2,  8153,  2467944,    2467944,        8153,          2;
   2,  8801,  4900212,   84273732,     4900212,       8801,        2;
   2,  9449,  7542432,  886319856,   886319856,    7542432,     9449,     2;
   2, 10097, 10394604, 2476630764, 28993055148, 2476630764, 10394604, 10097, 2;
		

Crossrefs

Cf. A153652 (j=7), this sequence (j=8), A153654 (j=9), A153655 (j=10).
Cf. A001029 (powers of 19).

Programs

  • Magma
    f:= func< n,j | Round(((3-(-1)^n)/2)*NthPrime(j)^(n-1) - 2^((3-(-1)^n)/2)) >;
    function T(n,k,j)
      if n eq 2 then return NthPrime(j);
      elif (n eq 3 and k eq 2 or n eq 4 and k eq 2 or n eq 4 and k eq 3) then return f(n,j);
      elif (k eq 1 or k eq n) then return 2;
      else return T(n-1,k,j) + T(n-1,k-1,j) + (2*j+1)*NthPrime(j)*T(n-2,k-1,j);
      end if; return T;
    end function;
    [T(n,k,8): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 03 2021
  • Mathematica
    T[n_, k_, j_]:= T[n,k,j]= If[n==2, Prime[j], If[n==3 && k==2 || n==4 && 2<=k<=3, ((3-(-1)^n)/2)*Prime[j]^(n-1) -2^((3-(-1)^n)/2), If[k==1 || k==n, 2, T[n-1,k,j] + T[n-1,k-1,j] + (2*j+1)*Prime[j]*T[n-2,k-1,j] ]]];
    Table[T[n,k,8], {n,12}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 03 2021 *)
  • Sage
    @CachedFunction
    def f(n,j): return ((3-(-1)^n)/2)*nth_prime(j)^(n-1) - 2^((3-(-1)^n)/2)
    def T(n,k,j):
        if (n==2): return nth_prime(j)
        elif (n==3 and k==2 or n==4 and 2<=k<=3): return f(n,j)
        elif (k==1 or k==n): return 2
        else: return T(n-1,k,j) + T(n-1,k-1,j) + (2*j+1)*nth_prime(j)*T(n-2,k-1,j)
    flatten([[T(n,k,8) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 03 2021
    

Formula

T(n, k, j) = T(n-1, k, j) + T(n-1, k-1, j) + (2*j + 1)*prime(j)*T(n-2, k-1, j) with T(2, k, j) = prime(j), T(3, 2, j) = 2*prime(j)^2 - 4, T(4, 2, j) = T(4, 3, j) = prime(j)^2 - 2, T(n, 1, j) = T(n, n, j) = 2 and j = 8.
Sum_{k=0..n} T(n, k, j) = 2*prime(j)^(n-1) for j=8 = 2*A001029(n-1).

Extensions

Edited by G. C. Greubel, Mar 03 2021

A009992 Powers of 48: a(n) = 48^n.

Original entry on oeis.org

1, 48, 2304, 110592, 5308416, 254803968, 12230590464, 587068342272, 28179280429056, 1352605460594688, 64925062108545024, 3116402981210161152, 149587343098087735296, 7180192468708211294208, 344649238497994142121984, 16543163447903718821855232
Offset: 0

Views

Author

Keywords

Comments

Same as Pisot sequences E(1, 48), L(1, 48), P(1, 48), T(1, 48). Essentially same as Pisot sequences E(48, 2304), L(48, 2304), P(48, 2304), T(48, 2304). See A008776 for definitions of Pisot sequences.
If X_1, X_2, ..., X_n is a partition of the set {1,2,...,2*n} into blocks of size 2 then, for n>=1, a(n) is equal to the number of functions f : {1,2,..., 2*n}->{1,2,3,4,5,6,7} such that for fixed y_1,y_2,...,y_n in {1,2,3,4,5,6,7} we have f(X_i)<>{y_i}, (i=1,2,...,n). - Milan Janjic, May 24 2007
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 1, a(n) equals the number of 48-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011

Crossrefs

Cf. A001018 (powers of 8), ..., A001029 (powers of 19), A009964 (powers of 20), ..., A009991 (powers of 47), A087752 (powers of 49).
Cf. A000079 (2^n), A000244 (3^n), A000302 (4^n), A000400 (6^n), A001018 (8^n), A001021 (12^n), A001025 (16^n), A009968 (24^n).

Programs

Formula

G.f.: 1/(1-48*x). - Philippe Deléham, Nov 24 2008
a(n) = 48^n; a(n) = 48*a(n-1), a(0)=1. - Vincenzo Librandi, Nov 21 2010
E.g.f.: exp(48*x). - Muniru A Asiru, Nov 21 2018

Extensions

Edited by M. F. Hasler, Apr 19 2015

A087752 Powers of 49.

Original entry on oeis.org

1, 49, 2401, 117649, 5764801, 282475249, 13841287201, 678223072849, 33232930569601, 1628413597910449, 79792266297612001, 3909821048582988049, 191581231380566414401, 9387480337647754305649, 459986536544739960976801, 22539340290692258087863249, 1104427674243920646305299201
Offset: 0

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Oct 02 2003

Keywords

Comments

Same as Pisot sequences E(1, 49), L(1, 49), P(1, 49), T(1, 49). Essentially same as Pisot sequences E(49, 2401), L(49, 2401), P(49, 2401), T(49, 2401). See A008776 for definitions of Pisot sequences.
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 1, a(n) equals the number of 49-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011

Crossrefs

Bisection of A000420.
Cf. A001018 (powers of 8), ..., A001029 (powers of 19), A009964 (powers of 20), ..., A009992 (powers of 48).

Programs

Formula

G.f.: 1/(1-49*x). - Philippe Deléham, Nov 24 2008
From Vincenzo Librandi, Nov 21 2010: (Start)
a(n) = 49^n.
a(n) = 49*a(n-1), a(0)=1. (End)
From Elmo R. Oliveira, Jul 08 2025: (Start)
E.g.f.: exp(49*x).
a(n) = A000420(A005843(n)). (End)

Extensions

Edited by M. F. Hasler, Apr 19 2015
Showing 1-10 of 38 results. Next