A052825 A simple grammar: partial sums of A008965.
0, 0, 1, 3, 6, 11, 18, 31, 50, 85, 144, 251, 438, 789, 1420, 2601, 4792, 8907, 16618, 31219, 58814, 111301, 211180, 401925, 766648, 1465899, 2808082, 5389509, 10360576, 19948155, 38460946, 74253513, 143527180, 277746975, 538048150, 1043342277, 2025049108
Offset: 0
Links
- Danny Rorabaugh, Table of n, a(n) for n = 0..2500
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 790
Programs
-
Maple
spec := [S,{B=Cycle(C),C=Sequence(Z,1 <= card),S=Prod(C,B)},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20); h := n -> add(numtheory:-phi(j)/j*log((x^j-1)/(2*x^j-1)), j=1..n): seq(coeff(series((x/(1-x))*h(n),x,n+1),x,n),n=0..36); # Peter Luschny, Oct 25 2015
-
Mathematica
m = 40; gf = (x/(1-x))*Sum[EulerPhi[j]/j*Log[(x^j-1)/(2*x^j-1)], {j,1,m}] + O[x]^m; CoefficientList[gf, x] (* Jean-François Alcover, Jun 03 2019 *)
-
Sage
var('x'); a = lambda n: taylor(x/(1-x) * sum([taylor(euler_phi(i)/i * log((x^i - 1)/(2*x^i - 1)), x, 0, n) for i in range(1, n+1)]), x, 0, n).coefficient(x^n) # Danny Rorabaugh, Oct 25 2015
Formula
G.f.: (x/(x-1))*Sum_{j>=1} (A000010(j)/j)*log((x^j-1)/(2*x^j-1)).
a(n) ~ 2^n/n * (1 + 2/n + 6/n^2 + 26/n^3 + 150/n^4 + 1082/n^5 + 9366/n^6 + 94586/n^7 + 1091670/n^8 + 14174522/n^9 + 204495126/n^10 + ...), for coefficients see A000629. - Vaclav Kotesovec, Jun 03 2019
Extensions
More terms from Danny Rorabaugh, Oct 25 2015
Comments