cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A000265 Remove all factors of 2 from n; or largest odd divisor of n; or odd part of n.

Original entry on oeis.org

1, 1, 3, 1, 5, 3, 7, 1, 9, 5, 11, 3, 13, 7, 15, 1, 17, 9, 19, 5, 21, 11, 23, 3, 25, 13, 27, 7, 29, 15, 31, 1, 33, 17, 35, 9, 37, 19, 39, 5, 41, 21, 43, 11, 45, 23, 47, 3, 49, 25, 51, 13, 53, 27, 55, 7, 57, 29, 59, 15, 61, 31, 63, 1, 65, 33, 67, 17, 69, 35, 71, 9, 73, 37, 75, 19, 77
Offset: 1

Views

Author

Keywords

Comments

When n > 0 is written as k*2^j with k odd then k = A000265(n) and j = A007814(n), so: when n is written as k*2^j - 1 with k odd then k = A000265(n+1) and j = A007814(n+1), when n > 1 is written as k*2^j + 1 with k odd then k = A000265(n-1) and j = A007814(n-1).
Also denominator of 2^n/n (numerator is A075101(n)). - Reinhard Zumkeller, Sep 01 2002
Slope of line connecting (o, a(o)) where o = (2^k)(n-1) + 1 is 2^k and (by design) starts at (1, 1). - Josh Locker (joshlocker(AT)macfora.com), Apr 17 2004
Numerator of n/2^(n-1). - Alexander Adamchuk, Feb 11 2005
From Marco Matosic, Jun 29 2005: (Start)
"The sequence can be arranged in a table:
1
1 3 1
1 5 3 7 1
1 9 5 11 3 13 7 15 1
1 17 9 19 5 21 11 23 3 25 13 27 7 29 15 31 1
Every new row is the previous row interspaced with the continuation of the odd numbers.
Except for the ones; the terms (t) in each column are t+t+/-s = t_+1. Starting from the center column of threes and working to the left the values of s are given by A000265 and working to the right by A000265." (End)
This is a fractal sequence. The odd-numbered elements give the odd natural numbers. If these elements are removed, the original sequence is recovered. - Kerry Mitchell, Dec 07 2005
2k + 1 is the k-th and largest of the subsequence of k terms separating two successive equal entries in a(n). - Lekraj Beedassy, Dec 30 2005
It's not difficult to show that the sum of the first 2^n terms is (4^n + 2)/3. - Nick Hobson, Jan 14 2005
In the table, for each row, (sum of terms between 3 and 1) - (sum of terms between 1 and 3) = A020988. - Eric Desbiaux, May 27 2009
This sequence appears in the analysis of A160469 and A156769, which resemble the numerator and denominator of the Taylor series for tan(x). - Johannes W. Meijer, May 24 2009
Indices n such that a(n) divides 2^n - 1 are listed in A068563. - Max Alekseyev, Aug 25 2013
From Alexander R. Povolotsky, Dec 17 2014: (Start)
With regard to the tabular presentation described in the comment by Marco Matosic: in his drawing, starting with the 3rd row, the first term in the row, which is equal to 1 (or, alternatively the last term in the row, which is also equal to 1), is not in the actual sequence and is added to the drawing as a fictitious term (for the sake of symmetry); an actual A000265(n) could be considered to be a(j,k) (where j >= 1 is the row number and k>=1 is the column subscript), such that a(j,1) = 1:
1
1 3
1 5 3 7
1 9 5 11 3 13 7 15
1 17 9 19 5 21 11 23 3 25 13 27 7 29 15 31
and so on ... .
The relationship between k and j for each row is 1 <= k <= 2^(j-1). In this corrected tabular representation, Marco's notion that "every new row is the previous row interspaced with the continuation of the odd numbers" remains true. (End)
Partitions natural numbers to the same equivalence classes as A064989. That is, for all i, j: a(i) = a(j) <=> A064989(i) = A064989(j). There are dozens of other such sequences (like A003602) for which this also holds: In general, all sequences for which a(2n) = a(n) and the odd bisection is injective. - Antti Karttunen, Apr 15 2017
From Paul Curtz, Feb 19 2019: (Start)
This sequence is the truncated triangle:
1, 1;
3, 1, 5;
3, 7, 1, 9;
5, 11, 3, 13, 7;
15, 1, 17, 9, 19, 5;
21, 11, 23, 3, 25, 13, 27;
7, 29, 15, 31, 1, 33, 17, 35;
...
The first column is A069834. The second column is A213671. The main diagonal is A236999. The first upper diagonal is A125650 without 0.
c(n) = ((n*(n+1)/2))/A069834 = 1, 1, 2, 2, 1, 1, 4, 4, 1, 1, 2, 2, 1, 1, 8, 8, 1, 1, ... for n > 0. n*(n+1)/2 is the rank of A069834. (End)
As well as being multiplicative, a(n) is a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for n, m >= 1. In particular, a(n) is a divisibility sequence: if n divides m then a(n) divides a(m). - Peter Bala, Feb 27 2019
a(n) is also the map n -> A026741(n) applied at least A007814(n) times. - Federico Provvedi, Dec 14 2021

Examples

			G.f. = x + x^2 + 3*x^3 + x^4 + 5*x^5 + 3*x^6 + 7*x^7 + x^8 + 9*x^9 + 5*x^10 + 11*x^11 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A049606 (partial products), A135013 (partial sums), A099545 (mod 4), A326937 (Dirichlet inverse).
Cf. A026741 (map), A001511 (converging steps), A038550 (prime index).
Cf. A195056 (Dgf at s=3).

Programs

  • Haskell
    a000265 = until odd (`div` 2)
    -- Reinhard Zumkeller, Jan 08 2013, Apr 08 2011, Oct 14 2010
    
  • Java
    int A000265(n){
        while(n%2==0) n>>=1;
        return n;
    }
    /* Aidan Simmons, Feb 24 2019 */
    
  • Julia
    using IntegerSequences
    [OddPart(n) for n in 1:77] |> println  # Peter Luschny, Sep 25 2021
    
  • Magma
    A000265:= func< n | n/2^Valuation(n,2) >;
    [A000265(n): n in [1..120]]; // G. C. Greubel, Jul 31 2024
    
  • Maple
    A000265:=proc(n) local t1,d; t1:=1; for d from 1 by 2 to n do if n mod d = 0 then t1:=d; fi; od; t1; end: seq(A000265(n), n=1..77);
    A000265 := n -> n/2^padic[ordp](n,2): seq(A000265(n), n=1..77); # Peter Luschny, Nov 26 2010
  • Mathematica
    a[n_Integer /; n > 0] := n/2^IntegerExponent[n, 2]; Array[a, 77] (* Josh Locker *)
    a[ n_] := If[ n == 0, 0, n / 2^IntegerExponent[ n, 2]]; (* Michael Somos, Dec 17 2014 *)
  • PARI
    {a(n) = n >> valuation(n, 2)}; /* Michael Somos, Aug 09 2006, edited by M. F. Hasler, Dec 18 2014 */
    
  • Python
    from _future_ import division
    def A000265(n):
        while not n % 2:
            n //= 2
        return n # Chai Wah Wu, Mar 25 2018
    
  • Python
    def a(n):
        while not n&1: n >>= 1
        return n
    print([a(n) for n in range(1, 78)]) # Michael S. Branicky, Jun 26 2025
    
  • SageMath
    def A000265(n): return n//2^valuation(n,2)
    [A000265(n) for n in (1..121)] # G. C. Greubel, Jul 31 2024
  • Scheme
    (define (A000265 n) (let loop ((n n)) (if (odd? n) n (loop (/ n 2))))) ;; Antti Karttunen, Apr 15 2017
    

Formula

a(n) = if n is odd then n, otherwise a(n/2). - Reinhard Zumkeller, Sep 01 2002
a(n) = n/A006519(n) = 2*A025480(n-1) + 1.
Multiplicative with a(p^e) = 1 if p = 2, p^e if p > 2. - David W. Wilson, Aug 01 2001
a(n) = Sum_{d divides n and d is odd} phi(d). - Vladeta Jovovic, Dec 04 2002
G.f.: -x/(1 - x) + Sum_{k>=0} (2*x^(2^k)/(1 - 2*x^(2^(k+1)) + x^(2^(k+2)))). - Ralf Stephan, Sep 05 2003
(a(k), a(2k), a(3k), ...) = a(k)*(a(1), a(2), a(3), ...) In general, a(n*m) = a(n)*a(m). - Josh Locker (jlocker(AT)mail.rochester.edu), Oct 04 2005
a(n) = Sum_{k=0..n} A127793(n,k)*floor((k+2)/2) (conjecture). - Paul Barry, Jan 29 2007
Dirichlet g.f.: zeta(s-1)*(2^s - 2)/(2^s - 1). - Ralf Stephan, Jun 18 2007
a(A132739(n)) = A132739(a(n)) = A132740(n). - Reinhard Zumkeller, Aug 27 2007
a(n) = 2*A003602(n) - 1. - Franklin T. Adams-Watters, Jul 02 2009
a(n) = n/gcd(2^n,n). (This also shows that the true offset is 0 and a(0) = 0.) - Peter Luschny, Nov 14 2009
a(-n) = -a(n) for all n in Z. - Michael Somos, Sep 19 2011
From Reinhard Zumkeller, May 01 2012: (Start)
A182469(n, k) = A027750(a(n), k), k = 1..A001227(n).
a(n) = A182469(n, A001227(n)). (End)
a((2*n-1)*2^p) = 2*n - 1, p >= 0 and n >= 1. - Johannes W. Meijer, Feb 05 2013
G.f.: G(0)/(1 - 2*x^2 + x^4) - 1/(1 - x), where G(k) = 1 + 1/(1 - x^(2^k)*(1 - 2*x^(2^(k+1)) + x^(2^(k+2)))/(x^(2^k)*(1 - 2*x^(2^(k+1)) + x^(2^(k+2))) + (1 - 2*x^(2^(k+2)) + x^(2^(k+3)))/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Aug 06 2013
a(n) = A003961(A064989(n)). - Antti Karttunen, Apr 15 2017
Completely multiplicative with a(2) = 1 and a(p) = p for prime p > 2, i.e., the sequence b(n) = a(n) * A008683(n) for n > 0 is the Dirichlet inverse of a(n). - Werner Schulte, Jul 08 2018
From Peter Bala, Feb 27 2019: (Start)
O.g.f.: F(x) - F(x^2) - F(x^4) - F(x^8) - ..., where F(x) = x/(1 - x)^2 is the generating function for the positive integers.
O.g.f. for reciprocals: Sum_{n >= 1} x^n/a(n) = L(x) + (1/2)*L(x^2) + (1/2)*L(x^4) + (1/2)*L(x^8) + ..., where L(x) = log(1/(1 - x)).
Sum_{n >= 1} x^n/a(n) = 1/2*log(G(x)), where G(x) = 1 + 2*x + 4*x^2 + 6*x^3 + 10*x^4 + ... is the o.g.f. of A000123. (End)
O.g.f.: Sum_{n >= 1} phi(2*n-1)*x^(2*n-1)/(1 - x^(2*n-1)), where phi(n) is the Euler totient function A000010. - Peter Bala, Mar 22 2019
a(n) = A049606(n) / A049606(n-1). - Flávio V. Fernandes, Dec 08 2020
a(n) = numerator of n/2^(floor(n/2)). - Federico Provvedi, Dec 14 2021
a(n) = Sum_{d divides n} (-1)^(d+1)*phi(2*n/d). - Peter Bala, Jan 14 2024
a(n) = A030101(A030101(n)). - Darío Clavijo, Sep 19 2024

Extensions

Additional comments from Henry Bottomley, Mar 02 2000
More terms from Larry Reeves (larryr(AT)acm.org), Mar 14 2000
Name clarified by David A. Corneth, Apr 15 2017

A001464 Expansion of e.g.f. exp(-x - (1/2)*x^2).

Original entry on oeis.org

1, -1, 0, 2, -2, -6, 16, 20, -132, -28, 1216, -936, -12440, 23672, 138048, -469456, -1601264, 9112560, 18108928, -182135008, -161934624, 3804634784, -404007680, -83297957568, 92590134208, 1906560847424, -4221314202624, -45349267830400, 159324751301248
Offset: 0

Views

Author

Keywords

Comments

From Robert Israel, Apr 27 2017: (Start)
(-1)^n*a(n) is (the number of even involutions) - (the number of odd involutions) in the symmetric group S_n.
a(n) == (-1)^n (mod A069834(n-1)) for n >= 3.
a(n) is divisible by n-2 and by A200675(n+2). (End)

Examples

			G.f. = 1 - x + 2*x^3 - 2*x^4 - 6*x^5 + 16*x^6 + 20*x^7 - 132*x^8 + ...
		

References

  • Eugene Jahnke and Fritz Emde, Table of Functions with Formulae and Curves, Dover Publications, New York, 1945, page 32.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!(Laplace( Exp(-x-x^2/2) ))); // G. C. Greubel, Sep 03 2023
    
  • Maple
    f:= gfun:-rectoproc({a(n)=-a(n-1)-(n-1)*a(n-2), a(0)=1,a(1)=-1},a(n),remember):
    map(f, [$0..100]); # Robert Israel, Apr 27 2017
    a := n -> (-1)^n*2^((n-1)/2)*KummerU((1-n)/2, 3/2, 1/2): seq(simplify(a(n)), n=0..28); # Peter Luschny, Apr 30 2017
  • Mathematica
    With[{nn=30},CoefficientList[Series[Exp[-x-1/2 x^2],{x,0,nn}], x]Range[0,nn]!] (* Harvey P. Dale, Sep 16 2011 *)
    a[ n_] := If[ n < 0, 0, HermiteH[ n, Sqrt[1/2]] (-Sqrt[1/2])^n]; (* Michael Somos, Jan 24 2014 *)
    a[ n_] := If[ n < 0, 0, (-1)^n Sum[ (-1)^k Binomial[ n, 2 k] (2 k - 1)!!, {k, 0, n/2}]]; (* Michael Somos, Jan 24 2014 *)
    Table[(-1)^(n + 1)*DifferenceRoot[Function[{y, m}, {y[1 + m] == y[m] - (n - m) y[m - 1], y[0] == 0, y[1] == 1, y[2] == 1}]][n], {n, 1, 30}] (* Benedict W. J. Irwin, Nov 03 2016 *)
  • PARI
    Vec( serlaplace( exp( -x -(1/2)*x^2 + O(x^66) ) ) ) /* Joerg Arndt, Oct 13 2012 */
    
  • PARI
    {a(n) = if( n<0, 0, (-1)^n * sum(k=0, n\2, (-1/2)^k * n! / (k! * (n - 2*k)!)))}; /* Michael Somos, Jan 24 2014 */
    
  • SageMath
    def A001464_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( exp(-x-x^2/2) ).egf_to_ogf().list()
    A001464_list(40) # G. C. Greubel, Sep 03 2023

Formula

From Benoit Cloitre, May 01 2003: (Start)
a(n) = -h(n, -1) where h(n, x) is the Hermite polynomial h(n, x) = Sum_{k=0..floor(n/2)} (-1)^k*binomial(n, 2*k)*Product_{i=0..k} (2*i-1)*x^(n-2*k).
a(n) = (-1)^n*Sum_{k=0..floor(n/2)} (-1)^k*C(n, 2*k)*(2k-1)!!. (End)
a(n) = -a(n-1) - (n-1)*a(n-2); a(0)=1, a(1)=-1. - Matthew J. White (mattjameswhite(AT)hotmail.com), Mar 01 2006
From Sergei N. Gladkovskii, Oct 12 2012, Nov 04 2012, Apr 17 2013, Nov 13 2013: (Start)
Continued fractions:
G.f.: 1/(U(0) + x) where U(k) = 1 + x*(k+1) - x*(k+1)/(1 + x/U(k+1)).
G.f.: 1/U(0) where U(k) = 1 + x + x^2*(k+1)/U(k+1).
G.f.: 1/Q(0) where Q(k) = 1 + x*k + x/(1 - x*(k+1)/Q(k+1)).
G.f.: T(0)/(1+x) where T(k) = 1 - x^2*(k+1)/(x^2*(k+1) + (1+x)^2/T(k+1)). (End)
From Michael Somos, Jan 24 2014: (Start)
Binomial transform is [1, 0, -1, 0, 3, 0, -15, 0, 105, ...] where A001147 = [1, 1, 3, 15, 105, ...].
Hankel transform is [1, -1, -2, 12, 288, -34560, -24883200, ...] where A000178 = [1, 1, 2, 12, 288, 34560, 24883200, ...].
0 = a(n) * (-a(n+1) - a(n+2) - a(n+3)) + a(n+1) * (a(n+1) + a(n+2)) for all n in Z. (End)
a(n) = -(-1)^n*y(n,n), where y(m+1,n) = y(m,n) - (n-m)*y(m-1,n), with y(0,n)=0, y(1,n)=y(2,n)=1 for all n. - Benedict W. J. Irwin, Nov 03 2016
a(n) = (-1)^n*2^((n-1)/2)*KummerU((1-n)/2, 3/2, 1/2). - Peter Luschny, Apr 30 2017
a(n) = Sum_{k=0..n} 2^k * Stirling1(n,k) * Bell_k(-1/2), where Bell_n(x) is n-th Bell polynomial. - Seiichi Manyama, Jan 31 2024

Extensions

a(12) and a(13) corrected by Simon Plouffe

A209308 Denominators of the Akiyama-Tanigawa algorithm applied to 2^(-n), written by antidiagonals.

Original entry on oeis.org

1, 2, 2, 1, 2, 4, 4, 4, 8, 8, 1, 4, 8, 4, 16, 2, 2, 1, 8, 32, 32, 1, 2, 4, 4, 16, 32, 64, 8, 8, 16, 16, 64, 64, 128, 128, 1, 8, 16, 8, 32, 64, 128, 32, 256, 2, 2, 8, 16, 64, 64, 128, 64, 512, 512, 1, 2, 4, 8, 32, 64, 128, 16, 128, 512, 1024
Offset: 0

Views

Author

Paul Curtz, Jan 18 2013

Keywords

Comments

1/2^n and successive rows are
1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256,...
1/2, 1/2, 3/8, 1/4, 5/32, 3/32, 7/128, 1/32,... = A000265/A075101, the Oresme numbers n/2^n. Paul Curtz, Jan 18 2013 and May 11 2016
0, 1/4, 3/8, 3/8, 5/16, 15/64, 21/128,... = (0 before A069834)/new,
-1/4, -1/4, 0, 1/4, 25/64, 27/64,...
0, -1/2, -3/4, -9/16, -5/32,...
1/2, 1/2, -9/16, -13/8,...
0, 17/8, 51/16,...
-17/8, -17/8,...
0
The first column is A198631/(A006519?), essentially the fractional Euler numbers 1, -1/2, 0, 1/4, 0,... in A060096.
Numerators b(n): 1, 1, 1, 0, 1, 1, -1, 1, 3, 1, ... .
Coll(n+1) - 2*Coll(n) = -1/2, -5/8, -1/2, -11/32, -7/32, -17/128, -5/64, -23/512, ... = -A075677/new, from Collatz problem.
There are three different Bernoulli numbers:
The first Bernoulli numbers are 1, -1/2, 1/6, 0,... = A027641(n)/A027642(n).
The second Bernoulli numbers are 1, 1/2, 1/6, 0,... = A164555(n)/A027642(n). These are the binomial transform of the first one.
The third Bernoulli numbers are 1, 0, 1/6, 0,... = A176327(n)/A027642(n), the half sum. Via A177427(n) and A191567(n), they yield the Balmer series A061037/A061038.
There are three different fractional Euler numbers:
1) The first are 1, -1/2, 0, 1/4, 0, -1/2,... in A060096(n).
Also Akiyama-Tanigawa algorithm for ( 1, 3/2, 7/4, 15/8, 31/16, 63/32,... = A000225(n+1)/A000079(n) ).
2) The second are 1, 1/2, 0, -1/4, 0, 1/2,... , mentioned by Wolfdieter Lang in A198631(n).
3) The third are 0, 1/2, 0, -1/4, 0, 1/2,... , half difference of 2) and 1).
Also Akiyama-Tanigawa algorithm for ( 0, -1/2, -3/4, -7/8, -15/16, -31/32,... = A000225(n)/A000079(n) ). See A097110(n).

Examples

			Triangle begins:
  1,
  2, 2,
  1, 2,  4,
  4, 4,  8,  8,
  1, 4,  8,  4, 16,
  2, 2,  1,  8, 32, 32,
  1, 2,  4,  4, 16, 32,  64,
  8, 8, 16, 16, 64, 64, 128, 128,
  ...
		

Crossrefs

Cf. Second Bernoulli numbers A164555(n)/A027642(n) via Akiyama-Tanigawa algorithm for 1/(n+1), A272263.

Programs

  • Mathematica
    max = 10; t[0, k_] := 1/2^k; t[n_, k_] := t[n, k] = (k + 1)*(t[n - 1, k] - t[n - 1, k + 1]); denoms = Table[t[n, k] // Denominator, {n, 0, max}, {k, 0, max - n}]; Table[denoms[[n - k + 1, k]], {n, 1, max}, {k, 1, n}] // Flatten (* Jean-François Alcover, Feb 05 2013 *)

A050605 Column/row 2 of A050602: a(n) = add3c(n,2).

Original entry on oeis.org

0, 0, 1, 1, 0, 0, 2, 2, 0, 0, 1, 1, 0, 0, 3, 3, 0, 0, 1, 1, 0, 0, 2, 2, 0, 0, 1, 1, 0, 0, 4, 4, 0, 0, 1, 1, 0, 0, 2, 2, 0, 0, 1, 1, 0, 0, 3, 3, 0, 0, 1, 1, 0, 0, 2, 2, 0, 0, 1, 1, 0, 0, 5, 5, 0, 0, 1, 1, 0, 0, 2, 2, 0, 0, 1, 1, 0, 0, 3, 3, 0, 0, 1, 1, 0, 0, 2, 2
Offset: 0

Views

Author

Antti Karttunen, Jun 22 1999

Keywords

Comments

It seems that (n - Sum_{k=1..n} a(k) )/log(n) is bounded. - Benoit Cloitre, Oct 03 2002
2^a(n-1) is the highest power of 2 dividing the triangular number A000217(n) = n*(n+1)/2, for n >= 1. - Benoit Cloitre, Oct 03 2002 [corrected and rewritten by Wolfdieter Lang, Nov 21 2019]
a(n) is the number of trailing 0's in the binary reflected Gray code of n+1 (A014550). - Amiram Eldar, May 15 2021

Crossrefs

Bisection gives column/row 1 of A050602: A007814.

Programs

  • Magma
    [Valuation(n*(n+1)/2, 2): n in [1..120]]; // Vincenzo Librandi, Aug 11 2017
  • Maple
    with(Bits): add3c := proc(a, b) option remember; `if`(0 = And(a, b), 0, 1 + add3c(Xor(a, b), 2*And(a, b))) end: A050605 := n -> add3c(n, 2):
    seq(A050605(n), n=0..80); # Johannes W. Meijer, Jun 18 2009; updated by Peter Luschny, Jul 12 2019
  • Mathematica
    Table[IntegerExponent[(n + 1)(n + 2)/2, 2], {n, 0, 100}] (* Jean-François Alcover, Mar 04 2016 *)
  • PARI
    a(n)=valuation(n*(n+1)/2,2)
    

Formula

a(4*n+2) = A001511(n). - Johannes W. Meijer, Jun 18 2009
a(n) = A007814(n+1) + A007814(n+2) - 1. - Ridouane Oudra, Oct 08 2019

A319861 Triangle read by rows, 0 <= k <= n: T(n,k) is the numerator of the k-th Bernstein basis polynomial of degree n evaluated at the interval midpoint t = 1/2; denominator is A319862.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 3, 1, 1, 1, 5, 5, 5, 5, 1, 1, 3, 15, 5, 15, 3, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 1, 7, 7, 35, 7, 7, 1, 1, 1, 9, 9, 21, 63, 63, 21, 9, 9, 1, 1, 5, 45, 15, 105, 63, 105, 15, 45, 5, 1, 1, 11, 55, 165, 165, 231, 231, 165, 165, 55, 11, 1
Offset: 0

Views

Author

Keywords

Comments

In Computer-Aided Geometric Design, the affine combination Sum_{k=0..n} (T(n,k)/A319862(n,k))*P_k is the halfway point for the Bézier curve of degree n defined by the control points P_k, k = 0, 1, ..., n.

Examples

			Triangle begins:
  1;
  1, 1;
  1, 1,  1;
  1, 3,  3,  1;
  1, 1,  3,  1,   1;
  1, 5,  5,  5,   5,  1;
  1, 3, 15,  5,  15,  3,   1;
  1, 7, 21, 35,  35, 21,   7,  1;
  1, 1,  7,  7,  35,  7,   7,  1,  1;
  1, 9,  9, 21,  63, 63,  21,  9,  9, 1;
  1, 5, 45, 15, 105, 63, 105, 15, 45, 5, 1;
  ...
		

Crossrefs

Programs

  • GAP
    Flat(List([0..11],n->List([0..n],k->Binomial(n,k)/Gcd(Binomial(n,k),2^n)))); # Muniru A Asiru, Sep 30 2018
    
  • Maple
    a:=(n,k)->binomial(n,k)/gcd(binomial(n,k),2^n): seq(seq(a(n,k),k=0..n),n=0..11); # Muniru A Asiru, Sep 30 2018
  • Mathematica
    T[n_, k_] = Binomial[n, k]/GCD[Binomial[n, k], 2^n];
    tabl[nn_] = TableForm[Table[T[n, k], {n, 0, nn}, {k, 0, n}]];
  • Maxima
    T(n,k) := binomial(n, k)/gcd(binomial(n, k), 2^n)$
    tabl(nn) := for n:0 thru nn do print(makelist(T(n, k), k, 0, n))$
    
  • Sage
    flatten([[numerator(binomial(n,k)/2^n) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jul 19 2021

Formula

T(n, k) = numerator of binomial(n,k)/2^n.
T(n, k) = binomial(n,k)/A082907(n,k).
T(n, k)/A319862(n,k) = binomial(n,k)/2^n.
T(n, n-k) = T(n,k).
T(n, 0) = 1.
T(n, 1) = A000265(n) (with offset 0, following Peter Luschny's formula).
T(n, 2) = A069834(n-1), n > 1.
Sum_{k=0..n} 2*k*T(n,k)/A319862(n,k) = n.
Sum_{k=0..n} 2*k^2*T(n,k)/A319862(n,k) = A000217(n).

A208884 a(n) = (a(n-1) + n)/2^k where 2^k is the largest power of 2 dividing a(n-1) + n, for n>1 with a(1)=1.

Original entry on oeis.org

1, 3, 3, 7, 3, 9, 1, 9, 9, 19, 15, 27, 5, 19, 17, 33, 25, 43, 31, 51, 9, 31, 27, 51, 19, 45, 9, 37, 33, 63, 47, 79, 7, 41, 19, 55, 23, 61, 25, 65, 53, 95, 69, 113, 79, 125, 43, 91, 35, 85, 17, 69, 61, 115, 85, 141, 99, 157, 27, 87, 37, 99, 81, 145, 105, 171
Offset: 1

Views

Author

Paul D. Hanna, Mar 02 2012

Keywords

Comments

In other words, to get a(n), add n to a(n-1) and compute the odd part (A000265) of the sum. - Ralf Stephan, Oct 27 2013
POSITIONS of odd numbers in the initial 7000000 terms begin:
1: [1, 7, 69, 285, 3601, 5167, 92989, 112651, 6933175, ...];
3: [2, 3, 5, 613, 8461, 46749, 81237, 102171, 126661, 3309589, ...];
5: [13, 97, 2431, 92095, ...];
7: [4, 33, 3167, 78095, 2723179, ...];
9: [6, 8, 9, 21, 27, 303, 2017, 3239, 3765, 6753, 28387, 251451, ...];
11: [75, 15823, 28221, 4091959, 5820487, ...];
13: [22975, 42391, 3729249, ...];
15: [11, 22587, 2527579, 6954893, ...];
17: [15, 51, 3121, 13433, 74763, 376853, 576439, 896899, ...];
19: [10, 14, 25, 35, 291, 77747, 757319, 1227595, 2307099, ...];
21: [1417, 1557, 712229, 2563807, ...];
23: [37, 127, 609, 2211, 5563, 199901, ...];
25: [17, 39, 221, 1145, 3425, 17593, 4318897, ...];
27: [12, 23, 59, 73, 289, 1149, 3393, 20439, 37107, ...];
29: [573, 33315, 61505, 467047, 491359, 1170709, 1492309, 2498593, 3017011, ...];
31: [19, 22, 229, 409, 6199, 60529, 3602675, 4108215, 4604929, ...]; ...
From Ya-Ping Lu, Jun 25 2020: (Start)
Conjecture: For any given odd number m, there exists a number n_max such that all odd numbers <= m can be found in the sequence a(n) with n <= n_max. For example:
m = 1, n_max = 1;
m = 3, n_max = 2;
m = 5, n_max = 13;
m = 11, n_max = 75
m = 13, n_max = 22975;
m = 305, n_max = 1025715;
m = 749, n_max = 14695985;
m = 795, n_max = 150788015;
m = 7525, n_max = 31129547917;
...
If the conjecture above is true, this sequence contains all odd numbers. (End)

Examples

			a(2) = 1 + 2 = 3;
a(3) = (3 + 3)/2 = 3;
a(4) = 3 + 4 = 7;
a(5) = (7 + 5)/4 = 3;
a(6) = 3 + 6 = 9;
a(7) = (9 + 7)/16 = 1; ...
		

Crossrefs

Programs

  • Mathematica
    a[1]=1; a[n_] := a[n] = #/2^IntegerExponent[#, 2] &@ (n + a[n-1]); Array[a, 70] (* Giovanni Resta, Jun 25 2020 *)
  • PARI
    {a(n)=if(n==1, 1, (a(n-1)+n)/2^valuation(a(n-1)+n,2))}
    
  • PARI
    {A=vector(1024); a(n)=A[n]=if(n==1, 1, (A[n-1]+n)/2^valuation(A[n-1]+n,2))}
    for(n=1,#A,print1(a(n),", "))

A320085 Triangle read by rows, 0 <= k <= n: T(n,k) is the numerator of the derivative of the k-th Bernstein basis polynomial of degree n evaluated at the interval midpoint t = 1/2; denominator is A320086.

Original entry on oeis.org

0, -1, 1, -1, 0, 1, -3, -3, 3, 3, -1, -1, 0, 1, 1, -5, -15, -5, 5, 15, 5, -3, -3, -15, 0, 15, 3, 3, -7, -35, -63, -35, 35, 63, 35, 7, -1, -3, -7, -7, 0, 7, 7, 3, 1, -9, -63, -45, -63, -63, 63, 63, 45, 63, 9, -5, -5, -135, -15, -105, 0, 105, 15, 135, 5, 5
Offset: 0

Views

Author

Keywords

Comments

If n = 2*k, then T(n,k) = 0 since the k-th Bernstein basis polynomial of degree n has a single unique local maximum occurring at t = k/n, which coincides with the interval midpoint t = 1/2 (T(0,0) = 0 because the only 0 degree Bernstein basis polynomial is the constant 1).

Examples

			Triangle begins:
   0;
  -1,   1;
  -1,   0,    1;
  -3,  -3,    3,   3;
  -1,  -1,    0,   1,    1;
  -5, -15,   -5,   5,   15,  5;
  -3,  -3,  -15,   0,   15,  3,   3;
  -7, -35,  -63, -35,   35, 63,  35,  7;
  -1,  -3,   -7,  -7,    0,  7,   7,  3,   1;
  -9, -63,  -45, -63,  -63, 63,  63, 45,  63, 9;
  -5,  -5, -135, -15, -105,  0, 105, 15, 135, 5, 5;
  ...
		

Crossrefs

Programs

  • Maple
    T:=proc(n,k) n*(binomial(n-1,k-1)-binomial(n-1,k))/gcd(n*(binomial(n-1,k-1)-binomial(n-1,k)),2^(n-1)); end proc: seq(seq(T(n,k),k=0..n),n=0..11); # Muniru A Asiru, Oct 06 2018
  • Mathematica
    Table[Numerator[n*(Binomial[n-1, k-1] - Binomial[n-1, k])/2^(n-1)], {n, 0, 12}, {k, 0, n}]//Flatten
  • Maxima
    T(n, k) := n*(binomial(n - 1, k - 1) - binomial(n - 1, k))/gcd(n*(binomial(n - 1, k - 1) - binomial(n - 1, k)), 2^(n - 1))$
    tabl(nn) := for n:0 thru nn do print(makelist(T(n, k), k, 0, n))$
    
  • Sage
    def A320085(n,k): return numerator(n*(binomial(n-1, k-1) - binomial(n-1, k))/2^(n-1))
    flatten([[A320085(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jul 19 2021

Formula

T(n, k) = numerator of 2*A141692(n,k)/A000079(n).
T(n, k) = n*(binomial(n-1, k-1) - binomial(n-1, k))/gcd(n*(binomial(n-1, k-1) - binomial(n-1, k)), 2^(n-1)).
T(n, n-k) = -T(n,k).
T(n, 0) = -n.
T(2*n+1, 1) = -A000466(n).
T(2*n, 1) = -A069834(n-1), n > 1.
T(n, k)/A320086(n,k) = 4*n*(k/n - 1/2)*A319861(n,k)/A319861(n,k).
Sum_{k=0..n} k*T(n,k)/A320086(n,k) = n.
Sum_{k=0..n} k^2*T(n,k)/A320086(n,k) = n^2.
Sum_{k=0..n} k*(k-1)*T(n,k)/A320086(n,k) = n*(n - 1).

A274613 Array T(n,k) = numerator of binomial(k,n)/2^k read by antidiagonals omitting the zeros (upper triangle), a sequence related to Jacobsthal numbers.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 5, 1, 1, 5, 3, 1, 1, 5, 15, 7, 1, 5, 5, 21, 1, 1, 1, 15, 35, 7, 9, 1, 3, 35, 7, 9, 5, 1, 1, 21, 35, 21, 45, 11, 1, 7, 7, 63, 15, 55, 3, 1, 1, 7, 63, 105, 165, 33, 13, 1, 1, 21, 63, 165, 55, 39, 7, 1, 1, 9, 105, 231, 495, 143, 91, 15, 1
Offset: 0

Views

Author

Keywords

Comments

Array of fractions begins:
1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, ...
0, 1/2, 1/2, 3/8, 1/4, 5/32, 3/32, 7/128, ...
0, 0, 1/4, 3/8, 3/8, 5/16, 15/64, 21/128, ...
0, 0, 0, 1/8, 1/4, 5/16, 5/16, 35/128, ...
0, 0, 0, 0, 1/16, 5/32, 15/64, 35/128, ...
0, 0, 0, 0, 0, 1/32, 3/32, 21/128, ...
0, 0, 0, 0, 0, 0, 1/64, 7/128, ...
...
Given the symmetry T(n,k) = T(k-n,k) in the upper triangle, rows and upper diagonals are identical.
The first row, which is also the main diagonal, is 1/2^k.
The second row is Oresme numbers k/2^k.
The third row is (k(k-1)/2!)/2^k (see A069834).
The fourth row is (k(k-1)(k-2)/3!)/2^k.
The sum of any column is always 1.
Omitting the zeros, the columns are fractions A007318/A137688.
The sum of the n-th antidiagonal is A001045(n+1)/2^n; the numerators of these sums are the positive Jacobsthal numbers 1, 1, 3, 5, 11, 21, 43, 85, ... (see A001045).
It can also be observed that every row is an "autosequence", that is a sequence which is identical to its inverse binomial transform, except for signs.

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := Binomial[k, n]/2^k;
    Table[T[n - k, k] // Numerator, {n, 0, 16}, {k, Floor[(n + 1)/2], n}] // Flatten

A348762 a(n) = A000265((n-8)*(n+8)).

Original entry on oeis.org

17, 9, 57, 5, 105, 33, 161, 3, 225, 65, 297, 21, 377, 105, 465, 1, 561, 153, 665, 45, 777, 209, 897, 15, 1025, 273, 1161, 77, 1305, 345, 1457, 3, 1617, 425, 1785, 117, 1961, 513, 2145, 35, 2337, 609, 2537, 165, 2745, 713, 2961, 3, 3185, 825, 3417, 221, 3657
Offset: 9

Views

Author

Simon Strandgaard, Oct 31 2021

Keywords

Comments

Shares 495 initial terms with A061049. First difference is A061049(504)=62 vs. a(504)=31.

Examples

			a( 9) = A000265(( 9-8)*( 9+8)) = A000265( 17) = 17,
a(10) = A000265((10-8)*(10+8)) = A000265( 36) = 9,
a(11) = A000265((11-8)*(11+8)) = A000265( 57) = 57,
a(12) = A000265((12-8)*(12+8)) = A000265( 80) = 5,
a(13) = A000265((13-8)*(13+8)) = A000265(105) = 105.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := (n - 8)*(n + 8)/2^IntegerExponent[(n - 8)*(n + 8), 2]; Array[a, 53, 9] (* Amiram Eldar, Nov 22 2021 *)
  • PARI
    A000265(n) = n >> valuation(n, 2);
    a(n) = A000265((n-8)*(n+8));
    [a(n)|n<-[9..27]]
    
  • Python
    def A348762(n):
        a, b = divmod(n*n-64, 2)
        while b == 0:
            a, b = divmod(a,2)
        return 2*a+b # Chai Wah Wu, Dec 05 2021
  • Ruby
    p (9..27).map { |n| x = (n-8)*(n+8); x /= 2 while x.even?; x }
    

Formula

a(n) = A000265(A098849(n-8)).
Showing 1-9 of 9 results.